Search results for: particle size distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10582

Search results for: particle size distribution

5122 Nursing Education in the Pandemic Time: Case Study

Authors: Jaana Sepp, Ulvi Kõrgemaa, Kristi Puusepp, Õie Tähtla

Abstract:

COVID-19 was officially recognized as a pandemic in late 2019 by the WHO, and it has led to changes in the education sector. Educational institutions were closed, and most schools adopted distance learning. Estonia is known as a digitally well-developed country. Based on that, in the pandemic time, nursing education continued, and new technological solutions were implemented. To provide nursing education, special focus was paid on quality and flexibility. The aim of this paper is to present administrative, digital, and technological solutions which support Estonian nursing educators to continue the study process in the pandemic time and to develop a sustainable solution for nursing education for the future. This paper includes the authors’ analysis of the documents and decisions implemented in the institutions through the pandemic time. It is a case study of Estonian nursing educators. Results of the analysis show that the implementation of distance learning principles challenges the development of innovative strategies and technics for the assessment of student performance and educational outcomes and implement new strategies to encourage student engagement in the virtual classroom. Additionally, hospital internships were canceled, and the simulation approach was deeply implemented as a new opportunity to develop and assess students’ practical skills. There are many other technical and administrative changes that have also been carried out, such as students’ support and assessment systems, the designing and conducting of hybrid and blended studies, etc. All services were redesigned and made more available, individual, and flexible. Hence, the feedback system was changed, the information was collected in parallel with educational activities. Experiences of nursing education during the pandemic time are widely presented in scientific literature. However, to conclude our study, authors have found evidence that solutions implemented in Estonian nursing education allowed the students to graduate within the nominal study period without any decline in education quality. Operative information system and flexibility provided the minimum distance between the students, support, and academic staff, and likewise, the changes were implemented quickly and efficiently. Institution memberships were updated with the appropriate information, and it positively affected their satisfaction, motivation, and commitment. We recommend that the feedback process and the system should be permanently changed in the future to place all members in the same information area, redefine the hospital internship process, implement hybrid learning, as well as to improve the communication system between stakeholders inside and outside the organization. The main limitation of this study relates to the size of Estonia. Nursing education is provided by two institutions only, and similarly, the number of students is low. The result could be generated to the institutions with a similar size and administrative system. In the future, the relationship between nurses’ performance and organizational outcomes should be deeply investigated and influences of the pandemic time education analyzed at workplaces.

Keywords: hybrid learning, nursing education, nursing, COVID-19

Procedia PDF Downloads 111
5121 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 263
5120 Flavonoids and Phenolic Acids from the Aerial Parts of Alyssum alyssoides

Authors: Olga St. Tsiftsoglou, Diamanto M. Lazari, Eugene L. Kokkalou

Abstract:

Most of Alyssum species of Brassicaceae family have been mainly studied for their contribution in ecology. In this study, A. alyssoides was examined for its chemical substitutes. The methanol extract of its aerial parts was fractionated with liquid-liquid extraction (distribution) with four different solvents of increasing polarity: diethyl ether, ethyl acetate, 1-butanol and water. The diethyl ether and ethyl acetate extracts were further studied for their chemical composition. So far, secondary metabolites which belong to phenolics were isolated by using several chromatographic methods (C.C. and HPLC) and were identified by using spectroscopic methods (UV/Vis, NMR and MS): two phenolic acids (p-hydroxy-benzoic acid and 3-methoxy-4-hydroxy-benzoic acid (vanillic acid)), and five flavonoids, which are derivatives of flavonol: kaempferol 3-O-β-D-glucopyranoside (astragalin), kaempferol 3-O-(6′′-α-L-rhamnopyranosyl)-β-D-glucopyranoside (nicotiflorin), quercetin 3-O-β-D-glucopyranoside (isoquercetin), isorhamnetin-3-O-β-D-glucopyranoside, and isoramnetin 3-O-(6′′-α-L-rhamnopyranosyl)-β-D-glucopyranoside (narcissin).

