Search results for: data driven decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30569

Search results for: data driven decision making

25079 Blockchain Technology Security Evaluation: Voting System Based on Blockchain

Authors: Omid Amini

Abstract:

Nowadays, technology plays the most important role in the life of human beings because people use technology to share data and to communicate with each other, but the challenge is the security of this data. For instance, as more people turn to technology in the world, more data is generated, and more hackers try to steal or infiltrate data. In addition, the data is under the control of the central authority, which can trigger the challenge of losing information and changing information; this can create widespread anxiety for different people in different communities. In this paper, we sought to investigate Blockchain technology that can guarantee information security and eliminate the challenge of central authority access to information. Now a day, people are suffering from the current voting system. This means that the lack of transparency in the voting system is a big problem for society and the government in most countries, but blockchain technology can be the best alternative to the previous voting system methods because it removes the most important challenge for voting. According to the results, this research can be a good start to getting acquainted with this new technology, especially on the security part and familiarity with how to use a voting system based on blockchain in the world. At the end of this research, it is concluded that the use of blockchain technology can solve the major security problem and lead to a secure and transparent election.

Keywords: blockchain, technology, security, information, voting system, transparency

Procedia PDF Downloads 139
25078 The Effect of Lande G-Factors on the Quantum and Thermal Entanglement in the Mixed Spin-(1/2,S) Heisenberg Dimer

Authors: H. Vargova, J. Strecka, N. Tomasovicova

Abstract:

A rigorous analytical treatment, with the help of a concept of negativity, is used to study the quantum and thermal entanglement in an isotropic mixed spin-(1/2,S) Heisenberg dimer. The effect of the spin-S magnitude, as well as the effect of diversity between Landé g-factors of magnetic constituents on system entanglement, is exhaustively analyzed upon the variation of the external magnetic and electric field, respectively. It was identified that the increasing magnitude of the spin-S species in a mixed spin-(1/2,S) Heisenberg dimer with comparative Landé g-factors have always a reduction effect on a degree of the quantum entanglement, but it strikingly shifts the thermal entanglement to the higher temperatures. Surprisingly, out of the limit of identical Landé g-factors, the increasing magnitude of spin-S entities can enhance the system entanglement in both low and high magnetic fields. Besides this, we identify that the analyzed dimer with a high-enough magnitude of the spin-S entities at a sufficiently high magnetic field can exhibit unconventional thermally driven re-entrance between the entangled and unentangled mixed state. The importance of the electric-field stimuli is also discussed in detail.

Keywords: quantum and thermal entantanglement, mixed spin Heisenberg model, negativity, reentrant phase transition

Procedia PDF Downloads 104
25077 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 173
25076 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 164
25075 Design and Implementation of Flexible Metadata Editing System for Digital Contents

Authors: K. W. Nam, B. J. Kim, S. J. Lee

Abstract:

Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.

Keywords: video, multimedia, metadata, editing tool, XML

Procedia PDF Downloads 176
25074 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 21
25073 “Octopub”: Geographical Sentiment Analysis Using Named Entity Recognition from Social Networks for Geo-Targeted Billboard Advertising

Authors: Oussama Hafferssas, Hiba Benyahia, Amina Madani, Nassima Zeriri

Abstract:

Although data nowadays has multiple forms; from text to images, and from audio to videos, yet text is still the most used one at a public level. At an academical and research level, and unlike other forms, text can be considered as the easiest form to process. Therefore, a brunch of Data Mining researches has been always under its shadow, called "Text Mining". Its concept is just like data mining’s, finding valuable patterns in data, from large collections and tremendous volumes of data, in this case: Text. Named entity recognition (NER) is one of Text Mining’s disciplines, it aims to extract and classify references such as proper names, locations, expressions of time and dates, organizations and more in a given text. Our approach "Octopub" does not aim to find new ways to improve named entity recognition process, rather than that it’s about finding a new, and yet smart way, to use NER in a way that we can extract sentiments of millions of people using Social Networks as a limitless information source, and Marketing for product promotion as the main domain of application.

Keywords: textmining, named entity recognition(NER), sentiment analysis, social media networks (SN, SMN), business intelligence(BI), marketing

Procedia PDF Downloads 594
25072 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012

Authors: Mohammadreza Ashouri, Majid Bayatian

Abstract:

Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.

