Search results for: scientific data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27129

Search results for: scientific data mining

21729 Whole Exome Sequencing Data Analysis of Rare Diseases: Non-Coding Variants and Copy Number Variations

Authors: S. Fahiminiya, J. Nadaf, F. Rauch, L. Jerome-Majewska, J. Majewski

Abstract:

Background: Sequencing of protein coding regions of human genome (Whole Exome Sequencing; WES), has demonstrated a great success in the identification of causal mutations for several rare genetic disorders in human. Generally, most of WES studies have focused on rare variants in coding exons and splicing-sites where missense substitutions lead to the alternation of protein product. Although focusing on this category of variants has revealed the mystery behind many inherited genetic diseases in recent years, a subset of them remained still inconclusive. Here, we present the result of our WES studies where analyzing only rare variants in coding regions was not conclusive but further investigation revealed the involvement of non-coding variants and copy number variations (CNV) in etiology of the diseases. Methods: Whole exome sequencing was performed using our standard protocols at Genome Quebec Innovation Center, Montreal, Canada. All bioinformatics analyses were done using in-house WES pipeline. Results: To date, we successfully identified several disease causing mutations within gene coding regions (e.g. SCARF2: Van den Ende-Gupta syndrome and SNAP29: 22q11.2 deletion syndrome) by using WES. In addition, we showed that variants in non-coding regions and CNV have also important value and should not be ignored and/or filtered out along the way of bioinformatics analysis on WES data. For instance, in patients with osteogenesis imperfecta type V and in patients with glucocorticoid deficiency, we identified variants in 5'UTR, resulting in the production of longer or truncating non-functional proteins. Furthermore, CNVs were identified as the main cause of the diseases in patients with metaphyseal dysplasia with maxillary hypoplasia and brachydactyly and in patients with osteogenesis imperfecta type VII. Conclusions: Our study highlights the importance of considering non-coding variants and CNVs during interpretation of WES data, as they can be the only cause of disease under investigation.

Keywords: whole exome sequencing data, non-coding variants, copy number variations, rare diseases

Procedia PDF Downloads 423
21728 Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine

Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Jo

Abstract:

Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.

Keywords: motor fault, diagnosis, FFT, vibration, noise, q-axis current, measuring environment

Procedia PDF Downloads 560
21727 Implementation of Smart Card Automatic Fare Collection Technology in Small Transit Agencies for Standards Development

Authors: Walter E. Allen, Robert D. Murray

Abstract:

Many large transit agencies have adopted RFID technology and electronic automatic fare collection (AFC) or smart card systems, but small and rural agencies remain tied to obsolete manual, cash-based fare collection. Small countries or transit agencies can benefit from the implementation of smart card AFC technology with the promise of increased passenger convenience, added passenger satisfaction and improved agency efficiency. For transit agencies, it reduces revenue loss, improves passenger flow and bus stop data. For countries, further implementation into security, distribution of social services or currency transactions can provide greater benefits. However, small countries or transit agencies cannot afford expensive proprietary smart card solutions typically offered by the major system suppliers. Deployment of Contactless Fare Media System (CFMS) Standard eliminates the proprietary solution, ultimately lowering the cost of implementation. Acumen Building Enterprise, Inc. chose the Yuma County Intergovernmental Public Transportation Authority (YCIPTA) existing proprietary YCAT smart card system to implement CFMS. The revised system enables the purchase of fare product online with prepaid debit or credit cards using the Payment Gateway Processor. Open and interoperable smart card standards for transit have been developed. During the 90-day Pilot Operation conducted, the transit agency gathered the data from the bus AcuFare 200 Card Reader, loads (copies) the data to a USB Thumb Drive and uploads the data to the Acumen Host Processing Center for consolidation of the data into the transit agency master data file. The transition from the existing proprietary smart card data format to the new CFMS smart card data format was transparent to the transit agency cardholders. It was proven that open standards and interoperability design can work and reduce both implementation and operational costs for small transit agencies or countries looking to expand smart card technology. Acumen was able to avoid the implementation of the Payment Card Industry (PCI) Data Security Standards (DSS) which is expensive to develop and costly to operate on a continuing basis. Due to the substantial additional complexities of implementation and the variety of options presented to the transit agency cardholder, Acumen chose to implement only the Directed Autoload. To improve the implementation efficiency and the results for a similar undertaking, it should be considered that some passengers lack credit cards and are averse to technology. There are more than 1,300 small and rural agencies in the United States. This grows by 10 fold when considering small countries or rural locations throughout Latin American and the world. Acumen is evaluating additional countries, sites or transit agency that can benefit from the smart card systems. Frequently, payment card systems require extensive security procedures for implementation. The Project demonstrated the ability to purchase fare value, rides and passes with credit cards on the internet at a reasonable cost without highly complex security requirements.