Keywords: Alyssum, chemical substitutes, flavonoids, phenolic acids

Procedia PDF Downloads 305
5119 Kinetics of Growth Rate of Microalga: The Effect of Carbon Dioxide Concentration

Authors: Retno Ambarwati Sigit Lestari

Abstract:

Microalga is one of the organisms that can be considered ideal and potential for raw material of bioenergy production, because the content of lipids in microalga is relatively high. Microalga is an aquatic organism that produces complex organic compounds from inorganic molecules using carbon dioxide as a carbon source, and sunlight for energy supply. Microalga-CO₂ fixation has potential advantages over other carbon captures and storage approaches, such as wide distribution, high photosynthetic rate, good environmental adaptability, and ease of operation. The rates of growth and CO₂ capture of microalga are influenced by CO₂ concentration and light intensity. This study quantitatively investigates the effects of CO₂ concentration on the rates of growth and CO₂ capture of a type of microalga, cultivated in bioreactors. The works include laboratory experiments as well as mathematical modelling. The mathematical models were solved numerically and the accuracy of the model was tested by the experimental data. It turned out that the mathematical model proposed can well quantitatively describe the growth and CO₂ capture of microalga, in which the effects of CO₂ concentration can be observed.

Keywords: Microalga, CO2 concentration, photobioreactor, mathematical model

Procedia PDF Downloads 111
5118 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 362
5117 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 94
5116 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive

Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh

Abstract:

Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.

Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data

Procedia PDF Downloads 277
5115 A Case Study at PT Bank XYZ on The Role of Compensation, Career Development, and Employee Engagement towards Employee Performance

Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari

Abstract:

This study aims to examine, analyze and explain the impacts of compensation, career development and employee engagement to employee’s performance partially and simultaneously (Case Study at PT Bank XYZ). The research design used is quantitative descriptive research causality involving 30 respondents. Sources of data are from primary and secondary data, primary data obtained from questionnaires distribution and secondary data obtained from journals and books. Data analysis used model test using smart application PLS 3 that consists of test outer model and inner model. The results showed that compensation, career development and employee engagement partially have a positive impact on employee performance, while they have a positive and significant impact on employee performance simultaneously. The independent variable has the greatest impact is the employee engagement.

Keywords: compensation, career development, employee engagement, employee performance

Procedia PDF Downloads 138
5114 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime

Procedia PDF Downloads 321
5113 Process for Production of Added-Value Water–Extract from Liquid Biomass

Authors: Lozano Paul

Abstract:

Coupled Membrane Separation Technology (CMST), including Cross Flow Microfiltration (CFM) and Reverse Osmosis (RO), are used to concentrate microalgae biomass or/and to extract and concentrate water-soluble metabolites produced during micro-algae production cycle, as well as water recycling. Micro-algae biomass was produced using different feeding mixtures of ingredients: pure chemical origin compounds and natural/ecological water-extracted components from available local plants. Micro-algae was grown either in conventional plastic bags (100L/unit) or in small-scale innovative bioreactors (75L). Biomass was concentrated as CFM retentate using a P19-60 ceramic membrane (0.2μm pore size), and water-soluble micro-algae metabolites left in the CFM filtrate were concentrated by RO. Large volumes of water (micro-algae culture media) of were recycled by the CMTS for another biomass production cycle.

Keywords: extraction, membrane process, microalgae, natural compound

Procedia PDF Downloads 263
5112 A Coupling Study of Public Service Facilities and Land Price Based on Big Data Perspective in Wuxi City

Authors: Sisi Xia, Dezhuan Tao, Junyan Yang, Weiting Xiong

Abstract:

Under the background of Chinese urbanization changing from incremental development to stock development, the completion of urban public service facilities is essential to urban spatial quality. As public services facilities is a huge and complicated system, clarifying the various types of internal rules associated with the land market price is key to optimizing spatial layout. This paper takes Wuxi City as a representative sample location and establishes the digital analysis platform using urban price and several high-precision big data acquisition methods. On this basis, it analyzes the coupling relationship between different public service categories and land price, summarizing the coupling patterns of urban public facilities distribution and urban land price fluctuations. Finally, the internal mechanism within each of the two elements is explored, providing the reference of the optimum layout of urban planning and public service facilities.

Keywords: public service facilities, land price, urban spatial morphology, big data

Procedia PDF Downloads 187
5111 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models

Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi

Abstract:

Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.

Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel

Procedia PDF Downloads 164
5110 Counterfeit Drugs Prevention in Pharmaceutical Industry with RFID: A Framework Based On Literature Review

Authors: Zeeshan Hamid, Asher Ramish

Abstract:

The purpose of this paper is to focus on security and safety issues facing by pharmaceutical industry globally when counterfeit drugs are in question. Hence, there is an intense need to secure and authenticate pharmaceutical products in the emerging counterfeit product market. This paper will elaborate the application of radio frequency identification (RFID) in pharmaceutical industry and to identify its key benefits for patient’s care. The benefits are: help to co-ordinate the stream of supplies, accuracy in chains of supplies, maintaining trustworthy information, to manage the operations in appropriate and timely manners and finally deliver the genuine drug to patient. It is discussed that how RFID supported supply chain information sharing (SCIS) helps to combat against counterfeit drugs. And a solution how to tag pharmaceutical products; since, some products prevent RFID implementation in this industry. In this paper, a proposed model for pharma industry distribution suggested to combat against the counterfeit drugs when they are in supply chain.

Keywords: supply chain, RFID, pharmaceutical industry, counterfeit drugs, patients care

Procedia PDF Downloads 300
5109 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 71
5108 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 329
5107 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 62
5106 The Effect of Framework Structure on N2O Formation over Cu-Based Zeolites during NH3-SCR Reactions

Authors: Ghodsieh Isapour Toutizad, Aiyong Wang, Joonsoo Han, Derek Creaser, Louise Olsson, Magnus Skoglundh, Hanna HaRelind

Abstract:

Nitrous oxide (N2O), which is generally formed as a byproduct of industrial chemical processes and fossil fuel combustion, has attracted considerable attention due to its destructive role in global warming and ozone layer depletion. From various developed technologies used for lean NOx reduction, the selective catalytic reduction (SCR) of NOx with ammonia is presently the most applied method. Therefore, the development of catalysts for efficient lean NOx reduction without forming N2O in the process, or only forming it to a very small extent from the exhaust gases is of crucial significance. One type of catalysts that nowadays are used for this aim are zeolite-based catalysts. It is owing to their remarkable catalytic performance under practical reaction conditions such as high thermal stability and high N2 selectivity. Among all zeolites, copper ion-exchanged zeolites, with CHA, MFI, and BEA framework structure (like SSZ-13, ZSM-5 and Beta, respectively), represent higher hydrothermal stability, high activity and N2 selectivity. This work aims at investigating the effect of the zeolite framework structure on the formation of N2O during NH3-SCR reaction conditions over three Cu-based zeolites ranging from small-pore to large-pore framework structure. In the zeolite framework, Cu exists in two cationic forms, that can catalyze the SCR reaction by activating NO to form NO+ and/or surface nitrate species. The nitrate species can thereafter react with NH3 to form another intermediate, ammonium nitrate, which seems to be one source for N2O formation at low temperatures. The results from in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicate that during the NO oxidation step, mainly NO+ and nitrate species are formed on the surface of the catalysts. The intensity of the absorption peak attributed to NO+ species is higher for the Cu-CHA sample compared to the other two samples, indicating a higher stability of this species in small cages. Furthermore, upon the addition of NH3, through the standard SCR reaction conditions, absorption peaks assigned to N-H stretching and bending vibrations are building up. At the same time, negative peaks are evolving in the O-H stretching region, indicating blocking/replacement of surface OH-groups by NH3 and NH4+. By removing NH3 and adding NO2 to the inlet gas composition, the peaks in the N-H stretching and bending vibration regions show a decreasing trend in intensity, with the decrease being more pronounced for increasing pore size. It can probably be owing to the higher accumulation of ammonia species in the small-pore size zeolite compared to the other two samples. Furthermore, it is worth noting that the ammonia surface species are strongly bonded to the CHA zeolite structure, which makes it more difficult to react with NO2. To conclude, the framework structure of the zeolite seems to play an important role in the formation and reactivity of surface species relevant for the SCR process. Here we intend to discuss the connection between the zeolite structure, the surface species, and the formation of N2O during ammonia-SCR.

Keywords: fast SCR, nitrous oxide, NOx, standard SCR, zeolites

Procedia PDF Downloads 216
5105 Experimental and Numerical Study on Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This work focuses on the energy absorption capacity of each group of buffers particularly. The quasi-static compression tests were carried out to obtain the pre-compression force and the load-defection response of the buffers. Then a finite element (FE) model was constructed using Ls_dyna program. The rubber material was modeled with a tabulated method easily, in which no more material constants need to be fitted. The simulation results agreed with the experimental results well. Numerical study of the buffers was performed using the validated FE model and the influence of the initial pressure on the buffers was obtained. In addition, the interaction between the two groups of buffers was also investigated and the optimum distribution of the two was found.

