Search results for: data standardization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25261

Search results for: data standardization

19741 The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation

Authors: Fatai Shola Afolabi

Abstract:

The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015.

Keywords: building structures, building failure, building collapse, structural failure, cost, direct loss

Procedia PDF Downloads 263
19740 The Use of Visual Drawing and Writing Techniques to Elicit Adult Perceptions of Sex Offenders

Authors: Sasha Goodwin

Abstract:

Public perceptions can play a crucial role in influencing criminal justice policy and legislation, particularly concerning sex offenders. Studies have found a proximate relationship between public perception and policy to manage the risks posed by sex offenders. A significant body of research on public perceptions about sex offenders primarily uses survey methods and standardised instruments such as the Community Attitude Towards Sex Offenders (CATSO) and Perceptions of Sex Offenders (PSO) scales and finds a mostly negative and punitive attitude informed by common misconceptions. A transformative methodology from the emerging sub-field of visual criminology is where the construction of offences and offenders are understood via novel ways of collecting and analysing data. This research paper examines the public perceptions of sex offenders through the utilization of a content analysis of drawings. The study aimed to disentangle the emotions, stereotypes, and myths embedded in public perceptions by analysing the graphic representations and specific characteristics depicted by participants. Preliminary findings highlight significant discrepancies between public perceptions and empirical profiles of sex offenders, shedding light on the misunderstandings surrounding this heterogeneous group. By employing visual data, this research contributes to a deeper understanding of the complex interplay between societal perceptions and the realities of sex offenders.

Keywords: emotions, figural drawings, public perception, sex offenders

Procedia PDF Downloads 69
19739 Robson System Analysis in Kyiv Perinatal Centre

Authors: Victoria Bila, Iryna Ventskivska, Oleksandra Zahorodnia

Abstract:

The goal of the study: To study the distribution of patients of the Kiyv Perinatal Center according to the Robson system and compare it with world data. Materials and methods: a comparison of the distribution of patients of Kiyv Perinatal center according to the Robson system for 2 periods - the first quarter of 2019 and 2020. For each group, 3 indicators were analyzed - the share of this group in the overall structure of patients of the Perinatal Center for the reporting period, the frequency of abdominal delivery in this group, as well as the contribution of this group to the total number of abdominal delivery. Obtained data were compared with those of the WHO in the guidelines for the implementation of the Robson system in 2017. Results and its discussion: The distribution of patients of the Perinatal Center into groups in the Robson classification is not much different from that recommended by the author. So, among all women, patients of group 1 dominate; this indicator does not change in dynamics. A slight increase in the share of group 2 (6.7% in 2019 and 9.3% - 2020) was due to an increase in the number of labor induction. At the same time, the number of patients of groups 1 and 2 in the Perinatal Center is greater than in the world population, which is determined by the hospitalization of primiparous women with reproductive losses in the past. The Perinatal Center is distinguished from the world population and the proportion of women of group 5 - it was 5.4%, in the world - 7.6%. The frequency of caesarean section in the Perinatal Center is within limits typical for most countries (20.5-20.8%). Moreover, the dominant groups in the structure of caesarean sections are group 5 (21-23.3%) and group 2 (21.9-22.9%), which are the reserve for reducing the number of abdominal delivery. In group 2, certain results have already been achieved in this matter - the frequency of cesarean section in 2019 here amounted to 67.8%, in the first quarter of 2020 - 51.6%. This happened due to a change in the leading method of induction of labor. Thus, the Robson system is a convenient and affordable tool for assessing the structure of caesarean sections. The analysis showed that, in general, the structure of caesarean sections in the Perinatal Center is close to world data, and the identified deviations have explanations related to the specialization of the Center.

