Search results for: plant N derived from N fixation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6037

Search results for: plant N derived from N fixation

637 Removal of Heavy Metals from Municipal Wastewater Using Constructed Rhizofiltration System

Authors: Christine A. Odinga, G. Sanjay, M. Mathew, S. Gupta, F. M. Swalaha, F. A. O. Otieno, F. Bux

Abstract:

Wastewater discharged from municipal treatment plants contain an amalgamation of trace metals. The presence of metal pollutants in wastewater poses a huge challenge to the choice and applications of the preferred treatment method. Conventional treatment methods are inefficient in the removal of trace metals due to their design approach. This study evaluated the treatment performance of a constructed rhizofiltration system in the removal of heavy metals from municipal wastewater. The study was conducted at an eThekwni municipal wastewater treatment plant in Kingsburgh - Durban in the province of KwaZulu-Natal. The construction details of the pilot-scale rhizofiltration unit included three different layers of substrate consisting of medium stones, coarse gravel and fine sand. The system had one section planted with Phragmites australis L. and Kyllinga nemoralis L. while the other section was unplanted and acted as the control. Influent, effluent and sediment from the system were sampled and assessed for the presence of and removal of selected trace heavy metals using standard methods. Efficiency of metals removal was established by gauging the transfer of metals into leaves, roots and stem of the plants by calculations based on standard statistical packages. The Langmuir model was used to assess the heavy metal adsorption mechanisms of the plants. Heavy metals were accumulated in the entire rhizofiltration system at varying percentages of 96.69% on planted and 48.98% on control side for cadmium. Chromium was 81% and 24%, Copper was 23.4% and 1.1%, Nickel was 72% and 46.5, Lead was 63% and 31%, while Zinc was 76% and 84% on the on the water and sediment of the planted and control sides of the rhizofilter respectively. The decrease in metal adsorption efficiencies on the planted side followed the pattern of Cd>Cr>Zn>Ni>Pb>Cu and Ni>Cd>Pb>Cr>Cu>Zn on the control side. Confirmatory analysis using Electron Scanning Microscopy revealed that higher amounts of metals was deposited in the root system with values ranging from 0.015mg/kg (Cr), 0.250 (Cu), 0.030 (Pb) for P. australis, and 0.055mg/kg (Cr), 0.470mg/kg (Cu) and 0.210mg/kg,(Pb) for K. nemoralis respectively. The system was found to be efficient in removing and reducing metals from wastewater and further research is necessary to establish the immediate mechanisms that the plants display in order to achieve these reductions.

Keywords: wastewater treatment, Phragmites australis L., Kyllinga nemoralis L., heavy metals, pathogens, rhizofiltration

Procedia PDF Downloads 256
636 Consequences to Financial Reporting by Implementing Sri Lanka Financial Reporting Standard 13 on Measuring the Fair Value of Financial Instruments: Evidence from Three Sri Lankan Organizations

Authors: Nayoma Ranawaka

Abstract:

The demand for the high quality internationally comparable financial information has been increased than ever with the expansion of economic activities beyond its national boundaries. Thus, the necessity of converging accounting practices across the world is now continuously discussed with greater emphasis. The global convergence to International Financial Reporting Standards has been one of the main objectives of the International Accounting Standards Setting Board (IASB) since its establishment in 2001. Accordingly, Sri Lanka has adopted IFRSs in 2012. Among the other standards as a newly introduced standard by the IASB, IFRS 13 plays a pivotal role as it deals with the Fair Value Accounting (FVA). Therefore, it is valuable to obtain knowledge about the consequences of implementing IFRS 13 in Sri Lanka and compare results across nations. According to the IFRS Jurisdictional provision of Sri Lanka, Institute of Chartered Accountants of Sri Lanka has taken official steps to adopt IFRS 13 by introducing SLFRS 13 with de jure convergence. Then this study was identified the de facto convergence of the SLFRS 13 in measuring the Fair Value of Financial Instruments in the Sri Lankan context. Accordingly, the objective of this study is to explore the consequences to financial reporting by implementing SLFRS 13 on measuring the financial instruments. In order to achieve the objective of the study expert interview and in-depth interviews with the interviewees from the selected three case studies and their independent auditor were carried out using customized three different interview guides. These three cases were selected from three different industries; Banking, Manufacturing and Finance. NVivo version 10 was used to analyze the data collected through in-depth interviews. Then the content analysis was carried out and conclusions were derived based on the findings. Contribution to the knowledge by this study can be identified in different aspects. Findings of this study facilitate accounting practitioners to get an overall picture of application of fair value standard in measuring the financial instruments and to identify the challenges and barriers to the adoption process. Further, assist auditors in carrying out their audit procedures to check the level of compliance to the fair value standard in measuring the financial instruments. Moreover, this would enable foreign investors in assessing the reliability of the financial statements of their target investments as a result of SLFRS 13 in measuring the FVs of the FIs. The findings of the study could be used to open new avenues of thinking for policy formulators to provide the necessary infrastructure to eliminate disparities exists among different regulatory bodies to facilitate full convergence and thereby growth of the economy. Further, this provides insights to the dynamics of FVA implementation that are also relevant for other developing countries.