Keywords: initial pressure, rubber buffer, simulation, tabulated method

Procedia PDF Downloads 133
5104 Soret and Dufour Effect on Variable Viscosity and Thermal Conductivity of an Inclined Magnetic Field with Dissipation in Non-Darcy Porous Medium

Authors: Rasaq A. Kareem, Sulyman O. Salawu

Abstract:

The study of Soret and Dufour effect on variable viscosity and thermal conductivity of an inclined magnetic field with dissipation in non-Darcy porous medium over a continuously stretching sheet for power-law variation in the sheet temperature and concentration are investigated. The viscosity of the fluid flow and thermal conductivity are considered to vary as a function of temperature. The local similarity solutions for different values of the physical parameters are presented for velocity, temperature and concentration. The result shows that variational increase in the values of Soret and Dufour parameters increase the temperature and concentration distribution. Finally, the effects of skin friction, Nusselt and Sherwood numbers which are of physical and engineering interest are considered and discussed.

Keywords: Dufour, non-Darcy Flow, Soret, thermal conductivity, variable viscosity

Procedia PDF Downloads 311
5103 Development of a Risk Governance Index and Examination of Its Determinants: An Empirical Study in Indian Context

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Risk management has been gaining extensive focus from international organizations like Committee of Sponsoring Organizations and Financial Stability Board, and, the foundation of such an effective and efficient risk management system lies in a strong risk governance structure. In view of this, an attempt (perhaps a first of its kind) has been made to develop a risk governance index, which could be used as proxy for quality of risk governance structures. The index (normative framework) is based on eleven variables, namely, size of board, board diversity in terms of gender, proportion of executive directors, executive/non-executive status of chairperson, proportion of independent directors, CEO duality, chief risk officer (CRO), risk management committee, mandatory committees, voluntary committees and existence/non-existence of whistle blower policy. These variables are scored on a scale of 1 to 5 with the exception of the variables, namely, status of chairperson and CEO duality (which have been scored on a dichotomous scale with the score of 3 or 5). In case there is a legal/statutory requirement in respect of above-mentioned variables and there is a non-compliance with such requirement a score of one has been envisaged. Though there is no legal requirement, for the larger part of study, in context of CRO, risk management committee and whistle blower policy, still a score of 1 has been assigned in the event of their non-existence. Recognizing the importance of these variables in context of risk governance structure and the fact that the study basically focuses on risk governance, the absence of these variables has been equated to non-compliance with a legal/statutory requirement. Therefore, based on this the minimum score is 15 and the maximum possible is 55. In addition, an attempt has been made to explore the determinants of this index. For this purpose, the sample consists of non-financial companies (429) that constitute S&P CNX500 index. The study covers a 10 years period from April 1, 2005 to March 31, 2015. Given the panel nature of data, Hausman test was applied, and it suggested that fixed effects regression would be appropriate. The results indicate that age and size of firms have significant positive impact on its risk governance structures. Further, post-recession period (2009-2015) has witnessed significant improvement in quality of governance structures. In contrast, profitability (positive relationship), leverage (negative relationship) and growth (negative relationship) do not have significant impact on quality of risk governance structures. The value of rho indicates that about 77.74% variation in risk governance structures is due to firm specific factors. Given the fact that each firm is unique in terms of its risk exposure, risk culture, risk appetite, and risk tolerance levels, it appears reasonable to assume that the specific conditions and circumstances that a company is beset with, could be the biggest determinants of its risk governance structures. Given the recommendations put forth in the paper (particularly for regulators and companies), the study is expected to be of immense utility in an important yet neglected aspect of risk management.

Keywords: corporate governance, ERM, risk governance, risk management

Procedia PDF Downloads 241
5102 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 95
5101 Race, Class, Gender, and the American Welfare State (1930s-1990s)

Authors: Tahar Djebbar Aziza

Abstract:

The American society, like all societies, is fractured by social divisions between different groups of people. It is divided by race, class, gender, and other social and cultural characteristics. Social divisions affect the way and the manner welfare is delivered for citizens within the American society. The welfare state exists to guarantee the promotion of well –being for all the different components within a society without taking into account their age, gender, their ethnicity/race, or their social belonging (class). Race, class, and even gender issues are the main factors that affected the formal structure, the nature, as well as the evolution of the American welfare state and led to its uniqueness. They have affected the structure and the evolution of the American welfare state since its creation in the 1930s, and led to its uniqueness in an international level. This study aims therefore at enhancing the readers’ awareness of social divisions: race, class, gender and their implications for the distribution of welfare resources and life chances in the USA from the early 1930s to the late 1990s.