Keywords: fire statistics, fire analysis, accident prevention, Tehran

Procedia PDF Downloads 188
25071 Future Trends of Mechatronics Engineering in Pakistan

Authors: Aqeela Mir, Akhtar Nawaz Malik, Javaid Iqbal

Abstract:

The paper presents a survey based approach in order to observe the level of awareness regarding Mechatronics in society of Pakistan and the factors affecting the future development trend of Mechatronics in Pakistan. With the help of these surveys a new direction for making a Mathematical model for the future development trend of Mechatronics in Pakistan is also suggested.

Keywords: mechatronics society survey, future development trend of mechatronics in pakistan, probability estimation, mathematical model

Procedia PDF Downloads 525
25070 Design and Implementation a Virtualization Platform for Providing Smart Tourism Services

Authors: Nam Don Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper proposes an Internet of Things (IoT) based virtualization platform for providing smart tourism services. The virtualization platform provides a consistent access interface to various types of data by naming IoT devices and legacy information systems as pathnames in a virtual file system. In the other words, the IoT virtualization platform functions as a middleware which uses the metadata for underlying collected data. The proposed platform makes it easy to provide customized tourism information by using tourist locations collected by IoT devices and additionally enables to create new interactive smart tourism services focused on the tourist locations. The proposed platform is very efficient so that the provided tourism services are isolated from changes in raw data and the services can be modified or expanded without changing the underlying data structure.

Keywords: internet of things (IoT), IoT platform, serviceplatform, virtual file system (VSF)

Procedia PDF Downloads 508
25069 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 367
25068 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 513
25067 Logistics Information and Customer Service

Authors: Š. Čemerková, M. Wilczková

Abstract:

The paper deals with the importance of information flow for providing of defined level of customer service in the firms. Setting of the criteria for the selection and implementation of logistics information system is a prerequisite for ensuring of the flow of information in firms. The decision on the selection and implementation of logistics information system is linked to the investment costs and operating costs, which are included in the total logistics costs. The article also deals with the conclusions of the research focused on the logistics information system selection in companies in the Czech Republic.

Keywords: customer service, information system, logistics, research

Procedia PDF Downloads 365
25066 Revitalising Warsaw: The Significance of Incorporating 18th Century Art in Post-War Architecture Reconstruction

Authors: Aleksandra Kondraciuk

Abstract:

The reconstruction of post-war architecture in Warsaw is an important and complex project that requires physical restoration and cultural preservation. The incorporation of 18th-century art within the renovated structures of the urban area forms a crucial aspect of the reconstruction procedure. Information was gathered by interviewing current residents, examining additional data, and researching archival materials. This form of art was once a thriving cultural centre in Warsaw, playing a significant role in its history. Adding it to the rebuilt structures links them to the city’s vibrant past, making them more meaningful for locals and visitors. The reconstructed buildings showcase 18th-century art forms, including sketches, drawings, and paintings, accurately replicating the original buildings’ architectural details and decorative elements. These art forms elevate the buildings from mere functional spaces to works of art themselves, thus augmenting the beauty and distinctiveness of the city, setting it apart from other cities worldwide. Furthermore, this art form symbolises the city’s tenacity in adversity and destruction. Revitalising Warsaw requires rebuilding its physical structures, restoring its cultural identity, and preserving its rich history. Incorporating 18th-century art into the post-war architectural reconstruction process is a powerful way to achieve these goals and maintain the city. This approach acknowledges the city’s history and cultural significance, fostering a sense of continuity between the past and present, which is crucial for the city’s future growth and prosperity.

Keywords: 18th-century art, building reconstruction, cultural preservation, post-war architecture

Procedia PDF Downloads 78
25065 A Study to Explore the Effectiveness of an Educational Program on Awareness of Cancer Signs, Symptoms, and Risk Factors Among School Students in Oman

Authors: Khadija Al-Hosni, Moon Fai Chan, Mohammed Al-Azri

Abstract:

Background: Several studies suggest that most school-age adolescents are poorly informed on cancer warning signs and risk factors. Providing adolescents with sufficient knowledge would increase their awareness in adulthood and improve seeking behaviors later. Significant: The results will provide a clear vision in assisting key decision-makers in formulating policies on the students' awareness programs towards cancer. So, the likelihood of avoiding cancer in the future will be increased or even promote early diagnosis. Objectives: to evaluate the effectiveness of an education program designed to increase awareness of cancer signs and symptoms risk factors, improve the behavior of seeking help among school students in Oman, and address the barriers to obtaining medical help. Methods: A randomized controlled trial with two groups was conducted in Oman. A total of 1716 students (n=886/control, n= 830/education), aged 15-17 years, at 10th and 11th grade from 12 governmental schools 3 in governorates from 20-February-2022 to 12-May-2022. Basic demographic data were collected, and the Cancer Awareness Measure (CAM) was used as the primary outcome. Data were collected at baseline (T0) and 4 weeks after (T1). The intervention group received an education program about cancer's cause and its signs and symptoms. In contrast, the control group did not receive any education related to this issue during the study period. Non-parametric tests were used to compare the outcomes between groups. Results: At T0, the lamp was the most recognized cancer warning sign in the control (55.0%) and intervention (55.2%) groups. However, there were no significant changes at T1 for all signs in the control group. In contrast, all sign outcomes were improved significantly (p<0.001) in the intervention group, and the highest response was unexplained pain (93.3%). Smoking was the most recognized risk factor in both groups: (82.8% for control; 84.1% for intervention) at T0. However, there was no significant change in T1 for the control group, but there was for the intervention group (p<0.001), the highest identification was smoking cigarettes (96.5%). Too scared was the largest barrier to seeking medical help by students in the control group at T0 (63.0%) and T1 (62.8%). However, there were no significant changes in all barriers in this group. Otherwise, being too embarrassed (60.2%) was the largest barrier to seeking medical help for students in the intervention group at T0 and too scared (58.6%) at T1. Although there were reductions in all barriers, significant differences were found in six of ten only (p<0.001). Conclusion: The intervention was effective in improving students' awareness of cancer symptoms, warning signs (p<0.001), and risk factors (p<0.001 reduced the most addressed barriers to seeking medical help (p<0.001) in comparison to the control group. The Ministry of Education in Oman could integrate awareness of cancer within the curriculum, and more interventions are needed on the sociological part to overcome the barriers that interfere with seeking medical help.

Keywords: adolescents, awareness, cancer, education, intervention, student

Procedia PDF Downloads 124
25064 Expanding the Evaluation Criteria for a Wind Turbine Performance

Authors: Ivan Balachin, Geanette Polanco, Jiang Xingliang, Hu Qin

Abstract:

The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified.

Keywords: field data processing, regression determination, wind turbine performance, wind turbine placing, yaw system losses

Procedia PDF Downloads 394
25063 The Relationship between the Skill Mix Model and Patient Mortality: A Systematic Review

Authors: Yi-Fung Lin, Shiow-Ching Shun, Wen-Yu Hu

Abstract:

Background: A skill mix model is regarded as one of the most effective methods of reducing nursing shortages, as well as easing nursing staff workloads and labor costs. Although this model shows several benefits for the health workforce, the relationship between the optimal model of skill mix and the patient mortality rate remains to be discovered. Objectives: This review aimed to explore the relationship between the skill mix model and patient mortality rate in acute care hospitals. Data Sources: A systematic search of the PubMed, Web of Science, Embase, and Cochrane Library databases and researchers retrieved studies published between January 1986 and March 2022. Review methods: Two independent reviewers screened the titles and abstracts based on selection criteria, extracted the data, and performed critical appraisals using the STROBE checklist of each included study. The studies focused on adult patients in acute care hospitals, and the skill mix model and patient mortality rate were included in the analysis. Results: Six included studies were conducted in the USA, Canada, Italy, Taiwan, and European countries (Belgium, England, Finland, Ireland, Spain, and Switzerland), including patients in medical, surgical, and intensive care units. There were both nurses and nursing assistants in their skill mix team. This main finding is that three studies (324,592 participants) show evidence of fewer mortality rates associated with hospitals with a higher percentage of registered nurse staff (range percentage of registered nurse staff 36.1%-100%), but three articles (1,122,270 participants) did not find the same result (range of percentage of registered nurse staff 46%-96%). However, based on appraisal findings, those showing a significant association all meet good quality standards, but only one-third of their counterparts. Conclusions: In light of the limited amount and quality of published research in this review, it is prudent to treat the findings with caution. Although the evidence is not insufficient certainty to draw conclusions about the relationship between nurse staffing level and patients' mortality, this review lights the direction of relevant studies in the future. The limitation of this article is the variation in skill mix models among countries and institutions, making it impossible to do a meta-analysis to compare them further.