Keywords: convergence, fair value, financial instruments, IFRS 13

Procedia PDF Downloads 122
635 Evaluation of the Phenolic Composition of Curcumin from Different Turmeric (Curcuma longa L.) Extracts: A Comprehensive Study Based on Chemical Turmeric Extract, Turmeric Tea and Fresh Turmeric Juice

Authors: Beyza Sukran Isik, Gokce Altin, Ipek Yalcinkaya, Evren Demircan, Asli Can Karaca, Beraat Ozcelik

Abstract:

Turmeric (Curcuma longa L.), is used as a food additive (spice), preservative and coloring agent in Asian countries, including China and South East Asia. It is also considered as a medicinal plant. Traditional Indian medicine evaluates turmeric powder for the treatment of biliary disorders, rheumatism, and sinusitis. It has rich polyphenol content. Turmeric has yellow color mainly because of the presence of three major pigments; curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione), demethoxy-curcumin and bis demothoxy-curcumin. These curcuminoids are recognized to have high antioxidant activities. Curcumin is the major constituent of Curcuma species. Method: To prepare turmeric tea, 0.5 gram of turmeric powder was brewed with 250 ml of water at 90°C, 10 minutes. 500 grams of fresh turmeric washed and shelled prior to squeezing. Both turmeric tea and turmeric juice pass through 45 lm filters and stored at -20°C in the dark for further analyses. Curcumin was extracted from 20 grams of turmeric powder by 70 ml ethanol solution (95:5 ethanol/water v/v) in a water bath at 80°C, 6 hours. Extraction was contributed for 2 hours at the end of 6 hours by addition of 30 ml ethanol. Ethanol was removed by rotary evaporator. Remained extract stored at -20°C in the dark. Total phenolic content and phenolic profile were determined by spectrophotometric analysis and ultra-fast liquid chromatography (UFLC), respectively. Results: The total phenolic content of ethanolic extract of turmeric, turmeric juice, and turmeric tea were determined 50.72, 31.76 and 29.68 ppt, respectively. The ethanolic extract of turmeric, turmeric juice, and turmeric tea have been injected into UFLC and analyzed for curcumin contents. The curcumin content in ethanolic extract of turmeric, turmeric juice, and turmeric tea were 4067.4, 156.7 ppm and 1.1 ppm, respectively. Significance: Turmeric is known as a good source of curcumin. According to the results, it can be stated that its tea is not sufficient way for curcumin consumption. Turmeric juice can be preferred to turmeric tea for higher curcumin content. Ethanolic extract of turmeric showed the highest content of turmeric in both spectrophotometric and chromatographic analyses. Nonpolar solvents and carriers which have polar binding sites have to be considered for curcumin consumption due to its nonpolar nature.