Keywords: automatic fare collection, near field communication, small transit agencies, smart cards

Procedia PDF Downloads 287
21726 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials

Authors: Marc Sader, Michiel Stock, Bernard De Baets

Abstract:

Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.

Keywords: adsorption, predictive modeling, QSAR, random forest

Procedia PDF Downloads 233
21725 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 327
21724 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?

Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq

Abstract:

Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.

Keywords: Cox regression, neural networks, survival, cancer.

Procedia PDF Downloads 207
21723 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution

Authors: Al Omari Mohammed Ahmed

Abstract:

This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.

Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring

Procedia PDF Downloads 443
21722 Size, Shape, and Compositional Effects on the Order-Disorder Phase Transitions in Au-Cu and Pt-M (M = Fe, Co, and Ni) Nanocluster Alloys

Authors: Forrest Kaatz, Adhemar Bultheel

Abstract:

Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated worldwide by many researchers for their interesting catalytic and nanophase properties. The low-temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. These systems have similar bulk phase diagrams with the L12 (Au3Cu, Pt3M, AuCu3, and PtM3) structurally ordered intermetallics and the L10 structure for the AuCu and PtM intermetallics. We consider three models for low temperature ordering in the phase diagrams of Au–Cu and Pt–M nanocluster alloys. These models are valid for sizes ~ 5 nm and approach bulk values for sizes ~ 20 nm. We study the phase transition in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. Experimentally, it is extremely challenging to determine thermodynamic data on nano–sized alloys. Reasonable agreement is found between these models and recent experimental data on nanometer clusters in the Au–Cu and Pt–M nanophase systems. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Some available evidence indicates that ordered intermetallic nanoclusters have better catalytic properties than disordered ones. We conclude with a discussion of physical mechanisms whereby ordering could improve the catalytic properties of nanocluster alloys.

Keywords: catalytic reactions, gold nanoalloys, phase transitions, platinum nanoalloys

Procedia PDF Downloads 180
21721 National Identity in Connecting the Community through Mural Art for Petronas Dagangan Berhad

Authors: Nadiah Mohamad, Wan Samiati Andriana Wan Mohd Daud, M. Suhaimi Tohid, Mohd Fazli Othman, Mohamad Rizal Salleh

Abstract:

This is a collaborative project of the mural art between The Department of Fine Art from Universiti Teknologi MARA (UiTM) and Petronas Dagangan Berhad (PDB), the most leading retailer and marketer of downstream oil and gas products in Malaysia. Five different states in the Peninsular of Malaysia that has been identified in showcasing the National Identity of Malaysia at each Petronas gas station, this also includes the Air Keroh in Melaka, Pasir Pekan in Kelantan, Pontian in Johor, Simpang Pulai in Perak, and also Wakaf Bharu in Terengganu. This project is to analyze the element of national identity that has been demonstrated at the Petronas's Mural. The ultimate aim of the mural is to let the community and local people to be aware about what Malaysians are consists and proud of and how everyone is able to connect with the idea through visual art. The method that is being explained in this research is by using visual data through research and also self-experience in collecting the visual data in identifying what images is considered as the national identity and idea development and visual analysis is being transferred based upon the visual data collection. In this stage, elements and principles of design will be the key in highlighting what is necessary for a work of art. In conclusion, visual image of the National Identity of Malaysia is able to connect to the audience from local and also to the people from outside the country to learn and understand the beauty and diversity of Malaysia as a unique country with art through the wall of five Petronas gas station.