Keywords: cesarian section, Robson system, Kyiv Perinatal Center, labor induction

Procedia PDF Downloads 137
19738 Analysis of Impact of Flu Vaccination on Acute Respiratory Viral Infections (ARVI) Morbidity among Population in South Kazakhstan Region, 2010-2015

Authors: Karlygash Tulendieva

Abstract:

Presently vaccination is the most effective method of prevention of flu and its complications. The purpose of this study was to analyze the impact of the increase of coverage of the population of South Kazakhstan region with flu vaccination and decrease of the ARVI morbidity. The analysis was performed on the data of flu vaccination of risk groups, including children under one year and pregnant women. Data on ARVI morbidity during 2010-2015 and data on vaccination were taken from the reports of the Epidemiological Surveillance Unit of Department of Consumers’ Rights Protection of South Kazakhstan region. Coverage with flu vaccination of the risk groups was annually increasing and in 2015 it reached 16% (450,000/2,800,682) from the total population. The ARVI morbidity rate in the entire population in 2010 was 2,010.4 per 100,000 of the population and decreased 3.2 times to 609.9 per 100,000 of the population in 2015. Annual growth was observed from 2010 to 2015 of specific weight of the vaccinated main risk groups: healthcare workers by 51% (from 17,331 in 2010 to 33,538 in 2015), children with chronic pulmonary and cardio-vascular diseases, immune deficiency, weak and sickly children above six months by 39% (from 63,122 in 2010 to 158,023 in 2015), adults with chronic co-morbidities by 27% (from 44,271 in 2010 to 162,595 in 2015), persons above 65 by 17% (from 10,276 in 2010 to 57,875 in 2015), and annual coverage of pregnant women on second or third trimester from 34,443 in 2010 to 37,969 in 2015. Starting from 2013 and until 2015 vaccination was performed in the region with coverage of at least 90% of children from 6 months to one year. The ARVI morbidity in this age group decreased 3.3 times from 8,687.8 per 100,000 of the population in 2010 to 2,585.8 per 100,000 of the population in 2015. Vaccination of pregnant women on 2-3 trimester was started in the region in 2012. Annual increase of vaccination coverage of pregnant women from 86.1% (34,443/40,000) in 2012 to 95% (37,969/40,000) in 2015 decreased the morbidity 1.5 times from 4,828.8 per 100,000 of population in 2012 to 3,022.7 per 100,000 of population in 2015. Following the increase of vaccination coverage of the population in South Kazakhstan region, the trend was observed of decrease of ARVI morbidity rates among the population and main risk groups, among pregnant women and children under one year.

Keywords: acute respiratory viral infections, flu, risk groups, vaccination

Procedia PDF Downloads 241
19737 Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java

Authors: Edwin Hidayat, Redi Yulianto, Disi Hanafiah

Abstract:

On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road.

Keywords: road geometry, K-factor, annual average daily traffic, north coast road

Procedia PDF Downloads 161
19736 Influence of Coatings on Energy Conservation in Construction Industry

Authors: Nancy Sakr, Mohamed Abou-Zeid

Abstract:

World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.

Keywords: energy consumption, building envelope, thermal insulation, protective coatings

Procedia PDF Downloads 144
19735 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 53
19734 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers

Authors: Cansu Bozer, Saadet İrem Turgut

Abstract:

Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.

Keywords: education, child development, artificial intelligence, preschool teachers

Procedia PDF Downloads 19
19733 Community Music in Puerto Rico

Authors: Francisco Luis Reyes

Abstract:

The multiple-case study explores the intricacies of three Puerto Rican Community Music (CM) initiatives. This research concentrates on the teaching and learning dynamics of three of the nation’s traditional musical genres, Plena, Bomba, and Música Jíbara, which have survived for centuries through oral transmission and enculturation in community settings. Accordingly, this research focuses on how music education is carried out in Puerto Rican CM initiatives that foster and preserve the country’s traditional music. This study examines the CM initiatives of La Junta, in Santurce (Plena), Taller Tambuyé in Rio Piedras (Bomba), and Decimanía (Música Jíbara), an initiative that stems from the municipality of Hatillo. In terms of procedure, 45–60-minute semi-structured interviews were conducted with organizers and administrators of the CM initiatives to gain insight into the educational philosophy of each project. Following this, a second series of 45–60-minute semi-structured interviews were undertaken with CM educators to collect data on their musical development, teaching practices, and relationship with learners. Subsequently, four weeks were spent observing/participating in each of the three CM initiatives. In addition to participant observations in these projects, five CM learners from each locale were recruited for two one-on-one semi-structured interviews at the beginning and end of the data collection period. The initial interview centered on the participants’ rationale for joining the CM initiative whereas the exit interview focused on participants’ experience within it. Alumni from each of the CM initiatives partook in 45–60-minute semi-structured interviews to investigate their understanding of what it means to be a member of each musical community. Finally, observations and documentation of additional activities hosted/promoted by each initiative, such as festivals, concerts, social gatherings, and workshops, were undertaken. These three initiatives were chosen because of their robust and dynamic practices in fostering the musical expressions of Puerto Rico. Data collection consisted of participant observation, narrative inquiry, historical research, philosophical inquiry, and semi-structured interviews. Data analysis for this research involved relying on theoretical propositions, which entails comparing the results—from each case and as a collective— to the arguments that led to the basis of the research (e.g., literature review, research questions, hypothesis). Comparisons to the theoretical propositions were made through pattern matching, which requires comparing predicted patterns from the literature review to findings from each case. Said process led to the development of an analytic outlook of each CM case and a cross-case synthesis. The purpose of employing said data analysis methodology is to present robust findings about CM practices in Puerto Rico and elucidate similarities and differences between the cases that comprise this research and the relevant literature. Furthermore, through the use of Sound Links’ Nine Domains of Community Music, comparisons to other community projects are made in order to point out parallels and highlight particularities in Puerto Rico.

Keywords: community music, Puerto Rico, music learning, traditional music

Procedia PDF Downloads 27
19732 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 272
19731 Local Revenue Generation: Its Contribution to the Development of the Municipality of Bacolod, Lanao Del Sur

Authors: Louvill M. Ozarraga

Abstract:

this study was designed to ascertain the concept of the revenue generation system of Bacolod, Lanao del Norte, through the completely enumerated elected officials and permanent employees sample respondents. The pertinent data were obtained through the use of a structured questionnaire and with the help of key informants. The study utilized a cross-sectional survey design to analyze and interpret the data using frequency count, percentage distribution, and weighted mean. For the major findings, the local revenue generation of the Municipality has increased by Php 4,465,394.21, roughly 73.52%, from the years 2018 to 2020. Administrative activities help the Municipality cope with development, namely, the issuance of ordinances, personnel augmentation, and collection strategies. Moreover, respondents were undecided about whether revenue generation contributed to infrastructures and purchases of assets. The majority of the respondents agreed that the municipality’s local revenue generation contributes to the social welfare of its constituents. Also, the respondents disagreed that locally generated revenue augments the 20% development fund. The study revealed that there is a big difference between the 2018 and 2020 Real Property Tax (RPT) collection. No committee was created to monitor and supervise the municipal revenue generation system. The Municipality, through a partnership with TESDA, provides skilled-job opportunity to its constituents and participants

Keywords: Local Revenue Generation: Its Contribution To The Development Of The Municipality Of Bacolod, Lanao Del Sur

Procedia PDF Downloads 74
19730 Determinants Affecting to Adoption of Climate Smart Agriculture Technologies in the Northern Bangladesh

Authors: Md. Rezaul Karim, Andreas Thiel

Abstract:

Bangladesh is known as one of the most climate vulnerable countries in the world. Innovative technologies are always the key responses to the management of climate impacts. The objectives of this study are to determine the farmer’s perception of climate variability, to compare farmers’ perceptions with metrological data, and to explore the determinants that affect the likelihood of adoption of the selected Climate Smart Agricultural (CSA) technologies. Data regarding climate change perception, determinants and adoption were collected based on the household survey from stratified and randomly selected 365 farmers of the Biral sub-district under Dinajpur district in drought-prone northern Bangladesh. The likelihood of adoption of CSA technologies was analyzed following a multivariate probit model. The findings show that about 82.5% of the farmers perceived increasing temperature, and 75.1 % of farmers perceived decreasing dry season rainfall over the years, which is similarly relevant to metrological data. About 76.4.7% and 80.85% of farmers were aware of the drought tolerance crops and vermicompost, respectively; more than half of the farmers adopted these practices. Around 70.7% of farmers were aware of perching for insect control, but 46.3% of farmers adopted this practice. Although two-thirds of farmers were aware of crop diversification and pheromone trap, adoption was lower compared to the other three CSAs. Results also indicate that the likelihood of adoption of the selected CSAs is significantly influenced by different factors such as socio-economic characteristics, institutional factors and perceived technological or innovation attributes. The likelihood of adopting drought tolerance crops is affected by 11, while crop diversification and perching method by 7, pheromone trap by 9 and vermicompost by 8 determining factors. Lack of information and unavailability of input appear to be major obstacles to the non-adoption of CSA technologies. This study suggests that policy implications are necessary to promote extension services and overcome the obstacles to the non-adoption of individual CSA technologies. It further recommends that the research study should be conducted in a diverse context, nationally or globally.

Keywords: determinants, adoption, climate smart agriculture, northern Bangladesh

Procedia PDF Downloads 67
19729 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 209
19728 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis

Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman

Abstract:

Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.

Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness

Procedia PDF Downloads 85
19727 The Career Success for Female Managers: A Case Study of The Primary Education Department, Thailand

Authors: Nipon Sasithornsaowapa

Abstract:

The purposes of this research was to study the female management career success of the primary education department of Thailand. The independent variable was human capital which included three factors: family status, personality, and knowledge-skill-experience, while the important dependent variable was the career success. The population of this study included 2,179 female management officials in the department of primary education. A total of 400 female managers were interviewed and utilized as a sample group. A questionnaire was developed and used as a main tool for collecting data. Content analysis was performed to get the quantitative data. Descriptive statistics in this research was done by SPSS program. The findings revealed that family and personality factors had a high influence on the human capital and, in turn, influenced the career success of female managers. On the other hand, knowledge-skill-experience had an insignificant influence to the human capital and the female career success. In addition, the findings from the in-depth interview revealed that the majority of respondents defined career success as the satisfaction in job duties, not money and position.

Keywords: career, female managers, primary education

Procedia PDF Downloads 300
19726 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 299
19725 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 190
19724 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
19723 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness

Authors: James Kinsella

Abstract:

There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.

Keywords: behavioral finance, emotional finance, economy-biology, social mood

Procedia PDF Downloads 127
19722 A Methodological Approach to Digital Engineering Adoption and Implementation for Organizations

Authors: Sadia H. Syeda, Zain H. Malik

Abstract:

As systems continue to become more complex and the interdependencies of processes and sub-systems continue to grow and transform, the need for a comprehensive method of tracking and linking the lifecycle of the systems in a digital form becomes ever more critical. Digital Engineering (DE) provides an approach to managing an authoritative data source that links, tracks, and updates system data as it evolves and grows throughout the system development lifecycle. DE enables the developing, tracking, and sharing system data, models, and other related artifacts in a digital environment accessible to all necessary stakeholders. The DE environment provides an integrated electronic repository that enables traceability between design, engineering, and sustainment artifacts. The DE activities' primary objective is to develop a set of integrated, coherent, and consistent system models for the program. It is envisioned to provide a collaborative information-sharing environment for various stakeholders, including operational users, acquisition personnel, engineering personnel, and logistics and sustainment personnel. Examining the processes that DE can support in the systems engineering life cycle (SELC) is a primary step in the DE adoption and implementation journey. Through an analysis of the U.S Department of Defense’s (DoD) Office of the Secretary of Defense (OSD’s) Digital Engineering Strategy and their implementation, examples of DE implementation by the industry and technical organizations, this paper will provide descriptions of the current DE processes and best practices of implementing DE across an enterprise. This will help identify the capabilities, environment, and infrastructure needed to develop a potential roadmap for implementing DE practices consistent with its business strategy. A capability maturity matrix will be provided to assess the organization’s DE maturity emphasizing how all the SELC elements interlink to form a cohesive ecosystem. If implemented, DE can increase efficiency and improve the systems engineering processes' quality and outcomes.