Keywords: African Americans, class, gender, minority groups, race, social divisions, social policy, U.S. welfare state

Procedia PDF Downloads 536
5100 Fabrication of Tin Oxide and Metal Doped Tin Oxide for Gas Sensor Application

Authors: Goban Kumar Panneer Selvam

Abstract:

In past years, there is lots of death caused due to harmful gases. So its very important to monitor harmful gases for human safety, and semiconductor material play important role in producing effective gas sensors.A novel solvothermal synthesis method based on sol-gel processing was prepared to deposit tin oxide thin films on glass substrate at high temperature for gas sensing application. The structure and morphology of tin oxide were analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM analysis of how spheres shape in tin oxide nanoparticles. The structure characterization of tin oxide studied by X-ray diffraction shows 8.95 nm (calculated by sheers equation). The UV visible spectroscopy indicated a maximum absorption band shown at 390 nm. Further dope tin oxide with selected metals to attain maximum sensitivity using dip coating technique with different immersion and sensing characterization are measured.

Keywords: tin oxide, gas sensor, chlorine free, sensitivity, crystalline size

Procedia PDF Downloads 123
5099 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: the linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure

Procedia PDF Downloads 278
5098 Analysis of the Interference from Risk-Determining Factors of Cooperative and Conventional Construction Contracts

Authors: E. Harrer, M. Mauerhofer, T. Werginz

Abstract:

As a result of intensive competition, the building sector is suffering from a high degree of rivalry. Furthermore, there can be observed an unbalanced distribution of project risks. Clients are aimed to shift their own risks into the sphere of the constructors or planners. The consequence of this is that the number of conflicts between the involved parties is inordinately high or even increasing; an alternative approach to counter on that developments are cooperative project forms in the construction sector. This research compares conventional contract models and models with partnering agreements to examine the influence on project risks by an early integration of the involved parties. The goal is to show up deviations in different project stages from the design phase to the project transfer phase. These deviations are evaluated by a survey of experts from the three spheres: clients, contractors and planners. By rating the influence of the participants on specific risk factors it is possible to identify factors which are relevant for a smooth project execution.

Keywords: building projects, contract models, partnering, project risks

Procedia PDF Downloads 258
5097 Behaviour of Beam Reinforced with Longitudinal Steel-CFRP Composite Reinforcement under Static Load

Authors: Faris A. Uriayer, Mehtab Alam

Abstract:

The concept of using a hybrid composite by combining two or more different materials to produce bilinear stress–strain behaviour has become a subject of interest. Having studied the mechanical properties of steel-CFRP specimens (CFRP Laminate Sandwiched between Mild Steel Strips), full size steel-CFRP composite reinforcement were fabricated and used as a new reinforcing material inside beams in lieu of traditional steel bars. Four beams, three beams reinforced with steel-CFRP composite reinforcement and one beam reinforced with traditional steel bars were cast, cured and tested under quasi-static loading. The flexural test results of the beams reinforced with this composite reinforcement showed that the beams with steel-CFRP composite reinforcement had comparable flexural strength and flexural ductility with beams reinforced with traditional steel bars.

Keywords: CFRP laminate, steel strip, flexural behaviour, modified model, concrete beam

Procedia PDF Downloads 670
5096 Carbide Structure and Fracture Toughness of High Speed Tool Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

M2 steels, the typical Co-free high speed steel (HSS) possessing hardness level of 63~65 HRc, are most widely used for cutting tools. On the other hand, Co-containing HSS’s, such as M35 and M42, show a higher hardness level of 65~67 HRc and used for high quality cutting tools. In the fabrication of HSS’s, it is very important to control cleanliness and eutectic carbide structure of the ingot and it is required to increase productivity at the same time. Production of HSS ingots includes a variety of processes such as casting, electro-slag remelting (ESR), forging, blooming, and wire rod rolling processes. In the present study, electro-slag rapid remelting (ESRR) process, an advanced ESR process combined by continuous casting, was successfully employed to fabricate HSS billets of M2, M35, and M42 steels. Distribution and structure of eutectic carbides of the billets were analysed and cleanliness, hardness, and composition profile of the billets were also evaluated.

