Search results for: initiating structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7883

Search results for: initiating structure

2303 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent

Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik

Abstract:

Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.

Keywords: Adsorption, cellulose, halloysite, triclosan

Procedia PDF Downloads 130
2302 Urban Neighborhood Center Location Evaluating Method Based On UNA the GIS Spatial Analysis Tools: Kerman's Neighborhood in Tehran Case

Authors: Sepideh Jabbari Behnam, Shadabeh Gashtasbi Iraei, Elnaz Mohsenin, MohammadAli Aghajani

Abstract:

Urban neighborhoods, as important urban forming cells, play a key role in creating urban texture and integrated form. Nowadays, most of neighborhood divisions are based on urban management systems but without considering social issues and the other aspects of urban life. This can cause problems such as providing inappropriate services for city dwellers, the loss of local identity and etc. In this regard for regenerating of such neighborhoods, it is essential to locate neighborhood centers with appropriate access and services for all residents. The main objective of this article is reaching to the location of neighborhood centers in a way that, most of issues relating to the physical features (such as the form of access network and texture permeability and etc.) and other qualities such as land uses, densities and social and economic features can be done simultaneously. This paper attempts to use methods of spatial analysis in order to surveying spatial structure and space syntax of urban textures and Urban Network Analysis Systems. This can be done by one of GIS toolbars which is named UNA (Urban Network Analysis) with the use of its five functions (include: Reach, Betweenness, Gravity, Closeness, Straightness).These functions were written according to space syntax theory and offer its relating output. This paper tries to locate and evaluate the optimal location of neighborhood centers in order to create local centers. This is done through weighing of each of these functions and taking into account of spatial features.

Keywords: evaluate optimal location, Local centers, location of neighborhood centers, Spatial analysis, Urban network

Procedia PDF Downloads 465
2301 Electron-Ion Recombination for Photoionized and Collisionally Ionized Plasmas

Authors: Shahin A. Abdel-Naby, Asad T. Hassan

Abstract:

Astrophysical plasma environments can be classified into collisionally ionized (CP) and photoionizedplasmas (PP). In the PP, ionization is caused by an external radiation field, while it is caused by electron collision in the CP. Accurate and reliable laboratory astrophysical data for electron-ion recombination is needed for plasma modeling for low and high-temperatures. Dielectronic recombination (DR) is the dominant recombination process for the CP for most of the ions. When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by a photon emission. DR calculations at low-temperatures are problematic and challenging since small uncertaintiesin the low-energy DR resonance positions can produce huge uncertainties in DR rate coefficients.DR rate coefficients for N²⁺ and O³⁺ ions are calculated using state-of-the-art multi-configurationBreit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated withn = 0 and n = 1 core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are foundbetween these rate coefficients and theexperimental measurements performed at CRYRING heavy-ionstorage ring for both ions.

Keywords: atomic data, atomic process, electron-ion collision, plasmas

Procedia PDF Downloads 99
2300 Induction of Cytotoxicity and Apoptosis in Ovarian Cancer Cell Line (CAOV-3) by an Isoquinoline Alkaloid Isolated from Enicosanthellum pulchrum (King) Heusden

Authors: Noraziah Nordin, Najihah Mohd Hashim, Nazia Abdul Majid, Mashitoh Abdul Rahman, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Enicosanthellum pulchrum belongs to family Annonaceae is also known as family of 'mempisang' in Malaysia. Liriodenine was isolated by prep-HPLC method. This method was first technique used for the isolation of this compound. The structure of the liriodenine was elucidated by 1D and 2D spectroscopy techniques. Liriodenine was tested on ovarian cancer cells line (CAOV-3) for MTT, AO/PI and cytotoxicity 3 assays. The MTT assay was performed to determine the cytotoxicity effect of lirodenine on CAOV-3 cells. The morphological changes on CAOV-3 cells were observed by AO/PI assay for the early and late stage of apoptosis, as well as necrosis. Meanwhile, the measurement of cell loss, nuclear morphology, DNA content, cell membrane permeability, mitochondrial membrane potential changes and cytochrome c release from mitochondria were detected through cytotoxicity 3 assay. The IC50 results showed liriodenine inhibits the growth of CAOV-3 cells after 24 h of treatment at 10.25 ± 1.06 µg/mL. After 48 and 72 h of treatments, the IC50 values were decreased to 7.65 ± 0:07 and 6.35 ± 1.62 µg/mL, respectively. The morphology changes can be seen on CAOV-3 with a production of cell membrane blebbing, cromatin condensation and apoptotic bodies with increasing time of treatment from 24 to 72 h. Evaluation of cytotoxicity 3 on CAOV-3 cells after treated with liriodenine, resulting loss of mitochondrial membrane potential and release of cytochrome c from mitochondria. The results demonstrated the capability of liriodenine as a promising anticancer agent, particularly on human ovarian cancer.

