Search results for: social learning
10231 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 6110230 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 16910229 Unfolding Simulations with the Use of Socratic Questioning Increases Critical Thinking in Nursing Students
Authors: Martha Hough RN
Abstract:
Background: New nursing graduates lack the critical thinking skills required to provide safe nursing care. Critical thinking is essential in providing safe, competent, and skillful nursing interventions. Educational institutions must provide a curriculum that improves nursing students' critical thinking abilities. In addition, the recent pandemic resulted in nursing students who previously received in-person clinical but now most clinical has been converted to remote learning, increasing the use of simulations. Unfolding medium and high-fidelity simulations and Socratic questioning are used in many simulations debriefing sessions. Methodology: Google Scholar was researched with the keywords: critical thinking of nursing students with unfolding simulation, which resulted in 22,000 articles; three were used. A second search was implemented with critical thinking of nursing students Socratic questioning, which resulted in two articles being used. Conclusion: Unfolding simulations increase nursing students' critical thinking, especially during the briefing (pre-briefing and debriefing) phases, where most learning occurs. In addition, the use of Socratic questions during the briefing phases motivates other questions, helps the student analyze and critique their thinking, and assists educators in probing students' thinking, which further increases critical thinking.Keywords: briefing, critical thinking, Socratic thinking, unfolding simulations
Procedia PDF Downloads 18810228 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals
Authors: Ibrahim Khan, Waqas Khalid
Abstract:
The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning
Procedia PDF Downloads 6810227 Application of GeoGebra into Teaching and Learning of Linear and Quadratic Equations amongst Senior Secondary School Students in Fagge Local Government Area of Kano State, Nigeria
Authors: Musa Auwal Mamman, S. G. Isa
Abstract:
This study was carried out in order to investigate the effectiveness of GeoGebra software in teaching and learning of linear and quadratic equations amongst senior secondary school students in Fagge Local Government Area, Kano State–Nigeria. Five research items were raised in objectives, research questions and hypotheses respectively. A random sampling method was used in selecting 398 students from a population of 2098 of SS2 students. The experimental group was taught using the GeoGebra software while the control group was taught using the conventional teaching method. The instrument used for the study was the mathematics performance test (MPT) which was administered at the beginning and at the end of the study. The results of the study revealed that students taught with GeoGebra software (experimental group) performed better than students taught with traditional teaching method. The t- test was used to analyze the data obtained from the study.Keywords: GeoGebra Software, mathematics performance, random sampling, mathematics teaching
Procedia PDF Downloads 25310226 Taking the Good with the Bad: Psychological Well-Being and Social Integration in Russian-Speaking Immigrants in Montreal
Authors: Momoka Sunohara, Ashley J. Lemieux, Esther Yakobov, Andrew G. Ryder, Tomas Jurcik
Abstract:
Immigration brings changes in many aspects of an individual's life, from social support dynamics, to housing and language, as well as difficulties with regards to discrimination, trauma, and loss. Past research has mostly emphasized individual differences in mental health and has neglected the impact of social-ecological context, such as acculturation and ethnic density. Purpose: The present study aimed to assess the relationship between variables associated with social integration such as perceived ethnic density and ways of coping, as well as psychological adjustment in a rapidly growing non-visible minority group of immigrants in Canada. Data: A small subset of an archival data from our previously published study was reanalyzed with additional variables. Data included information from 269 Russian-Speaking immigrants in Montreal, Canada. Method: Canonical correlation analysis (CCA) investigated the relationship between two sets of variables. SAS PROC CANCORR was used to conduct CCA on a set of social integration variables, including ethnic density, discrimination, social support, family functioning, and acculturation, and a set of psychological well-being variables, including distress, depression, self-esteem, and life satisfaction. In addition, canonical redundancy analysis was performed to calculate the proportion of variances of original variables explained by their own canonical variates. Results: Significance tests using Rao’s F statistics indicated that the first two canonical correlations (i.e., r1 = 0.64, r2 = 0.40) were statistically significant (p-value < 0.0001). Additionally, canonical redundancy analysis showed that the first two well-being canonical variates explained separately 62.9% and 12.8% variances of the standardized well-being variables, whereas the first two social integration canonical variates explained separately 14.7% and 16.7% variances of the standardized social integration variables. These results support the selection of the first two canonical correlations. Then, we interpreted the derived