Keywords: digital engineering, digital environment, digital maturity model, single source of truth, systems engineering life-cycle

Procedia PDF Downloads 92
19721 A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria

Authors: Jane O. Munonye

Abstract:

Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.

Keywords: agriculture, climate change, sustainability, yam

Procedia PDF Downloads 326
19720 Scope of Implmenting Building Information Modeling in (Aec) Industry Firms in India

Authors: Padmini Raman

Abstract:

The architecture, engineering, and construction (AEC) industry is facing enormous technological and institutional changes and challenges including the information technology and appropriate application of sustainable practices. The engineer and architect must be able to handle with a rapid pace of technological change. BIM is a unique process of producing and managing a building by exploring a digital module before the actual project is constructed and later during its construction, facility operation and maintenance. BIM has been Adopted by construction contractors and architects in the western country mostly in US and UK to improve the planning and management of construction projects. In India, BIM is a basic stage of adoption only, several issues about data acquisition and management comes during the design formation and planning of a construction project due to the complexity, ambiguity, and fragmented nature of the Indian construction industry. This paper tells about the view a strategy for India’s AEC firms to successfully implement BIM in their current working processes. By surveying and collecting data about problems faced by these architectural firms, it will be analysed how to avoid those situations from rising and, thus, introducing BIM Capabilities in such firms in the most effective way. while this application is widely accepted throughout the industry in many countries for managing project information for cost control and facilities management.

Keywords: AEC industry, building information module, Indian industry, new technology, BIM implementation in India

Procedia PDF Downloads 445
19719 Predictive Power of Achievement Motivation on Student Engagement and Collaborative Problem Solving Skills

Authors: Theresa Marie Miller, Ma. Nympha Joaquin

Abstract:

The aim of this study was to check the predictive power of social-oriented and individual-oriented achievement motivation on student engagement and collaborative problem-solving skills in mathematics. A sample of 277 fourth year high school students from the Philippines were selected. Surveys and videos of collaborative problem solving activity were used to collect data from respondents. The mathematics teachers of the participants were interviewed to provide qualitative support on the data. Systemaitc correlation and regression analysis were employed. Results of the study showed that achievement motivations−SOAM and IOAM− linearly predicted student engagement but was not significantly associated to the collaborative problem-solving skills in mathematics. Student engagement correlated positively with collaborative problem-solving skills in mathematics. The results contribute to theorizing about the predictive power of achievement motivations, SOAM and IOAM on the realm of academic behaviors and outcomes as well as extend the understanding of collaborative problem-solving skills of 21st century learners.

Keywords: achievement motivation, collaborative problem-solving skills, individual-oriented achievement motivation, social-oriented achievement motivation, student engagement

Procedia PDF Downloads 313
19718 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
19717 The Use of Actoprotectors by Professional Athletes

Authors: Kalin Ivanov, Stanislava Ivanova

Abstract:

Actoprotectors are substances with hight performance enchasing potential and hight antioxidant activity. Most of these drugs have been developed in USSR for military medicine purposes. Based on their chemical composition actoprotectors could be classified into three categories: benzimidazole derivatives (ethomersol, bemitil); adamantane derivatives (bromantane), other chemical classes. First data for intake of actoprotectors from professional athletes is from 1980. The daily intake of actoprotectors demonstrate many benefits for athletes like: positive effect on the efficiency of physical work, antihypoxic effects, antioxidant effects, nootropic effects, rapid recovery. Since 1997, bromantane is considered as doping. This is a result of Summer Olympic Games in Athlanta (1996) when several Russian athletes tested positive for bramantane. Even the drug is safe for athletes health its use is considered as violation of anti- doping rules. More than 37 years bemetil has been used by professional athletes with no risk but currently it is included in WADA monitoring programme for 2018. Current perspectives are that most used actoprotectors would be considered as doping. Many clinical studies have confirmed that intake of bemitil and bromantan demonstrate positive influence on the physical work capacity but data for other actoprotectors like chlodantane, ademol, ethomersol is limited.

