Search results for: trade potential
6872 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction
Authors: Koichi Kurita
Abstract:
In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.Keywords: human walking motion, access control, electrostatic induction, alarm monitoring
Procedia PDF Downloads 3576871 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin
Authors: Abolghasem Akbari
Abstract:
The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff
Procedia PDF Downloads 2876870 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 756869 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process
Authors: Hen Friman
Abstract:
Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.Keywords: renewable energy, solar energy, innovative, wastewater treatment
Procedia PDF Downloads 1086868 The Use of Active Methodologies as a Means to Promote Autonomy and Motivation in English as a Foreign Language High School Students
Authors: Danielle Guerra, Marden Silva
Abstract:
The use of active methodologies in the teaching of English has been widely encouraged recently, due to its potential to create propitious conditions for the learners to develop autonomy and studying skills that tend to keep them motivated throughout the learning process. The constant use of technology by the students makes it possible to implement strategies such as blended learning, which blends regular classes with online instruction and practice. (Horn and Staker, 2015) For that reason, the aim of this study was to implement the blended approach in a High School second-grade English class in Brazil, in order to analyze the impacts of this methodology on the students' autonomy. The teacher's role was that of a mediator, being responsible for selecting the best resources for students to study with, and also for helping them with questions when necessary. The results show that taking learner characteristics and learning experiences into account and allowing the students to follow their learning paths at their own pace was crucial to promoting engagement that led to the desired outcomes. In conclusion, the research shows that blended learning is a helpful strategy to foster autonomy and promote motivation in EFL students.Keywords: active methodologies, autonomy, blended learning, motivation
Procedia PDF Downloads 2106867 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa
Authors: Xiaoci Li, Yonghua Huang, Hui Lin
Abstract:
Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property
Procedia PDF Downloads 2966866 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion
Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan
Abstract:
Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste
Procedia PDF Downloads 4736865 Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas
Authors: Adila Shafqat
Abstract:
Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas.Keywords: climate change, surface temperatures, green spaces, urban planning
Procedia PDF Downloads 1206864 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring
Authors: Katerina Krizova, Inigo Molina
Abstract:
The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content
Procedia PDF Downloads 1256863 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion
Authors: Prajamitra Bhuyan
Abstract:
Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome
Procedia PDF Downloads 2406862 Investigation of Antidepressant Activity of Dracaena Trifasciata in Rats
Authors: Samiah Rehman, Kashmira J. Gohil
Abstract:
Objective: Dracaena trifascaita extract (DTE) possesses strong antioxidant and anti-inflammatory properties that play a vital role in the treatment of mental disorders like depression. The present study was designed to evaluate the antidepressant effects of hydroalcoholic extracts of DT on behavioral models of depression. Methodology: Animals were randomly divided into 6 groups of 5 each: Group 1 and 2 received distilled water and standard drug, imipramine: 25mg/kg, respectively. Groups 4, 5 and 6 received DTE treatment orally at doses of 200 ,400 and 600mg/ kg, respectively, for 14 days. Time of immobility was noted by force swimming test (FST)and tail suspension test (TST) on the 1st,7th and 14th days. Results: The time of immobility was reduced in the treatment group as compared to the control and standard. DTE600 mg/kg showed the highest and most significant antidepressant effects as compared to the standard drug imipramine. (25mg/kg). Conclusion: DTE has good potential as an alternative therapy for depression.Keywords: Dracaena trifasciata, antidepressants, force swimming test, tail suspension test, herbal drug of depression
Procedia PDF Downloads 746861 Trends in Blood Pressure Control and Associated Risk Factors Among US Adults with Hypertension from 2013 to 2020: Insights from NHANES Data