Keywords: Enicosanthellum pulchrum, ovarian cancer, apoptosis, cytotoxicity

Procedia PDF Downloads 446
2299 Computer Aided Shoulder Prosthesis Design and Manufacturing

Authors: Didem Venus Yildiz, Murat Hocaoglu, Murat Dursun, Taner Akkan

Abstract:

The shoulder joint is a more complex structure than the hip or knee joints. In addition to the overall complexity of the shoulder joint, two different factors influence the insufficient outcome of shoulder replacement: the shoulder prosthesis design is far from fully developed and it is difficult to place these shoulder prosthesis due to shoulder anatomy. The glenohumeral joint is the most complex joint of the human shoulder. There are various treatments for shoulder failures such as total shoulder arthroplasty, reverse total shoulder arthroplasty. Due to its reverse design than normal shoulder anatomy, reverse total shoulder arthroplasty has different physiological and biomechanical properties. Post-operative achievement of this arthroplasty is depend on improved design of reverse total shoulder prosthesis. Designation achievement can be increased by several biomechanical and computational analysis. In this study, data of human both shoulders with right side fracture was collected by 3D Computer Tomography (CT) machine in dicom format. This data transferred to 3D medical image processing software (Mimics Materilise, Leuven, Belgium) to reconstruct patient’s left and right shoulders’ bones geometry. Provided 3D geometry model of the fractured shoulder was used to constitute of reverse total shoulder prosthesis by 3-matic software. Finite element (FE) analysis was conducted for comparison of intact shoulder and prosthetic shoulder in terms of stress distribution and displacements. Body weight physiological reaction force of 800 N loads was applied. Resultant values of FE analysis was compared for both shoulders. The analysis of the performance of the reverse shoulder prosthesis could enhance the knowledge of the prosthetic design.

Keywords: reverse shoulder prosthesis, biomechanics, finite element analysis, 3D printing

Procedia PDF Downloads 158
2298 Implementing 3D Printed Structures as the Newest Textile Form

Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın

Abstract:

From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard.

Keywords: 3D printing technology, FDM, SLS, textile structure

Procedia PDF Downloads 341
2297 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method

Authors: Felix Platzer, Eric Fimbinger

Abstract:

In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.

Keywords: bonded particle model, DEM, filter cake, particle breakage

Procedia PDF Downloads 211
2296 Induced Pulsation Attack Against Kalman Filter Driven Brushless DC Motor Control System

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

We use modeling and simulation tools, to introduce a novel bias injection attack, named the ’Induced Pulsation Attack’, which targets Cyber Physical Systems with closed-loop controlled Brushless DC (BLDC) motor and Kalman filter driver in the feedback loop. This attack involves engaging a linear function with a constant gradient to distort the coefficient of the injected bias, which falsifies the Kalman filter estimates of the rotor’s angular speed. As a result, this manipulation interaction inside the control system causes periodic pulsations in a form of asymmetric sine wave of both current and voltage in the circuit windings, with a high magnitude. It is shown that by varying the gradient of linear function, one can control both the frequency and structure of the induced pulsations. It is also demonstrated that terminating the attack at any point leads to additional compensating effort from the controller to restore the speed to its equilibrium value. This compensation effort produces an exponentially decaying wave, which we call the ’attack withdrawal syndrome’ wave. The conditions for maximizing or minimizing the impact of the attack withdrawal syndrome are determined. Linking the termination of the attack to the end of the full period of the induced pulsation wave has been shown to nullify the attack withdrawal syndrome wave, thereby improving the attack’s covertness.