canonical variates based on their canonical structure (i.e., correlations with original variables). Two observations can be concluded. First, individuals who have adequate social support, and who, as a family, cope by acquiring social support, mobilizing others and reframing are more likely to have better self-esteem, greater life satisfaction and experience less feelings of depression or distress. Second, individuals who feel discriminated yet rate higher on a mainstream acculturation scale, and who, as a family, cope by acquiring social support, mobilizing others and using spirituality, while using less passive strategies are more likely to have better life satisfaction but also higher degree of depression. Implications: This model may serve to explain the complex interactions that exist between social and emotional adjustment and aid in facilitating the integration of individuals immigrating into new communities. The same group may experience greater depression but paradoxically improved life satisfaction associated with their coping process. Such findings need to be placed in the context of Russian cultural values. For instance, some Russian-speakers may value the expression of negative emotions with significant others during the integration process; this in turn may make negative emotions more salient, but also facilitate a greater sense of family and community connection, as well as life satisfaction.Keywords: acculturation, ethnic density, mental health, Russian-speaking
Procedia PDF Downloads 48410225 Solidarity and Authority in the Characters of Shakespeare’s Drama
Authors: Vinay Jain, Meena Jain
Abstract:
Thee is generally used in Shakespeare by a master to a servant. Being the appropriate address to a servant, it is used in confidential and good-humoured utterances. You was received by a master. Hindi tu, tum, and aap express roughly the same social meanings as English thou/thee and you used to express respectively. The pronouns thou, thee and you have been reduced to you whereas in Hindi we still have all three pronouns – aap, tum and tu. It reveals that our society has not yet reached the unidimensional solidarity semantics toward which the present European pronominal usage seems to be moving. Shakespeare’s use of pronouns and Hindi pronouns are correlated with the interlocutor’s social status and intimacy.Keywords: brown and gilman, elizabethan pronouns, honorific pronoun, power, solidarity
Procedia PDF Downloads 8210224 Play in College: Shifting Perspectives and Creative Problem-Based Play
Authors: Agni Stylianou-Georgiou, Eliza Pitri
Abstract:
This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.Keywords: creative problem-based play, educational games, flexible thinking, tertiary education
Procedia PDF Downloads 29610223 Twitter Sentiment Analysis during the Lockdown on New-Zealand
Authors: Smah Almotiri
Abstract:
One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS
Procedia PDF Downloads 19710222 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 29510221 Intuition in Negotiation within Ghanaian Social Contexts: Exploring Female Leadership Strategies for Conflict Transformation
Authors: Nadia Naadu Nartey, Esther A.O.G. Tetteh
Abstract:
Male negotiator representations and the appreciation of masculine traits in negotiation contexts dominate negotiation research in the field of conflict management and resolution. This study switched focus to pay attention to rarely examined gendered criteria and social contexts in negotiation research by investigating how intuition has been used in negotiations by female leaders toward conflict transformation in Ghanaian social contexts. Using the theoretical lenses of Klein’s Recognition-Primed Decisions (RPD) and Unconscious Information Processing (UIP) models, this study employs narrative inquiry in qualitative research. Semi-structured interviews of five (5) female leaders of Ghanaian social contexts in the United States (US) revealed that the use of intuition is necessary for effective negotiation outcomes due to its primal focus on relationship-building toward transforming conflicts. The knowledge added to the body of research by this study is summed up in the study’s conceptual framework. Female leaders, in negotiation situations where there are conflicting parties, prioritize the greater need for stronger relationships and win-win outcomes. The participant female leaders in negotiation contexts utilize their intuition as a bonding mechanism by effectively timing their actions, using an appropriate communication tone, emphasizing relationship building, and drawing from experience to make sound situational judgments (as in assessing a situation in the RPD model). Female leaders’ use of intuition in negotiations then translates to creating a force that bridges the gap between the conflicting parties. That force is noticed as conflict transformation that manifests as a reduction in anger and a promotion of trust and mutual understanding toward strengthening relationships. Future studies can expand the scope of the findings of this research by conducting a comparative analysis between male and female leaders on their use of intuition in negotiations in Ghanaian contexts.Keywords: intuition, negotiation, conflict transformation, female leaders, ghanaian social contexts
Procedia PDF Downloads 2010220 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 12410219 Social Change and Cultural Sustainability in the Wake of Digital Media Revolution in South Asia
Authors: Binod C. Agrawal
Abstract:
In modern history, industrial and media merchandising in South Asia from East Asia, Europe, United States and other countries of the West is over 200 years old. Hence, continued external technology and media exposure is not a new experience in multi-lingual and multi religious South Asia which evolved cultural means to withstand structural change. In the post-World War II phase, media exposure especially of telecommunication, film, Internet, radio, print media and television have increased manifold. South Asia did not lose any time in acquiring and adopting digital media accelerated by chip revolution, computer and satellite communication. The penetration of digital media and utilization are exceptionally high though the spread has an unequal intensity, use and effects. The author argues that industrial and media products are “cultural products” apart from being “technological products”; hence their influences are most felt in the cultural domain which may lead to blunting of unique cultural specifics in the multi-cultural, multi-lingual and multi religious South Asia. Social scientists, political leaders and parents have voiced concern of “Cultural domination”, “Digital media colonization” and “Westernization”. Increased digital media access has also opened up doors of pornography and other harmful information that have sparked fresh debates and discussions about serious negative, harmful, and undesirable social effects especially among youth. Within ‘techno-social’ perspective, based on recent research studies, the paper aims to describe and analyse possible socio-economic change due to digital media penetration. Further, analysis supports the view that the ancient multi-lingual and multi-religious cultures of South Asia due to inner cultural strength may sustain without setting in a process of irreversible structural changes in South Asia.Keywords: cultural sustainability, digital media effects, digital media impact in South Asia, social change in South Asia
Procedia PDF Downloads 36010218 Positive Incentives to Reduce Private Car Use: A Theory-Based Critical Analysis
Authors: Rafael Alexandre Dos Reis
Abstract:
Research has shown a substantial increase in the participation of Conventionally Fuelled Vehicles (CFVs) in the urban transport modal split. The reasons for this unsustainable reality are multiple, from economic interventions to individual behaviour. The development and delivery of positive incentives for the adoption of more environmental-friendly modes of transport is an emerging strategy to help in tackling the problem of excessive use of conventionally fuelled vehicles. The efficiency of this approach, like other information-based schemes, can benefit from the knowledge of their potential impacts in theoretical constructs of multiple behaviour change theories. The goal of this research is to critically analyse theories of behaviour that are relevant to transport research and the impacts of positive incentives on the theoretical determinants of behaviour, strengthening the current body of evidence about the benefits of this approach. The main method to investigate this will involve a literature review on two main topics: the current theories of behaviour that have empirical support in transport research and the past or ongoing positive incentives programs that had an impact on car use reduction. The reviewed programs of positive incentives were the following: The TravelSmart®; Spitsmijden®; Incentives for Singapore Commuters® (INSINC); COMMUTEGREENER®; MOVESMARTER®; STREETLIFE®; SUPERHUB®; SUNSET® and the EMPOWER® project. The theories analysed were the heory of Planned Behaviour (TPB); The Norm Activation Theory (NAM); Social Learning Theory (SLT); The Theory of Interpersonal Behaviour (TIB); The Goal-Setting Theory (GST) and The Value-Belief-Norm Theory (VBN). After the revisions of the theoretical constructs of each of the theories and their influence on car use, it can be concluded that positive incentives schemes impact on behaviour change in the following manners: -Changing individual’s attitudes through informational incentives; -Increasing feelings of moral obligations to reduce the use of CFVs; -Increase the perceived social pressure to engage in more sustainable mobility behaviours through the use of comparison mechanisms in social media, for example; -Increase the perceived control of behaviour through informational incentives and training incentives; -Increasing personal norms with reinforcing information; -Providing tools for self-monitoring and self-evaluation; -Providing real experiences in alternative modes to the car; -Making the observation of others’ car use reduction possible; -Informing about consequences of behaviour and emphasizing the individual’s responsibility with society and the environment; -Increasing the perception of the consequences of car use to an individual’s valued objects; -Increasing the perceived ability to reduce threats to environment; -Help establishing goals to reduce car use; - iving personalized feedback on the goal; -Increase feelings of commitment to the goal; -Reducing the perceived complexity of the use of alternatives to the car. It is notable that the emerging technique of delivering positive incentives are systematically connected to causal determinants of travel behaviour. The preliminary results of the reviewed programs evidence how positive incentives might strengthen these determinants and help in the process of behaviour change.Keywords: positive incentives, private car use reduction, sustainable behaviour, voluntary travel behaviour change