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Controlling blood pressure is critical to reducing the risk of cardiovascular disease. However, BP control rates (systolic BP < 140 mm Hg and diastolic BP < 90 mm Hg) have declined since 2013, warranting further analysis to identify contributing factors and potential interventions. This study investigates the factors associated with the decline in blood pressure (BP) control among U.S. adults with hypertension over the past decade. Data from the U.S. National Health and Nutrition Examination Survey (NHANES) were used to assess BP control trends between 2013 and 2020. The analysis included 18,927 U.S. adults with hypertension aged 18 years and older who completed study interviews and examinations. The dataset, obtained from the cardioStatsUSA and RNHANES R packages, was merged based on survey IDs. Key variables analyzed included demographic factors, lifestyle behaviors, hypertension status, BMI, comorbidities, antihypertensive medication use, and cardiovascular disease history. The prevalence of BP control declined from 78.0% in 2013-2014 to 71.6% in 2017-2020. Non-Hispanic Whites had the highest BP control prevalence (33.6% in 2013-2014), but this declined to 26.5% by 2017-2020. In contrast, BP control among Non-Hispanic Blacks increased slightly. Younger adults (aged 18-44) exhibited better BP control, but control rates declined over time. Obesity prevalence increased, contributing to poorer BP control. Antihypertensive medication use rose from 26.1% to 29.2% across the study period. Lifestyle behaviors, such as smoking and diet, also affected BP control, with nonsmokers and those with better diets showing higher control rates. Key findings indicate significant disparities in blood pressure control across racial/ethnic groups. Non-Hispanic Black participants had consistently higher odds (OR ranging from 1.84 to 2.33) of poor blood pressure control compared to Non-Hispanic Whites, while odds among Non-Hispanic Asians varied by cycle. Younger age groups (18-44 and 45-64) showed significantly lower odds of poor blood pressure control compared to those aged 75+, highlighting better control in younger populations. Men had consistently higher odds of poor control compared to women, though this disparity slightly decreased in 2017-2020. Medical comorbidities such as diabetes and chronic kidney disease were associated with significantly higher odds of poor blood pressure control across all cycles. Participants with chronic kidney disease had particularly elevated odds (OR=5.54 in 2015-2016), underscoring the challenge of managing hypertension in these populations. Antihypertensive medication use was also linked with higher odds of poor control, suggesting potential difficulties in achieving target blood pressure despite treatment. Lifestyle factors such as alcohol consumption and physical activity showed no consistent association with blood pressure control. However, dietary quality appeared protective, with those reporting an excellent diet showing lower odds (OR=0.64) of poor control in the overall sample. Increased BMI was associated with higher odds of poor blood pressure control, particularly in the 30-35 and 35+ BMI categories during 2015-2016. The study highlights a significant decline in BP control among U.S. adults with hypertension, particularly among certain demographic groups and those with increasing obesity rates. Lifestyle behaviors, antihypertensive medication use, and socioeconomic factors all played a role in these trends.Keywords: diabetes, blood pressure, obesity, logistic regression, odd ratio
Procedia PDF Downloads 96860 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based on Liquid Glass
Authors: Miroslava Zelinkova, Marcela Ondova
Abstract:
Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.Keywords: alkali activation, geopolymers, fly ash, particle fineness
Procedia PDF Downloads 2216859 Assessement of Phytochemicals and Antioxidant Activity of Lavandula antineae Maire from Algeria
Authors: Soumeya Krimat, Tahar Dob, Mohamed Toumi, Aicha Kesouri, Hafidha Metidji, Chelghoum Chabane
Abstract:
Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The present study was designed to investigate the phytochemical screening, total phenolic and antioxidant activity of Lavandula antineae Maire for the first time. Phytochemical screening revealed the presence of different kind of chemical groups (anthraquinones, terpenes, saponins, flavonoids, tannins, O-heterosides, C-heterosides, phenolic acids). The amounts of total phenolics in the extracts (hydromethanolic and ethyl acetate extract) were determined spectrometrically. From the analyses, ethyl acetate extract had the highest total phenolic content (262.35 mg GA/g extract) and antioxidant activity (IC50=7.10 µg/ml) using DPPH method. The ethyl acetate extract was also more potent on reducing power compared to hydromethanolic extract. The results suggested that L. antineae could be considered as a new potential source of natural antioxidant for pharmaceuticals and food preservation.Keywords: Lavandula antineae, antioxidant activity, phytochemical screening, total phenolics