Keywords: cyber-attack, induced pulsation, bias injection, Kalman filter, BLDC motor, control system, closed loop, P- controller, PID-controller, saw-function, cyber-physical system

Procedia PDF Downloads 73
2295 Hybrid-Nanoengineering™: A New Platform for Nanomedicine

Authors: Mewa Singh

Abstract:

Nanomedicine, a fusion of nanotechnology and medicine, is an emerging technology ideally suited to the targeted therapies. Nanoparticles overcome the low selectivity of anti-cancer drugs toward the tumor as compared to normal tissue and hence result-in less severe side-effects. Our new technology, HYBRID-NANOENGINEERING™, uses a new molecule (MR007) in the creation of nanoparticles that not only helps in nanonizing the medicine but also provides synergy to the medicine. The simplified manufacturing process will result in reduced manufacturing costs. Treatment is made more convenient because hybrid nanomedicines can be produced in oral, injectable or transdermal formulations. The manufacturing process uses no protein, oil or detergents. The particle size is below 180 nm with a narrow distribution of size. Importantly, these properties confer great stability of the structure. The formulation does not aggregate in plasma and is stable over a wide range of pH. The final hybrid formulation is stable for at least 18 months as a powder. More than 97 drugs, including paclitaxel, docetaxel, tamoxifen, doxorubicinm prednisone, and artemisinin have been nanonized in water soluble formulations. Preclinical studies on cell cultures of tumors show promising results. Our HYBRID-NANOENGINEERING™ platform enables the design and development of hybrid nano-pharmaceuticals that combine efficacy with tolerability, giving patients hope for both extended overall survival and improved quality of life. This study would discuss or present this new discovery of HYBRID-NANOENGINEERING™ which targets drug delivery, synergistic, and potentiating effects, and barriers of drug delivery and advanced drug delivery systems.

Keywords: nano-medicine, nano-particles, drug delivery system, pharmaceuticals

Procedia PDF Downloads 487
2294 Culture of Primary Cortical Neurons on Hydrophobic Nanofibers Induces the Formation of Organoid-Like Structures

Authors: Nick Weir, Robert Stevens, Alan Hargreaves, Martin McGinnity, Chris Tinsley

Abstract:

Hydrophobic materials have previously demonstrated the ability to elevate cell-cell interactions and promote the formation of neural networks whilst aligned nanofibers demonstrate the ability to induce extensive neurite outgrowth in an aligned manner. Hydrophobic materials typically elicit an immune response upon implantation and thus materials used for implantation are typically hydrophilic. Poly-L-lactic acid (PLLA) is a hydrophobic, non-immunogenic, FDA approved material that can be electrospun to form aligned nanofibers. Primary rat cortical neurons cultured for 10 days on aligned PLLA nanofibers formed 3D cell clusters, approximately 800 microns in diameter. Neurites that extended from these clusters were highly aligned due to the alignment of the nanofibers they were cultured upon and fasciculation was also evident. Plasma treatment of the PLLA nanofibers prior to seeding of cells significantly reduced the hydrophobicity and abolished the cluster formation and neurite fasciculation, whilst reducing the extent and directionality of neurite outgrowth; it is proposed that hydrophobicity induces the changes to cellular behaviors. Aligned PLLA nanofibers induced the formation of a structure that mimics the grey-white matter compartmentalization that is observed in vivo and thus represents a step forward in generating organoids or biomaterial-based implants. Upon implantation into the brain, the biomaterial architectures described here may provide a useful platform for both brain repair and brain remodeling initiatives.

Keywords: hydrophobicity, nanofibers, neurite fasciculation, neurite outgrowth, PLLA

Procedia PDF Downloads 161
2293 Advanced Metallic Frameworks for Development of Robust and Efficient Water Splitting Electrodes

Authors: Tam D. Nguyen, Joe Varga, Douglas MacFarlane, Alexandr Simonov

Abstract:

Development of advanced technologies for green hydrogen generation from renewables is of key strategic importance to global future energy security and economic growth. Renewable-powered water electrolysis (WE) is considered as the most effective of the sustainable methods for hydrogen generation at scale. Currently, the greatest challenge of hydrogen production via water electrolysis is the insufficiently high efficiency. In which, the energy loss associated with the conversion of water to hydrogen is approximately 40-60%, with 30-35% associated with the electrolysis itself and 10-12% with gas compression and transportation. Hence, development of an energy-efficient water electrolyser that can generate hydrogen at high pressure will address both of these major challenges. This requires the development of advanced electrode configuration of the water electrolysis cell. Herein, we developed a highly-ordered interconnected structure of the metallic inverse-opal (IO) frameworks based on low cost materials, e.g. Cu, Ni, Fe, Co. The water electrolysis electrodes based on these frameworks can provide excellent mechanical strength required for the application under conditions of extreme pressure, as well as outstanding catalytic performance through the exceptional high surface area and high electrical conductivity. For example, NiFe layered double hydroxide (LDH) catalyst deposited on Cu IO is able to reach the oxygen evolution reaction (OER) catalytic performance up to the rates of > 100 mA cm−2 (>727A gcatalyst-1) at an overpotential of ~0.3 V. This high performance is achieved with only few micron-thick catalyst layers, in contrast to similarly performance of 103-fold thicker electrodes based on foams and other substrates.

Keywords: oxygen evolution reaction, support materials, mass transport, NiFe LDH

Procedia PDF Downloads 6
2292 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters

Authors: Ayat Adnan Atwah, Muhammad A. Khan

Abstract:

Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.

Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication

Procedia PDF Downloads 92
2291 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing

Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio

Abstract:

High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.

Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS

Procedia PDF Downloads 66
2290 Development of an in vitro Fermentation Chicken Ileum Microbiota Model

Authors: Bello Gonzalez, Setten Van M., Brouwer M.

Abstract:

The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.

Keywords: broilers, in vitro model, ileum microbiota, fermentation

Procedia PDF Downloads 65
2289 A Psychosocial Approach to Community Development, Lessons from the Transition Town Movement in Italy

Authors: Anna Zoli

Abstract:

In recent years, we have been witnessing a surge of locally-sustained communities committed to promoting new ethical economies while fostering the full participation of socially excluded groups and individuals into the labor market. This article explores the practices of a particular community development model, Transition Towns, as implemented in Monteveglio, Italy. Data were gathered throughout two years long ethnography, using multiple qualitative techniques, namely participant observation, document analysis, and semi-structured interviews. Data were analyzed triangulating from multiple sources of evidence and using hybrid thematic analysis. Major findings show that Transition Town movement works on two main axes, vertical and horizontal. Vertical transition involves interactions with an overreaching political, economic, and social structure which is not transitioning, and therefore poses structural resistances to the transformative social change fostered by the TT. Conversely, horizontal transition involves intragroup dynamics within the communal relational and geographical spaces and therefore poses process resistances between 'self and others' to the interpersonal communication between TT members. The study concludes that a psychosocial approach to community development is essential in order to conflate macro-social dynamics and psychological processes that may obstacle grassroots social movements to thrive. Skills from psychosocial disciplines are a unique set that could facilitate communication and relational processes for community development, and ultimately enabling social change.

Keywords: community development, grassroots social movements, psychosocial approaches, Transition Towns

Procedia PDF Downloads 122
2288 A Computational Study Concerning the Biological Effects of the Most Commonly Used Phthalates

Authors: Dana Craciun, Daniela Dascalu, Adriana Isvoran

Abstract:

Phthalates are a class of plastic additives that are used to enhance the physical properties of plastics and as solvents in paintings and some of them proved to be of particular concern for the human health. There are insufficient data concerning the health risks of phthalates and further research on evaluating their effects in humans is needed. As humans are not volunteers for such experiments, computational analysis may be used to predict the biological effects of phthalates in humans. Within this study we have used some computational approaches (SwissADME, admetSAR, FAFDrugs) for predicting the absorption, distribution, metabolization, excretion and toxicity (ADME-Tox) profiles and pharmacokinetics for the most common used phthalates. These computational tools are based on quantitative structure-activity relationship modeling approach. The predictions are further compared to the known effects of each considered phthalate in humans and correlations between computational results and experimental data are discussed. Our data revealed that phthalates are a class of compounds reflecting high toxicity both when ingested and when inhaled, but by inhalation their toxicity is even greater. The predicted harmful effects of phthalates are: toxicity and irritations of the respiratory and gastrointestinal tracts, dyspnea, skin and eye irritations and disruption of the functions of liver and of the reproductive system. Many of investigated phthalates are predicted to be able to inhibit some of the cytochromes involved in the metabolism of numerous drugs and consequently to affect the efficiency of administrated treatments for many diseases and to intensify the adverse drugs reactions. The obtained predictions are in good agreement with clinical data concerning the observed effects of some phthalates in cases of acute exposures. Our study emphasizes the possible health effects of numerous phthalates and underlines the applicability of computational methods for predicting the biological effects of xenobiotics.