Keywords: phenolic compounds, spectrophotometry, turmeric, UFLC

Procedia PDF Downloads 196
634 Lithium and Sodium Ion Capacitors with High Energy and Power Densities based on Carbons from Recycled Olive Pits

Authors: Jon Ajuria, Edurne Redondo, Roman Mysyk, Eider Goikolea

Abstract:

Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors entirely based on non-Faradaic charge storage. Among them, Li-ion capacitors including a negative battery-type lithium intercalation electrode and a positive capacitor-type electrode have achieved tremendous progress and have gone up to commercialization. Inexpensive electrode materials from renewable sources have recently received increased attention since cost is a persistently major criterion to make supercapacitors a more viable energy solution, with electrode materials being a major contributor to supercapacitor cost. Additionally, Na-ion battery chemistries are currently under development as less expensive and accessible alternative to Li-ion based battery electrodes. In this work, we are presenting both lithium and sodium ion capacitor (LIC & NIC) entirely based on electrodes prepared from carbon materials derived from recycled olive pits. Yearly, around 1 million ton of olive pit waste is generated worldwide, of which a third originates in the Spanish olive oil industry. On the one hand, olive pits were pyrolized at different temperatures to obtain a low specific surface area semigraphitic hard carbon to be used as the Li/Na ion intercalation (battery-type) negative electrode. The best hard carbon delivers a total capacity of 270mAh/g vs Na/Na+ in 1M NaPF6 and 350mAh/g vs Li/Li+ in 1M LiPF6. On the other hand, the same hard carbon is chemically activated with KOH to obtain high specific surface area -about 2000 m2g-1- activated carbon that is further used as the ion-adsorption (capacitor-type) positive electrode. In a voltage window of 1.5-4.2V, activated carbon delivers a specific capacity of 80 mAh/g vs. Na/Na+ and 95 mAh/g vs. Li/Li+ at 0.1A /g. Both electrodes were assembled in the same hybrid cell to build a LIC/NIC. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5M Et4NBF4 electrolyte was also built. Both LIC & NIC demonstrates considerable improvements in the energy density over its EDLC counterpart, delivering a maximum energy density of 110Wh/Kg at a power density of 30W/kg AM and a maximum power density of 6200W/Kg at an energy density of 27 Wh/Kg in the case of NIC and a maximum energy density of 110Wh/Kg at a power density of 30W/kg and a maximum power density of 18000W/Kg at an energy density of 22 Wh/Kg in the case of LIC. In conclusion, our work demonstrates that the same biomass waste can be adapted to offer a hybrid capacitor/battery storage device overcoming the limited energy density of corresponding double layer capacitors.

Keywords: hybrid supercapacitor, Na-Ion capacitor, supercapacitor, Li-Ion capacitor, EDLC

Procedia PDF Downloads 196
633 Flow Sheet Development and Simulation of a Bio-refinery Annexed to Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation bio-refinery is defined as a process to use waste fibrous for the production of bio-fuel, chemicals animal food, and electricity. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide and many challenges in front of bio-ethanol production were solved. Bio-refinery annexed to the existing sugar mill for production of bio-ethanol and electricity is proposed to sugar industry and is addressed in this study. Since flow-sheet development is the key element of the bio-ethanol process, in this work, a bio-refinery (bio-ethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behavior of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bio-ethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive bio-refinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bio-ethanol purification was simulated by two distillation columns with side stream and fuel grade bio-ethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates 256.6 kg bio ethanol per ton of feedstock and 31 MW surplus power were attained from bio-refinery while the process consumes 3.5, 3.38, and 0.164 (GJ/ton per ton of feedstock) hot utility, cold utility and electricity respectively. Developed simulation is a threshold of variety analyses and developments for further studies.

Keywords: bio-refinery, bagasse, tops, trash, bio-ethanol, electricity

Procedia PDF Downloads 527
632 Aesthetics and Semiotics in Theatre Performance

Authors: Păcurar Diana Istina

Abstract:

Structured in three chapters, the article attempts an X-ray of the theatrical aesthetics, correctly understood through the emotions generated in the intimate structure of the spectator that precedes the triggering of the viewer’s perception and not through the superposition, unfortunately common, of the notion of aesthetics with the style in which a theater show is built. The first chapter contains a brief history of the appearance of the word aesthetic, the formulation of definitions for this new term, as well as its connections with the notions of semiotics, in particular with the perception of the message transmitted. Starting with Aristotle and Plato, and reaching Magritte, their interventions should not be interpreted in the sense that the two scientific concepts can merge into one discipline. The perception that is the object of everyone’s analysis, the understanding of meaning, the decoding of the messages sent, and the triggering of feelings that culminate in pleasure, shaping the aesthetic vision, are some elements that keep semiotics and aesthetics distinct, even though they share many methods of analysis. The compositional processes of aesthetic representation and symbolic formation are analyzed in the second part of the paper from perspectives that include or do not include historical, cultural, social, and political processes. Aesthetics and the organization of its symbolic process are treated, taking into account expressive activity. The last part of the article explores the notion of aesthetics in applied theater, more specifically in the theater show. Taking the postmodern approach that aesthetics applies to the creation of an artifact and the reception of that artifact, the intervention of these elements in the theatrical system must be emphasized –that is, the analysis of the problems arising in the stages of the creation, presentation, and reception, by the public, of the theater performance. The aesthetic process is triggered involuntarily, simultaneously, or before the moment when people perceive the meaning of the messages transmitted by the work of art. The finding of this fact makes the mental process of aesthetics similar or related to that of semiotics. No matter how perceived individually, beauty, the mechanism of production can be reduced to two. The first step presents similarities to Peirce’s model, but the process between signified and signified additionally stimulates the related memory of the evaluation of beauty, adding to the meanings related to the signification itself. Then, the second step, a process of comparison, is followed, in which one examines whether the object being looked at matches the accumulated memory of beauty. Therefore, even though aesthetics is derived from the conceptual part, the judgment of beauty and, more than that, moral judgment come to be so important to the social activities of human beings that it evolves as a visible process independent of other conceptual contents.

Keywords: aesthetics, semiotics, symbolic composition, subjective joints, signifying, signified

Procedia PDF Downloads 100
631 Nanowire Substrate to Control Differentiation of Mesenchymal Stem Cells

Authors: Ainur Sharip, Jose E. Perez, Nouf Alsharif, Aldo I. M. Bandeas, Enzo D. Fabrizio, Timothy Ravasi, Jasmeen S. Merzaban, Jürgen Kosel

Abstract:

Bone marrow-derived human mesenchymal stem cells (MSCs) are attractive candidates for tissue engineering and regenerative medicine, due to their ability to differentiate into osteoblasts, chondrocytes or adipocytes. Differentiation is influenced by biochemical and biophysical stimuli provided by the microenvironment of the cell. Thus, altering the mechanical characteristics of a cell culture scaffold can directly influence a cell’s microenvironment and lead to stem cell differentiation. Mesenchymal stem cells were cultured on densely packed, vertically aligned magnetic iron nanowires (NWs) and the effect of NWs on the cell cytoskeleton rearrangement and differentiation were studied. An electrochemical deposition method was employed to fabricate NWs into nanoporous alumina templates, followed by a partial release to reveal the NW array. This created a cell growth substrate with free-standing NWs. The Fe NWs possessed a length of 2-3 µm, with each NW having a diameter of 33 nm on average. Mechanical stimuli generated by the physical movement of these iron NWs, in response to a magnetic field, can stimulate osteogenic differentiation. Induction of osteogenesis was estimated using an osteogenic marker, osteopontin, and a reduction of stem cell markers, CD73 and CD105. MSCs were grown on the NWs, and fluorescent microscopy was employed to monitor the expression of markers. A magnetic field with an intensity of 250 mT and a frequency of 0.1 Hz was applied for 12 hours/day over a period of one week and two weeks. The magnetically activated substrate enhanced the osteogenic differentiation of the MSCs compared to the culture conditions without magnetic field. Quantification of the osteopontin signal revealed approximately a seven-fold increase in the expression of this protein after two weeks of culture. Immunostaining staining against CD73 and CD105 revealed the expression of antibodies at the earlier time point (two days) and a considerable reduction after one-week exposure to a magnetic field. Overall, these results demonstrate the application of a magnetic NW substrate in stimulating the osteogenic differentiation of MSCs. This method significantly decreases the time needed to induce osteogenic differentiation compared to commercial biochemical methods, such as osteogenic differentiation kits, that usually require more than two weeks. Contact-free stimulation of MSC differentiation using a magnetic field has potential uses in tissue engineering, regenerative medicine, and bone formation therapies.