Procedia PDF Downloads 34410217 Tornado Disaster Impacts and Management: Learning from the 2016 Tornado Catastrophe in Jiangsu Province, China
Authors: Huicong Jia, Donghua Pan
Abstract:
As a key component of disaster reduction management, disaster emergency relief and reconstruction is an important process. Based on disaster system theory, this study analyzed the Jiangsu tornado from the formation mechanism of disasters, through to the economic losses, loss of life, and social infrastructure losses along the tornado disaster chain. The study then assessed the emergency relief and reconstruction efforts, based on an analytic hierarchy process method. The results were as follows: (1) An unstable weather system was the root cause of the tornado. The potentially hazardous local environment, acting in concert with the terrain and the river network, was able to gather energy from the unstable atmosphere. The wind belt passed through a densely populated district, with vulnerable infrastructure and other hazard-prone elements, which led to an accumulative disaster situation and the triggering of a catastrophe. (2) The tornado was accompanied by a hailstorm, which is an important triggering factor for a tornado catastrophe chain reaction. (3) The evaluation index (EI) of the emergency relief and reconstruction effect for the ‘‘6.23’’ tornado disaster in Yancheng was 91.5. Compared to other relief work in areas affected by disasters of the same magnitude, there was a more successful response than has previously been experienced. The results provide new insights for studies of disaster systems and the recovery measures in response to tornado catastrophe in China.Keywords: China, disaster system, emergency relief, tornado catastrophe
Procedia PDF Downloads 27310216 Integrating Wound Location Data with Deep Learning for Improved Wound Classification
Authors: Mouli Banga, Chaya Ravindra
Abstract:
Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.Keywords: wound classification, MobileNetV2, ResNet50, multimodel
Procedia PDF Downloads 3810215 Intellectual Capital and Transparency in Universities: An Empirical Study
Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez
Abstract:
This paper shows the general perceptions of Spanish university stakeholders in relation to the university’s annual reports and the adequacy and potential of intellectual capital reporting. To this end, a questionnaire was designed and sent to every member of the Social Councils of Spanish public universities. It was thought that these participants would provide a good example of the attitude of university stakeholders since they represent the different social groups connected with universities. From the results of this study we are in the position of confirming the need for universities to offer information on intellectual capital in their accounting information model.Keywords: intellectual capital, disclosure, stakeholders, universities, annual report
Procedia PDF Downloads 50510214 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 9310213 The Effect of Technology on International Marketing Trading Researches and Analysis
Authors: Omil Nady Mahrous Maximous
Abstract:
The article deals with the use of modern information technologies to achieve pro-ecological marketing goals in company-customer relationships. The purpose of the article is to show the possibilities of implementing modern information technologies. In B2C relationships, marketing departments face challenges stemming from the need to quickly segment customers and the current fragmentation of data across many systems, which significantly hinders the achievement of marketing goals. Thus, Article proposes the use of modern IT solutions in the field of marketing activities of companies, taking into account their environmental goals. As a result, its importance for the economic and social development of the emerging countries has increased. While traditional companies emphasize profit maximization as a core business principle, social enterprises must solve social problems at the expense of profit. This rationale gives social enterprises an edge over traditional businesses by meeting the needs of those at the bottom of the pyramid. This also represents a major challenge for social business, since social business acts on the one hand for the benefit of the public and on the other strives for financial stability. Otherwise, the company is unlikely to be fired from the company. Cultures play a role in business communication and research. Using the example of language in international relations, the article presents the problem of the articulation of research cultures in management and linguistics and of cultures as such. After an overview of current research on language in international relations, this article presents the approach to communication in international economy from a linguistic point of view and tries to explain the problems of communication in business starting from linguistic research. A step towards interdisciplinary research that brings together research in the fields of management and linguistics.Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing, B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis consumer behavior, experience, experience marketing, marketing employee organizational performance, internal marketing, internal customer, direct marketing, mobile phones mobile marketing, Sms advertising
Procedia PDF Downloads 5310212 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 1510211 Imperatives for Teacher Empowerment in Devising Extension Education as Part of the Holistic Curriculum for Hospitality and Tourism Domains: A Conceptual Study in Indian Context