Keywords: phthalates, ADME-Tox, pharmacokinetics, biological effects

Procedia PDF Downloads 257
2287 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 91
2286 Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy

Authors: Sanjeev Kumar, Vikas Kumar

Abstract:

Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen.

Keywords: IN718 superalloy, nanostructure, USP, LCF life

Procedia PDF Downloads 115
2285 Climate Change Effects on Agriculture

Authors: Abdellatif Chebboub

Abstract:

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Keywords: climate change, agriculture, weather change, danger of climate change

Procedia PDF Downloads 318
2284 Molecular Characterization of Polyploid Bamboo (Dendrocalamus hamiltonii) Using Microsatellite Markers

Authors: Rajendra K. Meena, Maneesh S. Bhandari, Santan Barthwal, Harish S. Ginwal

Abstract:

Microsatellite markers are the most valuable tools for the characterization of plant genetic resources or population genetic analysis. Since it is codominant and allelic markers, utilizing them in polyploid species remained doubtful. In such cases, the microsatellite marker is usually analyzed by treating them as a dominant marker. In the current study, it has been showed that despite losing the advantage of co-dominance, microsatellite markers are still a powerful tool for genotyping of polyploid species because of availability of large number of reproducible alleles per locus. It has been studied by genotyping of 19 subpopulations of Dendrocalamus hamiltonii (hexaploid bamboo species) with 17 polymorphic simple sequence repeat (SSR) primer pairs. Among these, ten primers gave typical banding pattern of microsatellite marker as expected in diploid species, but rest 7 gave an unusual pattern, i.e., more than two bands per locus per genotype. In such case, genotyping data are generally analyzed by considering as dominant markers. In the current study, data were analyzed in both ways as dominant and co-dominant. All the 17 primers were first scored as nonallelic data and analyzed; later, the ten primers giving standard banding patterns were analyzed as allelic data and the results were compared. The UPGMA clustering and genetic structure showed that results obtained with both the data sets are very similar with slight variation, and therefore the SSR marker could be utilized to characterize polyploid species by considering them as a dominant marker. The study is highly useful to widen the scope for SSR markers applications and beneficial to the researchers dealing with polyploid species.

Keywords: microsatellite markers, Dendrocalamus hamiltonii, dominant and codominant, polyploids

Procedia PDF Downloads 145
2283 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm

Authors: Vaibhav Barve

Abstract:

Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.

Keywords: data embedding, decryption, encryption, reversible data hiding, steganography

Procedia PDF Downloads 288
2282 Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Authors: Sanaz Ahmadzadeh Siyahrood, Arghavan Ebrahimi, Mohammadjavad Mahdavinejad

Abstract:

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Keywords: angle, equal triangle, square, structural hierarchy

Procedia PDF Downloads 197
2281 Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition

Authors: Mayank, Navneet Kaur, Narinder Singh

Abstract:

The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules.

Keywords: BRAF, oncogenic, sorafenib, computational studies

Procedia PDF Downloads 116
2280 The Impact of Employee's Perception of Corporate Social Responsibility on Job Satisfaction: Corporate Sector of Pakistan

Authors: Binish Ahmed

Abstract:

Corporate Social Responsibility (CSR) is regarded as voluntary behaviors that contribute to the social welfare based on the concept of sustainable development. The corporations should not only stress on their economic and business outcomes but also pay attention to their effect on the society and environment. It could attract investors and customers, as well as maintain a positive interaction with the government. In spite of the broad diffusion, and its potential significance to employees' perspective, CSR is now examined and has built-in Organizational Behavior (OB), and Human Resource Management (HRM) look into the broad structure of relationship between employees' perspective, work attitudes and behavior to improve the research on CSR. The purpose of this research is to investigate the impact of employees’ perception of CSR on work attitudes and behaviors of employees. A conceptual framework is proposed, based on the literature and practices. The research would conduct the primary data survey of convenient sampling from the employees and managers-using detailed questionnaire- to address the following questions. The survey of 180 respondents of age greater than 20 having at least six-month experience from companies based in Karachi are source of data. The application of professional empirical models for data analysis and interpretation are source to draw the conclusion. 1. What are the dynamics of CSR in an organization? Why is it important to have a CSR department? What sort of business approach are CSR activities practiced? Do CSR activities improve the quality of life of workplace? And, how it linked with welfare of society? 2. How the positive job attitude and behavior does encourage the employees about the perception of CSR? How is it linked with the job satisfaction? What is the relationship between employees’ perception of CSR and job satisfaction?