Keywords: high speed tool steel, eutectic carbide, microstructure, hardness, fracture toughness

Procedia PDF Downloads 432
5095 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia PDF Downloads 517
5094 Development of Real Time System for Human Detection and Localization from Unmanned Aerial Vehicle Using Optical and Thermal Sensor and Visualization on Geographic Information Systems Platform

Authors: Nemi Bhattarai

Abstract:

In recent years, there has been a rapid increase in the use of Unmanned Aerial Vehicle (UAVs) in search and rescue (SAR) operations, disaster management, and many more areas where information about the location of human beings are important. This research will primarily focus on the use of optical and thermal camera via UAV platform in real-time detection, localization, and visualization of human beings on GIS. This research will be beneficial in disaster management search of lost humans in wilderness or difficult terrain, detecting abnormal human behaviors in border or security tight areas, studying distribution of people at night, counting people density in crowd, manage people flow during evacuation, planning provisions in areas with high human density and many more.

Keywords: UAV, human detection, real-time, localization, visualization, haar-like, GIS, thermal sensor

Procedia PDF Downloads 447
5093 Presence, Distribution and Form of Calcium Oxalate Crystals in Relation to Age of Actinidia Deliciosa Leaves and Petioles

Authors: Muccifora S., Rinallo C., Bellani L.

Abstract:

Calcium (Ca²+) is an element essential to the plant being involved in plant growth and development. At high concentrations, it is toxic and can influence every stage, process and cellular activity of plant life. Given its toxicity, cells implement mechanisms to compartmentalize calcium in a vacuole, endoplasmic reticulum, mitochondria, plastids and cell wall. One of the most effective mechanisms to reduce the excess of calcium, thus avoiding cellular damage, is its complexation with oxalic acid to form calcium oxalate crystals that are no longer osmotically or physiologically active. However, the sequestered calcium can be mobilized when the plant needs it. Calcium crystals can be accumulated in the vacuole of specialized sink-cells called idioblasts, with different crystalline forms (druse, raphyde and styloid) of diverse physiological meanings. Actinidia deliciosa cv. Hayward presents raphydes and styloid localized in idioblasts in cells of photosynthetic and non-photosynthetic tissues. The purpose of this work was to understand if there is a relationship between the age of Actinidia leaves and the presence, distribution, dimension and shape of oxalate crystals by means of light, fluorescent, polarized and transmission electron microscopy. Three vines from female plants were chosen at the beginning of the season and used throughout the study. The leaves with petioles were collected at various stages of development from the bottom to the shoot of the plants monthly from April to July. The samples were taken in corresponding areas of the central and lateral parts of the leaves and of the basal portion of the petiole. The results showed that in the leaves, the number of raphyde idioblasts decreased with the progress of the growing season, while the styloid idioblasts increased progressively, becoming very numerous in the upper nodes of July. In June and in July samples, in the vacuoles of the highest nodes, a portion regular in shape strongly stained with rubeanic acid was present. Moreover, the chlortetracycline (CTC) staining for localization of free calcium marked the wall of the idioblasts and the wall of the cells near vascular bundles. In April petiole samples, moving towards the youngest nodes, the raphydes idioblast decreased in number and in the length of the single raphydes. Besides, crystals stained with rubeanic acid appeared in the vacuoles of some cells. In June samples, numerous raphyde idioblasts oriented parallel to vascular bundles were evident. Under the electron microscope, numerous idioblasts presented not homogeneous electrondense aggregates of material, in which a few crystals (styloids) in the form of regular holes were scattered. In July samples, an increase in the number of styloid idioblasts in the youngest nodes and little masses stained with CTC near styloids were observed. Peculiar cells stained with rubeanic acid were detected and hypothesized to be involved in the formation of the idioblasts. In conclusion, in Actinidia leaves and petioles, it seems to confirm the hypothesis that the formation of styloid idioblasts can be correlated to increasing calcium levels in growing tissues.

Keywords: calcium oxalate crystals, actinidia deliciosa, light and electron microscopy, idioblasts

Procedia PDF Downloads 69