Keywords: nurse staffing level, nursing assistants, mortality, skill mix

Procedia PDF Downloads 121
25062 An Exhaustive All-Subsets Examination of Trade Theory on WTO Data

Authors: Masoud Charkhabi

Abstract:

We examine trade theory with this motivation. The full set of World Trade Organization data are organized into country-year pairs, each treated as a different entity. Topological Data Analysis reveals that among the 16 region and 240 region-year pairs there exists in fact a distinguishable group of region-period pairs. The generally accepted periods of shifts from dissimilar-dissimilar to similar-similar trade in goods among regions are examined from this new perspective. The period breaks are treated as cumulative and are flexible. This type of all-subsets analysis is motivated from computer science and is made possible with Lossy Compression and Graph Theory. The results question many patterns in similar-similar to dissimilar-dissimilar trade. They also show indications of economic shifts that only later become evident in other economic metrics.

Keywords: econometrics, globalization, network science, topological data, analysis, trade theory, visualization, world trade

Procedia PDF Downloads 379
25061 Small Businesses as Vehicles for Job Creation in North-West Nigeria

Authors: Mustapha Shitu Suleiman, Francis Neshamba, Nestor Valero-Silva

Abstract:

Small businesses are considered as engine of economic growth, contributing to employment generation, wealth creation, and poverty alleviation and food security in both developed and developing countries. Nigeria is facing many socio-economic problems and it is believed that by supporting small business development, as propellers of new ideas and more effective users of resources, often driven by individual creativity and innovation, Nigeria would be able to address some of its economic and social challenges, such as unemployment and economic diversification. Using secondary literature, this paper examines the role small businesses can play in the creation of jobs in North-West Nigeria to overcome issues of unemployment, which is the most devastating economic challenge facing the region. Most studies in this area have focused on Nigeria as a whole and only a few studies provide a regional focus, hence, this study will contribute to knowledge by filling this gap by concentrating on North-West Nigeria. It is hoped that with the present administration’s determination to improve the economy, small businesses would be used as vehicles for diversification of the economy away from crude oil to create jobs that would lead to a reduction in the country’s high unemployment level.

Keywords: job creation, north-west, Nigeria, small business, unemployment

Procedia PDF Downloads 311
25060 Factors Influencing University Student's Acceptance of New Technology

Authors: Fatma Khadra

Abstract:

The objective of this research is to identify the acceptance of new technology in a sample of 150 Participants from Qatar University. Based on the Technology Acceptance Model (TAM), we used the Davis’s scale (1989) which contains two item scales for Perceived Usefulness and Perceived Ease of Use. The TAM represents an important theoretical contribution toward understanding how users come to accept and use technology. This model suggests that when people are presented with a new technology, a number of variables influence their decision about how and when they will use it. The results showed that participants accept more technology because flexibility, clarity, enhancing the experience, enjoying, facility, and useful. Also, results showed that younger participants accept more technology than others.

Keywords: new technology, perceived usefulness, perceived ease of use, technology acceptance model

Procedia PDF Downloads 325
25059 Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya

Authors: Emir Borovac, Sedat İnan

Abstract:

The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration.

Keywords: tanezzuft formation, ghadames basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 31
25058 Integrated Best Worst PROMETHEE to Evaluate Public Transport Service Quality

Authors: Laila Oubahman, Duleba Szabolcs

Abstract:

Public transport stakeholders aim to increase the ridership ratio by encouraging citizens to use common transportation modes. For this sight, improving service quality is a crucial option to reach the quality desired by users and reduce the gap between desired and perceived quality. Multi-criteria decision aid has been applied in literature in recent decades because it provides efficient models to assess the most impacting criteria on the overall assessment. In this paper, the PROMETHEE method is combined with the best-worst approach to construct a consensual model that avoids rank reversal to support stakeholders in ameliorating service quality.

Keywords: best-worst method, MCDA, PROMETHEE, public transport

Procedia PDF Downloads 214
25057 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 364
25056 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 150
25055 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 89
25054 Examining the Effects of Ticket Bundling Strategies and Team Identification on Purchase of Hedonic and Utilitarian Options

Authors: Young Ik Suh, Tywan G. Martin

Abstract:

Bundling strategy is a common marketing practice today. In the past decades, both academicians and practitioners have increasingly emphasized the strategic importance of bundling in today’s markets. The reason for increased interest in bundling strategy is that they normally believe that it can significantly increase profits on organization’s sales over time and it is convenient for the customer. However, little efforts has been made on ticket bundling and purchase considerations in hedonic and utilitarian options in sport consumer behavior context. Consumers often face choices between utilitarian and hedonic alternatives in decision making. When consumers purchase certain products, they are only interested in the functional dimensions, which are called utilitarian dimensions. On the other hand, others focus more on hedonic features such as fun, excitement, and pleasure. Thus, the current research examines how utilitarian and hedonic consumption can vary in typical ticket purchasing process. The purpose of this research is to understand the following two research themes: (1) the differential effect of discount framing on ticket bundling: utilitarian and hedonic options and (2) moderating effect of team identification on ticket bundling. In order to test the research hypotheses, an experimental study using a two-way ANOVA, 3 (team identification: low, medium, and high) X 2 (discount frame: ticket bundle sales with utilitarian product, and hedonic product), with mixed factorial design will be conducted to determine whether there is a statistical significance between purchasing intentions of two discount frames of ticket bundle sales within different team identification levels. To compare mean differences among the two different settings, we will create two conditions of ticket bundles: (1) offering a discount on a ticket ($5 off) if they would purchase it along with utilitarian product (e.g., iPhone8 case, t-shirt, cap), and (2) offering a discount on a ticket ($5 off) if they would purchase it along with hedonic product (e.g., pizza, drink, fans featured on big screen). The findings of the current ticket bundling study are expected to have many theoretical and practical contributions and implications by extending the research and literature pertaining to the relationship between team identification and sport consumer behavior. Specifically, this study can provide a reliable and valid framework to understanding the role of team identification as a moderator on behavioral intentions such as purchase intentions. From an academic perspective, the study will be the first known attempt to understand consumer reactions toward different discount frames related to ticket bundling. Even though the game ticket itself is the major commodity of sport event attendance and significantly related to teams’ revenue streams, most recent ticket pricing research has been done in terms of economic or cost-oriented pricing and not from a consumer psychological perspective. For sport practitioners, this study will also provide significant implications. The result will imply that sport marketers may need to develop two different ticketing promotions for loyal fan and non-loyal fans. Since loyal fans concern ticket price than tie-in products when they see ticket bundle sales, advertising campaign should be more focused on discounting ticket price.

Keywords: ticket bundling, hedonic, utilitarian, team identification

Procedia PDF Downloads 171
25053 Measures for Conflict Management in Nigerian Higher Institutions

Authors: Oyelade Oluwatoyin

Abstract:

The phenomenon of crises in educational sector in Nigeria has reached its peak in the 21st century. Thus, this paper examines the strategies that can be used in managing the conflict situation in Nigeria Higher Institution of learning. The causes of conflicts such as inadequate funding, insufficient school facilities, poor working condition, poor enrolment, proliferation of higher institutions and unfavourable administrative decision are the major detriment of law and order i.e. strike action, destruction of property and programmes coupled with the student unrest. This write-up will make use of the available information and with the aim of adding value to existing knowledge. It was recommend that steps should be taken by policy maker to prevent scourge of conflicts in tertiary institutions in Nigeria

Keywords: conflicts, higher institutions, management, measures

Procedia PDF Downloads 374
25052 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 293
25051 Household Wealth and Portfolio Choice When Tail Events Are Salient

Authors: Carlson Murray, Ali Lazrak

Abstract:

Robust experimental evidence of systematic violations of expected utility (EU) establishes that individuals facing risk overweight utility from low probability gains and losses when making choices. These findings motivated development of models of preferences with probability weighting functions, such as rank dependent utility (RDU). We solve for the optimal investing strategy of an RDU investor in a dynamic binomial setting from which we derive implications for investing behavior. We show that relative to EU investors with constant relative risk aversion, commonly measured probability weighting functions produce optimal RDU terminal wealth with significant downside protection and upside exposure. We additionally find that in contrast to EU investors, RDU investors optimally choose a portfolio that contains fair bets that provide payo↵s that can be interpreted as lottery outcomes or exposure to idiosyncratic returns. In a calibrated version of the model, we calculate that RDU investors would be willing to pay 5% of their initial wealth for the freedom to trade away from an optimal EU wealth allocation. The dynamic trading strategy that supports the optimal wealth allocation implies portfolio weights that are independent of initial wealth but requires higher risky share after good stock return histories. Optimal trading also implies the possibility of non-participation when historical returns are poor. Our model fills a gap in the literature by providing new quantitative and qualitative predictions that can be tested experimentally or using data on household wealth and portfolio choice.

Keywords: behavioral finance, probability weighting, portfolio choice

Procedia PDF Downloads 423
25050 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 77