Authors: Rajiv Mishra, Mantun Kumar Singh
Abstract:
The role of educator or teacher in the Indian context is circumscribed by the objective of social transformation as articulated in the Indian National Movement and later enshrined in the Preamble to the Indian Constitution, in the Fundamental Rights and in the Directive Principles of State Policy. Extension, which is the additional dimension of professional practice among teachers at higher education can be used as a revolutionary tool to modify the existing slogan of ‘education for all’ to ‘education for all and for-ever’, thereby making the ‘life-long education’, a reality. This conceptual paper addresses the twin needs of preparing the students for individual growth as also to facilitate them to contribute to social development. It focuses on the inclusion of the measures required to be taken for providing social consciousness and sensitivity, as this happens to be a neglected part of the curriculum. The extra effort so needed to build community based activities presupposes the requirement for professional training to be given to the hospitality and tourism educators as a continuing education initiative.Keywords: continuing education, extension activities, holistic curriculum, hospitality and tourism educators
Procedia PDF Downloads 32210210 Education for Sustainability Using PBL on an Engineering Course at the National University of Colombia
Authors: Hernán G. Cortés-Mora, José I. Péna-Reyes, Alfonso Herrera-Jiménez
Abstract:
This article describes the implementation experience of Project-Based Learning (PBL) in an engineering course of the Universidad Nacional de Colombia, with the aim of strengthening student skills necessary for the exercise of their profession under a sustainability framework. Firstly, we present a literature review on the education for sustainability field, emphasizing the skills and knowledge areas required for its development, as well as the commitment of the Faculty of Engineering of the Universidad Nacional de Colombia, and other engineering faculties of the country, regarding education for sustainability. This article covers the general aspects of the course, describes how students team were formed, and how their experience was during the first semester of 2017. During this period two groups of students decided to develop their course project aiming to solve a problem regarding a Non-Governmental Organization (NGO) that works with head-of-household mothers in a low-income neighborhood in Bogota (Colombia). Subsequently, we show how sustainability is involved in the course, how tools are provided to students, and how activities are developed as to strengthen their abilities, which allows them to incorporate sustainability in their projects while also working on the methodology used to develop said projects. Finally, we introduce the results obtained by the students who sent the prototypes of their projects to the community they were working on and the conclusions reached by them regarding the course experience.Keywords: sustainability, project-based learning, engineering education, higher education for sustainability
Procedia PDF Downloads 35610209 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 10410208 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians
Authors: Daphne Alroy-Thiberge
Abstract:
Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care
Procedia PDF Downloads 11510207 Improving the Students’ Writing Skill by Using Brainstorming Technique
Authors: M. Z. Abdul Rofiq Badril Rizal
Abstract:
This research is aimed to know the improvement of students’ English writing skill by using brainstorming technique. The technique used in writing is able to help the students’ difficulties in generating ideas and to lead the students to arrange the ideas well as well as to focus on the topic developed in writing. The research method used is classroom action research. The data sources of the research are an English teacher who acts as an observer and the students of class X.MIA5 consist of 35 students. The test result and observation are collected as the data in this research. Based on the research result in cycle one, the percentage of students who reach minimum accomplishment criteria (MAC) is 76.31%. It shows that the cycle must be continued to cycle two because the aim of the research has not accomplished, all of the students’ scores have not reached MAC yet. After continuing the research to cycle two and the weaknesses are improved, the process of teaching and learning runs better. At the test which is conducted in the end of learning process in cycle two, all of the students reach the minimum score and above 76 based on the minimum accomplishment criteria. It means the research has been successful and the percentage of students who reach minimum accomplishment criteria is 100%. Therefore, the writer concludes that brainstorming technique is able to improve the students’ English writing skill at the tenth grade of SMAN 2 Jember.Keywords: brainstorming technique, improving, writing skill, knowledge and innovation engineering
Procedia PDF Downloads 36910206 Impact of Non-Parental Early Childhood Education on Digital Friendship Tendency
Authors: Sheel Chakraborty
Abstract:
Modern society in developed countries has distanced itself from the earlier norm of joint family living, and with the increase of economic pressure, parents' availability for their children during their infant years has been consistently decreasing over the past three decades. During the same time, the pre-primary education system - built mainly on the developmental psychology theory framework of Jean Piaget and Lev Vygotsky, has been promoted in the US through the legislature and funding. Early care and education may have a positive impact on young minds, but a growing number of kids facing social challenges in making friendships in their teenage years raises serious concerns about its effectiveness. The survey-based primary research presented here shows a statistically significant number of millennials between the ages of 10 and 25 prefer to build friendships virtually than face-to-face interactions. Moreover, many teenagers depend more on their virtual friends whom they never met. Contrary to the belief that early social interactions in a non-home setup make the kids confident and more prepared for the real world, many shy-natured kids seem to develop a sense of shakiness in forming social relationships, resulting in loneliness by the time they are young adults. Reflecting on George Mead’s theory of self that is made up of “I” and “Me”, most functioning homes provide the required freedom and forgivable, congenial environment for building the "I" of a toddler; however, daycare or preschools can barely match that. It seems social images created from the expectations perceived by preschoolers “Me" in a non-home setting may interfere and greatly overpower the formation of a confident "I" thus creating a crisis around the inability to form friendships face to face when they grow older. Though the pervasive nature of social media can’t be ignored, the non-parental early care and education practices adopted largely by the urban population have created a favorable platform of teen psychology on which social media popularity thrived, especially providing refuge to shy Gen-Z teenagers. This can explain why young adults today perceive social media as their preferred outlet of expression and a place to form dependable friendships, despite the risk of being cyberbullied.Keywords: digital socialization, shyness, developmental psychology, friendship, early education
Procedia PDF Downloads 13110205 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 7910204 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 31010203 Influence of Engaging Female Caregivers in Households with Adolescent Girls on Adopting Equitable Family Eating Practices: A Quasi-Experimental Study
Authors: Hanna Gulema, Meaza Demissie, Alemayehu Worku, Tesfaye Assebe Yadeta, Yemane Berhane
Abstract:
Background: In patriarchal societies, female caregivers decide on food allocation within a family based on prevailing gender and age norms, which may lead to inequality that does not favor young adolescent girls. This study evaluated the effect of a community-based social norm intervention involving female caregivers in West Hararghe, Ethiopia. The intervention was engaging female caregivers along with other adult influential community members to deliberate and act on food allocation social norms in a process referred to as Social Analysis and Action (SAA). Method: We used data from a large quasi-experimental study to compare family eating practices between those who participated in the Social Analyses and Action intervention and those who did not. The respondents were female caregivers in households with young adolescent girls (ages 13 and 14 years). The study’s outcome was the practice of family eating together from the same dish. The difference in difference (DID) analysis with the Mixed effect logistic regression model was used to examine the effect of the intervention. Result: The results showed improved family eating practices in both groups, but the improvement was greater in the intervention group. The DID analysis showed an 11.99 percentage points greater improvement in the intervention arm than in the control arm. The mixed-effect regression produced an adjusted odds ratio of 2.08 (95% CI [1.06–4.09]) after controlling selected covariates, p-value 0.033. Conclusions: The involvement of influential adult community members significantly improves the family practice of eating together in households where adolescent girls are present in our study. The intervention has great potential to minimize household food allocation inequalities and thus improve the nutritional status of young adolescents. Further studies are necessary to evaluate the effectiveness of the intervention in different social norm contexts to formulate policy and guidelines for scale-up.Keywords: family eating practice, social norm intervention, adolescence girls, caregiver
Procedia PDF Downloads 7610202 The Impact of Facebook Brand Pages Engagement on Consumers Purchase Behaviour
Authors: Sudarsan Jayasingh, R. Venkatesh
Abstract:
Increasing number of customers gets connected to social networking sites, such as Facebook and Twitter to details about the brand communications. This survey, based on a convenience sample, aimed to find the reason for the participants to like Facebook fan pages, how often they visit and interact with the pages that they like, and how is it related with their purchase behaviour. 104 respondents completed the online survey. Overall, the study aimed at determining whether or not creating and maintaining a Facebook fan page is a beneficial tool for brands to communicate with their consumer base.Keywords: facebook brand pages, social media, consumer engagement, digital engagement, purchase behaviour
Procedia PDF Downloads 321