Keywords: cell substrate, magnetic nanowire, mesenchymal stem cell, stem cell differentiation

Procedia PDF Downloads 189
630 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 54
629 Dynamics of Hepatitis B Infection Prevention Practices among Pregnant Women Attending Antenatal Care in Central Uganda Using the Constructs of Information-Motivation-Behavioral Skills Model: A Case of Lubaga Hospital Kampala

Authors: Ismail Bamidele Afolabi, Abdulmujeeb Babatunde Aremu, Lawal Abdurraheem Maidoki, Nnodimele Onuigbo Atulomah

Abstract:

Background: Hepatitis B virus infection remains a significant global public health challenge with infectivity as well as the potential for transmission more than 50 to 100 times that of HIV. Annually, global HBV-related mortality is linked primarily to cirrhosis and liver carcinoma. The ever-increasing endemicity of HBV among children under-5-years, owing to vertical transmission and its lingering chronicity in developing countries, will hamper the global efforts concertedly endorsed towards eliminating viral hepatitis as a global public health threat by 2030. Objective: This study assessed information motivation behavioral skills model constructs as predictors of HBV infection prevention practices among consenting expectant mothers attending antenatal care in Central Uganda as a focal point of intervention towards breaking materno-foetal transmission of HBV. Methods: A cross-sectional study with a quantitative data collection approach based on the constructs of the IMB model was used to capture data on the study variables among 385 randomly selected pregnant women between September and October 2020. Data derived from the quantitative instrument were transformed into weighted aggregate scores using SPSS version 26. ANOVA and regression analysis were done to ascertain the study hypotheses with a significance level set as (p ≤ 0.05). Results: Relatively 60% of the respondents were aged between 18 and 28. Expectant mothers with secondary education (42.3%) were predominant. Furthermore, an average but inadequate knowledge (X ̅=5.97±6.61; B=0.57; p<.001), incorrect perception (X ̅=17.10±18.31; B=0.97; p=.014), and good behavioral skills (X ̅=12.39±13.37; B=0.56; p<.001) for adopting prevention practices all statistically predicted the unsatisfactory level of prevention practices (X ̅=15.03±16.20) among the study respondents as measured on rating scales of 12, 33, 21 and 30 respectively. Conclusion: Evidence from this study corroborates the imperativeness of IMB constructs in reducing the burden of HBV infection in developing countries. Therefore, the inadequate HBV knowledge and misperception among obstetric populations necessitate personalized health education during antenatal visits and subsequent health campaigns in order to inform better prevention practices and, in turn, reduce the lingering chronicity of HBV infection in developing countries.

Keywords: behavioral skills, HBV infection, knowledge, perception, pregnant women, prevention practices

Procedia PDF Downloads 85
628 Screening of Wheat Wild Relatives as a Gene Pool for Improved Photosynthesis in Wheat Breeding

Authors: Amanda J. Burridge, Keith J. Edwards, Paul A. Wilkinson, Tom Batstone, Erik H. Murchie, Lorna McAusland, Ana Elizabete Carmo-Silva, Ivan Jauregui, Tracy Lawson, Silvere R. M. Vialet-Chabrand

Abstract:

The rate of genetic progress in wheat production must be improved to meet global food security targets. However, past selection for domestication traits has reduced the genetic variation in modern wheat cultivars, a fact that could severely limit the future rate of genetic gain. The genetic variation in agronomically important traits for the wild relatives and progenitors of wheat is far greater than that of the current domesticated cultivars, but transferring these traits into modern cultivars is not straightforward. Between the elite cultivars of wheat, photosynthetic capacity is a key trait for which there is limited variation. Early screening of wheat wild relative and progenitors has shown differences in photosynthetic capacity and efficiency not only between wild relative species but marked differences between the accessions of each species. By identifying wild relative accessions with improved photosynthetic traits and characterising the genetic variation responsible, it is possible to incorporate these traits into advanced breeding programmes by wide crossing and introgression programmes. To identify the potential variety of photosynthetic capacity and efficiency available in the secondary and tertiary genepool, a wide scale survey was carried out for over 600 accessions from 80 species including those from the genus Aegilops, Triticum, Thinopyrum, Elymus, and Secale. Genotype data were generated for each accession using a ‘Wheat Wild Relative’ Single Nucleotide Polymorphism (SNP) genotyping array composed of 35,000 SNP markers polymorphic between wild relatives and elite hexaploid wheat. This genotype data was combined with phenotypic measurements such as gas exchange (CO₂, H₂O), chlorophyll fluorescence, growth, morphology, and RuBisCO activity to identify potential breeding material with enhanced photosynthetic capacity and efficiency. The data and associated analysis tools presented here will prove useful to anyone interested in increasing the genetic diversity in hexaploid wheat or the application of complex genotyping data to plant breeding.