Keywords: corporate social responsibility, job satisfaction, organizational commitment, work behaviors

Procedia PDF Downloads 179
2279 Bimetallic Cu/Au Nanostructures and Bio-Application

Authors: Si Yin Tee

Abstract:

Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.

Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures

Procedia PDF Downloads 522
2278 Proposal of Analytical Model for the Seismic Performance Evaluation of Reinforced Concrete Frames with Coupled Cross-laminated Timber Infill Panels

Authors: Velázquez Alejandro, Pradhan Sujan, Yoon Rokhyun, Sanada Yasushi

Abstract:

The utilization of new materials as an alternative solution to decrease the environmental impact of the construction industry has been gaining more relevance in the architectural design and construction industry. One such material is cross-laminated timber (CLT), an engineered timber solution that excels for its faster construction times, workability, lightweight, and capacity for carbon storage. This material is usually used alone for the entire structure or combined with steel frames, but a hybrid with reinforced concrete (RC) is rarer. Since RC is one of the most used materials worldwide, a hybrid with CLT would allow further utilization of the latter, and in the process, it would help reduce the environmental impact of RC construction to achieve a sustainable society, but first, the structural performance of such hybrids must be understood. This paper focuses on proposing a model to predict the seismic performance of RC frames with CLT panels as infills. A series of static horizontal cyclic loading experiments were conducted on two 40% scale specimens of reinforced concrete frames with and without CLT panels at Osaka University, Japan. An analytical model was created to simulate the seismic performance of the RC frame with CLT infill based on the experimental results. The proposed model was verified by comparing the experimental and analytical results, showing that the load-deformation relationship and the failure mechanism agreed well with limited error. Hence, the proposed analytical model can be implemented for the seismic performance evaluation of the RC frames with CLT infill.

Keywords: analytical model, multi spring, performance evaluation, reinforced concrete, rocking mechanism, wooden wall

Procedia PDF Downloads 107
2277 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space

Authors: Xin Chen

Abstract:

It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.

Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency

Procedia PDF Downloads 78
2276 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation

Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero

Abstract:

Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.

Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane

Procedia PDF Downloads 300
2275 Sustainable Land Use Evaluation Based on Preservative Approach: Neighborhoods of Susa City

Authors: Somaye Khademi, Elahe Zoghi Hoseini, Mostafa Norouzi

Abstract:

Determining the manner of land-use and the spatial structure of cities on the one hand, and the economic value of each piece of land, on the other hand, land-use planning is always considered as the main part of urban planning. In this regard, emphasizing the efficient use of land, the sustainable development approach has presented a new perspective on urban planning and consequently on its most important pillar, i.e. land-use planning. In order to evaluate urban land-use, it has been attempted in this paper to select the most significant indicators affecting urban land-use and matching sustainable development indicators. Due to the significance of preserving ancient monuments and the surroundings as one of the main pillars of achieving sustainability, in this research, sustainability indicators have been selected emphasizing the preservation of ancient monuments and historical observance of the city of Susa as one of the historical cities of Iran. It has also been attempted to integrate these criteria with other land-use sustainability indicators. For this purpose, Kernel Density Estimation (KDE) and the AHP model have been used for providing maps displaying spatial density and combining layers as well as providing final maps respectively. Moreover, the rating of sustainability will be studied in different districts of the city of Shush so as to evaluate the status of land sustainability in different parts of the city. The results of the study show that different neighborhoods of Shush do not have the same sustainability in land-use such that neighborhoods located in the eastern half of the city, i.e. the new neighborhoods, have a higher sustainability than those of the western half. It seems that the allocation of a high percentage of these areas to arid lands and historical areas is one of the main reasons for their sustainability.

Keywords: city of Susa, historical heritage, land-use evaluation, urban sustainable development

Procedia PDF Downloads 380
2274 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.

Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia

Procedia PDF Downloads 58