Keywords: community, fine art, mural art, national identity

Procedia PDF Downloads 212
21720 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 134
21719 Developing Family-Based Eco-Citizenship with Social Media: A Mixed Methods Collective Case Study of Families Looking to Adopt Ecologically Responsible Actions Using Facebook

Authors: Michel T. Leger, Shawn Martin

Abstract:

Leading an ecologically responsible lifestyle represents a difficult challenge. Though research in environmental education does point to an increase in the intention to act more responsibly towards the environment, this intent does not seem to translate to concrete ecological action. This mixed methods collective case study explores the adoption of ecological actions in the family, a context of socio-ecological transformation rarely examined in the scientific literature. More specifically, it takes into account the popular use of social media today to explore the potential role social media, namely Facebook, in promoting environmental action. In other words, for families who are intent on adopting an ecologically friendly lifestyle, could the use of Facebook positively affect the way family members relate to the environment and bring about real change in their daily household actions? To answer this question, twenty-one families living in an urban setting were recruited and then divided them into two distinct groups. The first group of families attempted to lower their household electrical bill as part of a private Facebook group, while the other aimed to do the same, but without the directed use of social media. For both groups, we recorded the amount of kilowatt-hours used during the project as well as the amount used for the same months the previous year, adjusting for temperature variations. Exit interviews were also conducted with each family in order to try to understand the processes of eco-citizenship development in the context of family. Results seem to suggest that both virtual social networks and one-on-one support can help to increase environmental awareness in participating family. Interestingly, families from the Facebook group seemed to demonstrate a higher degree of environmental engagement, and younger family members in this group were more active in the processes of collective behavioral change.

Keywords: environmental education, family-based eco-citizenship, social media, case study

Procedia PDF Downloads 154
21718 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches

Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg

Abstract:

In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.

Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence

Procedia PDF Downloads 217
21717 Community Perception and Knowledge on Oral Cancer Screening Methods in Kuwait

Authors: Lavanya Dharmendran, Shenuka Singh, Sona Baburathanam

Abstract:

The aim of the study is to understand the level of awareness in a community of a specific region of Kuwait regarding oral cancer and its screening methods so as to enhance the uptake of oral cancer screening methods. This is a cross-sectional study comprising 100 adult participants residing in the governate of Farwaniya, Kuwait. Participants of above 18 years of both genders will be selected using convenience sampling. Data collection includes the administration of a self-administered questionnaire. The questionnaire comprises three sections, each section assessing the knowledge, attitudes and practices of the participants’ opinions about oral cancer and screening methods. Data will be analyzed using Humphris Oral Cancer Knowledge Scale. Inferential statistics will be done using Chi-Square or Fisher’s exact test for categorical data. A level of p<.05 will be established as being significant. All ethical considerations, such as respect for personal confidentiality and informed consent, will be applied in this study. This study revealed that although respondents were aware of the term oral cancer, more than half of the study participants were unaware of the symptoms associated with this condition. Smoking and alcohol were identified as risk factors for oral cancer, but the majority of participants did not identify the Human Papilloma Virus (HPV) as an added risk factor. This suggests a greater need for dental practitioners to include educational strategies in routine dental visits to ensure greater awareness of oral cancer.