Procedia PDF Downloads 5216858 Incorporating Popular Nigerian Music into the School Curriculum: A Potential for National Development
Authors: David O. A. Ogunrinade
Abstract:
The significance of education to the growth and development of man is imperative. The Nigerian education philosophy and national objectives are geared towards self-realization, social, cultural, and economic, just to mention a few. The acquisition of skills and abilities, both mental and physical, for individual to live and contribute to the development of society should be of major importance to a functional education curriculum. This study specifically set out to examine the momentous potentials of popular music as a veritable tool to be properly incorporated into the curriculum of music education in Nigeria. This will equip the learners to be self-reliant and contribute to the national economy. Interviews with exponents of Nigerian popular music and the stakeholders in the music industry, as well as audio-visual materials were employed to elicit information. Findings reveal that there are lots of potentials and dexterities in popular music that can enable Nigerian music graduates to contribute their own quota to the national development of the nation, as well as being useful to themselves. If the Nigerian society is not to be plagued by a breed of unemployable youths who could not raise the economic productivity of the country, it is deemed pertinent that the music curriculum as one of the vocational education needs to be reviewed to incorporate popular music, as well as to reflect more of the Nigerian cultural heritage.Keywords: popular music, music curriculum, music in schools, popular music prospect
Procedia PDF Downloads 1616857 Analyzing the Effect of Biomass and Cementitious Materials on Air Content in Concrete
Authors: Mohammed Albahttiti, Eliana Aguilar
Abstract:
A push for sustainability in the concrete industry is increasing. Cow manure itself is becoming a problem and having the potential solution to use it in concrete as a cementitious replacement would be an ideal solution. For cow manure ash to become a well-rounded substitute, it would have to meet the right criteria to progress in becoming a more popular idea in the concrete industry. This investigation primarily focuses on how the replacement of cow manure ash affects the air content and air void distribution in concrete. In order to assess these parameters, the Super Air Meter (SAM) was used to test concrete in this research. In addition, multiple additional tests were performed, which included the slump test, temperature, and compression test. The strength results of the manure ash in concrete were promising. The manure showed compression strength results that are similar to that of the other supplementary cementitious materials tested. On the other hand, concrete samples made with cow manure ash showed 2% air content loss and an increasing SAM number proportional to cow manure content starting at 0.38 and increasing to 0.8. In conclusion, while the use of cow manure results in loss of air content, it results in compressive strengths similar to other supplementary cementitious materials.Keywords: air content, biomass ash, cow manure ash, super air meter, supplementary cementitious materials
Procedia PDF Downloads 1496856 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory
Authors: E. K. A. Ogunshile
Abstract:
This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.Keywords: conformance testing, finite state machine, software testing, x-machine
Procedia PDF Downloads 2686855 The Defence of Loss of Control within the Coroners and Justice Act 2009: A Critical Discussion
Authors: Bader A. J. Alrajhi
Abstract:
The 'loss of control' defence to murder as enacted in the Coroners and Justice Act 2009 (CJA) represents a legislative effort to bring greater coherence to an aspect of UK homicide law that has vexed several generations of jurists, practitioners, and academic commentators. The analysis developed in this paper illustrates that the loss of control defence as defined in CJA sections 54 and 55 is a laudable initiative; its fuller assessment must await further appellate court determination before a definitive conclusion of its utility is possible. The CJA amendments tend to embrace a legitimate policy that those who found to be provoked by the activities of others to lose their self-control should be dealt with in a different way than those who commit intentional killings when motivated by their own desires or pursuit of gain. However, the 2012 Court of Appeal decisions rendered in the Parker troika of cases, provide useful direction as to how the law is likely to be applied. It shows an attitude in the Court of Appeal that the whole circumstances that challenged the defendant must be examined. The Court of Appeal has introduced an important ingredient into the potential use of sexual infidelity as a section 55 trigger - it is not a permissible stand-alone factor, but it may legitimately form part of an entire qualifying trigger circumstance.Keywords: loss of self-control, Coroners and Justice Act 2009, provocation, diminished responsibility