Keywords: actoprotector, sport, doping, bemitil

Procedia PDF Downloads 322
19716 Hunger and Health: The Acceptability and Development of Health Coaching in the Food Pantry Environment

Authors: Kelsey Fortin, Susan Harvey

Abstract:

The intersection between hunger and health outcomes is beginning to gain traction among the research community. With new interventions focusing on collaborations between the medical and social service sectors, this study aimed to understand the acceptability and approach of a health coaching intervention within a county-wide Midwest food pantry. Through formative research, the study used mixed methods to review secondary data and conduct surveys and semi-structured interviews with food pantry clients (n=30), staff (n=7), and volunteers (n=10). Supplemental secondary data collected and provided by pantry staff were reviewed to understand the broader pantry context of clientele health and health behaviors, annual food donations, and current pantry programming. Results from secondary data showed that the broader pantry client population reported high rates of chronic disease, low consumption of fruits and vegetables, and poor self-reported health, while annual donation data showed increases in produce availability on pantry shelves. This disconnect between produce availability, client health status, and behaviors was supported in the current study, with pantry staff and volunteers reporting lack of knowledge in produce selection and preparation being amongst the most common client inquiries and barriers to healthy food selection. Additional supports to secondary data came from pantry clients in the current study through self-reported high rates of both individual (60%, n=18) and household (43%, n=13 ) disease diagnosis, low consumption of fruits and vegetables averaging zero to one servings of vegetables (67%, n=20) and fruits (47%, n=14) per day, and low levels of physical activity averaging zero to 120 minutes per week (67%, n=20). Further, pantry clients provided health coaching programmatic recommendations through interviews with feedback such as non-judgmental coaching, accountability measures, and providing participant incentives as considerations for future program design and approach. Volunteers and staff reported the need for client education in food preparation, basic nutrition and physical activity, and the need for additional health expertise to educate and respond to diet related nutrition recommendations. All three stakeholder groups supported hosting a health coach within the pantry to focused on nutrition, physical activity, and health programming, with one client stating, 'I am hoping it really works out [the health coaching program]. I think it would be great for something like this to be offered for someone that isn’t knowledgeable like me.' In conclusion, high rates of chronic disease, partnered with low food, nutrition, and physical activity literacy among pantry clients, demonstrates the need to address health behaviors. With all three stakeholder groups showing acceptability of a health coaching program, partnered with existing literature showing health coaching success as a behavior change intervention, further research should be conducted to pilot the design and implementation of such a program in the pantry setting.

Keywords: food insecurity, formative research, food pantries, health coaching, hunger and health

Procedia PDF Downloads 129
19715 The Effectiveness of Group Counseling of Mindfulness-Based Cognitive Therapy on Cognitive Emotion Regulation in High School Students

Authors: Hossein Ilanloo, Sedigheh Ahmadi, Kianoosh Zahrakar

Abstract:

The present study aims at investigating the effectiveness of group counseling of mindfulness-based cognitive therapy on cognitive emotion regulation in high school students. The research design was quasi-experimental and pre-test-post-test type and a two-month follow-up with a control group. The statistical population of the study consisted of all-male high school students in Takestan city in the Academic Year 2020-2021. The sample comprised 30 high school male students selected through the convenience sampling method and randomly assigned to experimental (n=15) and control (n=15) groups. The experimental group then received ten sessions of 90-minute group counseling of mindfulness-based cognitive therapy, and the control group did not receive any intervention. In order to collect data, the author used the Cognitive Emotion Regulation Questionnaire (CERQ). The researcher also used multivariate analysis of covariance, repeated measures, LSD post hoc test, and SPSS-26 software for data analysis.

Keywords: mindfulness-based cognitive therapy, cognitive emotion regulation, students, high schools

Procedia PDF Downloads 123
19714 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma

Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam

Abstract:

Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.

Keywords: systems biology, ependymoma, deg, network analysis

Procedia PDF Downloads 298
19713 A Sports-Specific Physiotherapy Center Treats Sports Injuries

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.

Keywords: sports injuries, athletes, joint injuries, injured players

Procedia PDF Downloads 73
19712 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 114