Keywords: oral cancer, oral screening, oral public health, oral health

Procedia PDF Downloads 76
21716 Speaking of Genocide: Lithuanian 'Occupation’ Museums and Foucault's Discursive Formation

Authors: Craig Wight

Abstract:

Tourism visits to sites associated to varying degrees with death and dying have for some time inspired academic debate and research into what has come to be popularly described as ‘dark tourism’. Research to date has been based on the mobilisation of various social scientific methodologies to understand issues such as the motivations of visitors to consume dark tourism experiences and visitor interpretations of the various narratives that are part of the consumption experience. This thesis offers an alternative conceptual perspective for carrying out research into dark tourism by presenting a discourse analysis of Lithuanian occupation-themed museums using Foucault’s concept of ‘discursive formation’ from ‘Archaeology of Knowledge’. A constructivist methodology is therefore applied to locate the rhetorical representations of Lithuanian and Jewish subject positions and to identify the objects of discourse that are produced in five museums that interpret a historical era defined by occupation, the persecution of people and genocide. The discourses and consequent cultural function of these museums are examined, and the key finding of the research proposes that they authorise a particular Lithuanian individualism which marginalises the Jewish subject position and its related objects of discourse into abstraction. The thesis suggests that these museums create the possibility to undermine the ontological stability of Holocaust and the Jewish-Lithuanian subject which is produced as an anomalous, ‘non-Lithuanian’ cultural reference point. As with any Foucauldian archaeological research, it cannot be offered as something that is ‘complete’ since it captures only a partial field, or snapshot of knowledge, bound to a specific temporal and spatial context. The discourses that have been identified are perhaps part of a more elusive ‘positivity’ which is salient across a number of cultural and political surfaces which are ripe for a similar analytical approach in future. It is hoped that the study will motivate others to follow a discourse-analytical approach to research in order to further understand the critical role of museums in public culture when it comes to shaping knowledge about ‘inconvenient’ pasts.

Keywords: genocide heritage, foucault, Lithuanian tourism, discursive formatoin

Procedia PDF Downloads 237
21715 Poverty Dynamics in Thailand: Evidence from Household Panel Data

Authors: Nattabhorn Leamcharaskul

Abstract:

This study aims to examine determining factors of the dynamics of poverty in Thailand by using panel data of 3,567 households in 2007-2017. Four techniques of estimation are employed to analyze the situation of poverty across households and time periods: the multinomial logit model, the sequential logit model, the quantile regression model, and the difference in difference model. Households are categorized based on their experiences into 5 groups, namely chronically poor, falling into poverty, re-entering into poverty, exiting from poverty and never poor households. Estimation results emphasize the effects of demographic and socioeconomic factors as well as unexpected events on the economic status of a household. It is found that remittances have positive impact on household’s economic status in that they are likely to lower the probability of falling into poverty or trapping in poverty while they tend to increase the probability of exiting from poverty. In addition, not only receiving a secondary source of household income can raise the probability of being a never poor household, but it also significantly increases household income per capita of the chronically poor and falling into poverty households. Public work programs are recommended as an important tool to relieve household financial burden and uncertainty and thus consequently increase a chance for households to escape from poverty.

Keywords: difference in difference, dynamic, multinomial logit model, panel data, poverty, quantile regression, remittance, sequential logit model, Thailand, transfer

Procedia PDF Downloads 119
21714 Factors Affecting Employee’s Effectiveness at Job in Banking Sectors of Pakistan

Authors: Sajid Aman

Abstract:

Jobs in the banking sector in Pakistan are perceived as very tough, due to which employee turnover is very high. However, the managerial role is very important in influencing employees’ attitudes toward their turnout. This paper explores the manager’s role in influencing employees’ effectiveness on the job. The paper adopted a pragmatic approach by combining both qualitative and quantitative data. The study employed an exploratory sequential strategy under a mixed-method research design. Qualitative data was analyzed using thematic analysis. Five major themes, such as the manager’s attitude towards employees, his leadership style, listening to employee’s personal problems, provision of personal loans without interest and future career prospects, emerged as key factors increasing employee’s effectiveness in the banking sector. The quantitative data revealed that a manager’s attitude, leadership style, availability to listen to employees’ personal problems, and future career prospects and listening to employee’s personal problems are strongly associated with employees’ effectiveness at the job. However, personal loan without interest was noted as having no significant association with employee’s effectiveness at the job. The study concludes manager’s role is more important in the effectiveness of the employees at their job in the banking sector. It is suggested that managers should have a positive attitude towards employees and give time to listening to employee’s problems, even personal ones.