Procedia PDF Downloads 1716854 Not so Street Theatre: Politics in Theatre of Roots
Authors: Dani Karmakar
Abstract:
In India, the journey of street theatre was started with Indian peoples Theatre Association (IPTA) as a tool for anti-establishment that was categorized as by the people and for the people. It has expressed common people’s feelings, problems, day to day life. It has brought a social change that is downtrodden. By its nature, it is based on communist ideology. Street theatre is a theatre of protest. In India, many folk theatres translate directly ‘Street Theatre’, those are Veedhi Natakam in Andhra Pradesh and Therukoothu in Tamil Nadu. But they do not covey to common definition of street theatre. There are different folk theatres of different regions in India. All folk theatres have individual characteristic, criteria, taste and flavor that can render distinctive each others. In festivals or special occasions, whole communities come together to enjoy collectively and express their feelings. The Veedhi Natakam means 'street theatre'. Theru koothu is a traditional street theatre in the northern districts of Tamilnadu. Folk theatre has potential to deliver strong messages. It has a socially significant role. At Veedhi Natakam, Vidhushaka takes part for social criticism. Gambhira is also a socio-political folk drama presentation in West Bengal.Keywords: folk theatre, Gambhira, politics, street theatre
Procedia PDF Downloads 3546853 Development of Surface-Enhanced Raman Spectroscopy-Active Gelatin Based Hydrogels for Label Free Detection of Bio-Analytes
Authors: Zahra Khan
Abstract:
Hydrogels are a macromolecular network of hydrophilic copolymers with physical or chemical cross-linking structures with significant water uptake capabilities. They are a promising substrate for surface-enhanced Raman spectroscopy (SERS) as they are both flexible and biocompatible materials. Conventional SERS-active substrates suffer from limitations such as instability and inflexibility, which restricts their use in broader applications. Gelatin-based hydrogels have been synthesised in a facile and relatively quick method without the use of any toxic cross-linking agents. Composite gel material was formed by combining the gelatin with simple polymers to enhance the functional properties of the gel. Gold nanoparticles prepared by a reproducible seed-mediated growth method were combined into the bulk material during gel synthesis. After gel formation, the gel was submerged in the analyte solution overnight. SERS spectra were then collected from the gel using a standard Raman spectrometer. A wide range of analytes was successfully detected on these hydrogels showing potential for further optimization and use as SERS substrates for biomedical applications.Keywords: gelatin, hydrogels, flexible materials, SERS
Procedia PDF Downloads 1126852 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System
Authors: Yan Li
Abstract:
Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students
Procedia PDF Downloads 746851 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1266850 Armenian Refugees in Early 20th C Japan: Quantitative Analysis on Their Number Based on Japanese Historical Data with the Comparison of a Foreign Historical Data
Authors: Meline Mesropyan
Abstract:
At the beginning of the 20th century, Japan served as a transit point for Armenian refugees fleeing the 1915 Genocide. However, research on Armenian refugees in Japan is sparse, and the Armenian Diaspora has never taken root in Japan. Consequently, Japan has not been considered a relevant research site for studying Armenian refugees. The primary objective of this study is to shed light on the number of Armenian refugees who passed through Japan between 1915 and 1930. Quantitative analyses will be conducted based on newly uncovered Japanese archival documents. Subsequently, the Japanese data will be compared to American immigration data to estimate the potential number of refugees in Japan during that period. This under-researched area is relevant to both the Armenian Diaspora and refugee studies in Japan. By clarifying the number of refugees, this study aims to enhance understanding of Japan's treatment of refugees and the extent of humanitarian efforts conducted by organizations and individuals in Japan, contributing to the broader field of historical refugee studies.Keywords: Armenian genocide, Armenian refugees, Japanese statistics, number of refugees
Procedia PDF Downloads 576849 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2766848 Development of Starch Nanoparticles as Vehicles for Curcumin Delivery