Keywords: banking sector, employee’s effectiveness, manager’s role, leadership style

Procedia PDF Downloads 37
21713 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)

Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri

Abstract:

The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.

Keywords: sig, geothermal, potenteil, temperature

Procedia PDF Downloads 467
21712 An Overview of the Wind and Wave Climate in the Romanian Nearshore

Authors: Liliana Rusu

Abstract:

The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.

Keywords: numerical simulations, Romanian nearshore, waves, wind

Procedia PDF Downloads 346
21711 Impact of Geomagnetic Storm on Ionosphere

Authors: Affan Ahmed

Abstract:

This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.

Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling

Procedia PDF Downloads 15
21710 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT

Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh

Abstract:

Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.

Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module

Procedia PDF Downloads 199
21709 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 218
21708 The Studies of Client Requirements in Home Stay: A Case Study of Thailand

Authors: Kanamon Suwantada

Abstract:

The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.

Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy

Procedia PDF Downloads 313
21707 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation

Authors: Alaa Hamed Salama, Rehab Nabil Shamma

Abstract:

Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.

Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization

Procedia PDF Downloads 452
21706 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 510
21705 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 263
21704 Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor

Authors: Santimoy Khilari, Debabrata Pradhan

Abstract:

Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.

Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole

Procedia PDF Downloads 343
21703 Understanding and Addressing the Tuberculosis Notification Gap in Nepal

Authors: Lok Raj Joshi, Naveen Prakash Shah, Sharad Kumar Sharma, I. Ratna Bhattarai, Rajendra Basnet, Deepak Dahal, Bahagwan Maharjan, Seraphine Kaminsa

Abstract:

Context: Tuberculosis (TB) is a significant health issue in Nepal, a country with a high burden of the disease. Despite efforts to control TB, there is still a gap in the notification of TB cases, which hinders effective control and treatment. This paper aims to address this notification gap and proposes strategies to improve TB control in Nepal. Research Aim: The aim of this research is to understand and address the tuberculosis notification gap in Nepal. The focus is on enhancing the healthcare system, involving the private sector and communities, raising awareness, and addressing social determinants to achieve sustainable TB control. Methodology: The research methodology involved a review of existing epidemiological data and research studies related to TB in Nepal. Additionally, consultation with an expert group from the TB control program in Nepal provided insights into the current state of TB control and challenges in addressing the notification gap. Findings: The findings reveal that only 55% of TB cases were reported in 2022, indicating a significant notification gap. Of the reported cases, only 32% and 19% were referred by the private sector and community, respectively. Furthermore, 20% of diagnosed cases were not treated in the initial phase. The estimated number of cases of multidrug-resistant TB (MDR TB) was 2,800, suggesting a low diagnosis rate. Among the diagnosed MDR TB cases, only 60% were receiving treatment. Additionally, it was observed that 20% of diagnosed MDR TB cases were from India and not enrolling in TB treatment in Nepal, indicating a high rate of defaulters. Theoretical Importance: The study highlights the importance of adopting a holistic strategy to address the notification gap in TB cases in Nepal. It emphasizes the need to enhance healthcare infrastructure, raise awareness, involve the private sector and local communities, establish effective methods to trace initial defaulters, implement TB interventions in border regions, and mitigate the social stigma associated with the disease. Data Collection and Analysis Procedures: Data for this study was collected through a review of existing epidemiological data and research studies. The data were then analyzed to identify patterns, trends, and gaps in TB case notification in Nepal.

Keywords: TB, tuberculosis, private sector, community, migrants, nepal

Procedia PDF Downloads 104
21702 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making

Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab

Abstract:

Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.

Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning

Procedia PDF Downloads 356
21701 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources

Authors: Amin Khamoosh, Hamed Faramarzifar

Abstract:

In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.

Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques

Procedia PDF Downloads 59
21700 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems

Authors: Baba Mbaye

Abstract:

In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.

Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering

Procedia PDF Downloads 222