Authors: Fernando G. Torres, Omar P. Troncoso
Abstract:
Starch is a highly biocompatible, non-toxic, and biodegradable polymer. It is widely used in biomedical applications, including drug delivery systems and tissue engineering scaffolds. Curcumin, a phenolic compound found in the dried root of Curcuma longa, has been used as a nutritional supplement due to its antimicrobial, anti-inflammatory, and antioxidant effects. However, the major problem with ingesting curcumin by itself is its poor bioavailability due to its poor absorption and rapid metabolism. In this study, we report a novel methodology to prepare starch nanoparticles loaded with curcumin. The nanoparticles were synthesized via nanoprecipitation of starch granules extracted from native Andean potatoes (Solanum tuberosum ssp. and Andigena var Huamantanga varieties). The nanoparticles were crosslinked and stabilized by using sodium tripolyphosphate and Tween®80, respectively. The characterization of the nanoparticles loaded with curcumin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that native starch nanoparticles could be used to prepare promising nanocarriers for the controlled release of curcumin.Keywords: starch nanoparticle, nanoprecipitation, curcumin, biomedical applications
Procedia PDF Downloads 1276847 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap
Authors: Furqan Farooq, Arslan Akbar, Sana Gul
Abstract:
Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.Keywords: seismic design, carbon fiber, strengthening, ductility
Procedia PDF Downloads 2026846 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 236845 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling
Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri
Abstract:
Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.Keywords: magnetic field strength, flow velocity, retention time, barium sulfate
Procedia PDF Downloads 2676844 Corrosion Characterization of Al6061, Quartz Metal Matrix Composites in Alkali Medium
Authors: Radha H. R., Krupakara P. V.
Abstract:
Metal matrix composites are attracting today's manufacturers of many automobile parts so that they lost longer and their properties can be tailored according to the requirement. In this paper an attempt has been made to study the corrosion characteristics of Aluminium 6061 / quartz metal matrix composites in alkali medium like sodium hydroxide solutions. Metal matrix composites are heterogeneous mixtures of a matrix and reinforcement. In this work the matrix selected is Aluminium 6061 alloy which is commercially available and the reinforcement selected is quartz particulates of 50-80 micron size which is available in plenty in and around Bangalore district, India. Composites containing Aluminium 6061 with 2, 4 and 6 weight percent of quartz are manufactured by liquid melt metallurgy technique using vortex method. Corrosion tests like static weight loss and open circuit potential tests are conducted in different concentrated solutions of sodium hydroxide. To compare the results the matrix Aluminium 6061 is also casted in the same way. Specimens for the test are prepared according to ASTM standards. In all the tests the metal matrix composites showed better corrosion resistance than matrix alloy.Keywords: aluminium 6061, corrosion, quartz, vortex
Procedia PDF Downloads 4096843 Measuring Sustainability Risk in the Construction Industry of Saudi Arabia
Authors: Mohammed Alquraish
Abstract:
Saudi Arabia and other emerging nations have faced significant challenges in the sustainable construction industry. This paper presents a quantitative approach to assessing sustainability risk in the Saudi Arabian construction industry and offers insights into holistic sustainability design in industry operations. The implementation of sustainable construction industry practices in the manufacturing sector has been susceptible to several risk factors that need to be identified. In order to successfully execute sustainable building projects, decision makers in the fields of construction and industry can benefit greatly from the advice this study offers by promoting the elements that motivate sustainability implementation. Sustainability risk can be measured from combining failure probability with cumulative effects from sustainability factors: social, environmental, and economic; that affect the integrity of the construction industry. The cumulative effects of sustainability risk are measured by classifying the outcomes resulting from these consequences. Operators of industrial construction can strategically manage and minimize potential disruptions affecting long-term sustainability incentives by measuring sustainability risk. Thus, the suggested strategy greatly reinforces the crucial role of the construction industry.Keywords: sustainability, risk, construction industry, Saudi Arabia
Procedia PDF Downloads 40