Keywords: wheat, wild relatives, pre-breeding, genomics, photosynthesis

Procedia PDF Downloads 212
627 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal

Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das

Abstract:

The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.

Keywords: briquetting reduction, lean grade coal, smelting reduction, TMO

Procedia PDF Downloads 314
626 Allelopathic Action of Diferents Sorghum bicolor [L.] Moench Fractions on Ipomoea grandifolia [Dammer] O'Donell

Authors: Mateus L. O. Freitas, Flávia H. de M. Libório, Letycia L. Ricardo, Patrícia da C. Zonetti, Graciene de S. Bido

Abstract:

Weeds compete with agricultural crops for resources such as light, water, and nutrients. This competition can cause significant damage to agricultural producers, and, currently, the use of agrochemicals is the most effective method for controlling these undesirable plants. Morning glory (Ipomoea grandifolia [Dammer] O'Donell) is an aggressive weed and significantly reduces agricultural productivity making harvesting difficult, especially mechanical harvesting. The biggest challenge in modern agriculture is to preserve high productivity reducing environmental damage and maintaining soil characteristics. No-till is a sustainable practice that can reduce the use of agrochemicals and environmental impacts due to the presence of plant residues in the soil, which release allelopathic compounds and reduce the incidence or alter the growth and development of crops and weeds. Sorghum (Sorghum bicolor [L.] Moench) is a forage with proven allelopathic activity, mainly for producing sorgholeone. In this context, this research aimed to evaluate the allelopathic action of sorghum fractions using hexane, dichloromethane, butanol, and ethyl acetate on the germination and initial growth of morning glory. The parameters analyzed were the percentage of germination, speed of germination, seedling length, and biomass weight (fresh and dry). The bioassays were performed in Petri dishes, kept in an incubation chamber for 7 days, at 25 °C, with a 12h photoperiod. The experimental design was completely randomized, with five replicates of each treatment. The data were evaluated by analysis of variance, and the averages between each treatment were compared using the Scott Knott test at a 5% significance level. The results indicated that the dichloromethane and ethyl acetate fractions showed bioherbicidal effects, promoting effective reductions on germination and initial growth of the morning glory. It was concluded that allelochemicals were probably extracted in these fractions. These secondary metabolites can reduce the use of agrochemicals and environmental impact, making agricultural production systems more sustainable.

Keywords: allelochemicals, secondary metabolism, sorgoleone, weeds

Procedia PDF Downloads 144
625 Physiological and Biochemical Assisted Screening of Wheat Varieties under Partial Rhizosphere Drying

Authors: Muhammad Aown Sammar Raza

Abstract:

Environmental stresses are one of the major reasons for poor crop yield across the globe. Among the various environmental stresses, drought stress is the most damaging one, especially in arid and semi-arid regions. Wheat is the major staple food of many countries of the world, which is badly affected by drought stress. In order to fulfill the dietary needs of increasing population with depleting water resources there is a need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying. Keeping in view these conditions, a wire house experiment was conducted at agronomic research area of University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat varieties for partial root zone drying (PRD). Five approved local wheat varieties (V1= Galaxy-2013, V2= Punjab-2011, V3 = Faisalabad-2008, V4 = Lasani-2008 and V5 = V.8200) and two irrigation levels (I1= control irrigation and I2 = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties, Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I1) except leaf water potential, osmotic potential, total sugars and proline contents. However, enzyme activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 is the most compatible and V.8200 is the most susceptible variety for PRD, respectively and more quality traits and enzymatic activities were recorded under PRD irrigation as compared to control treatment.

Keywords: antioxidant enzymes activities, osmolytes concentration, partial root zone drying, photosynthetic rate, water relations, wheat

Procedia PDF Downloads 238
624 Antifungal Potential of Higher Basidiomycetes Mushrooms

Authors: Tamar Khardziani, Violeta Berikashvili, Mariam Rusitashvili, Eva Kachlishvili, Vladimir Elisashvili, Mikheil Asatiani

Abstract:

Last years, the search for natural sources of novel and effective antifungal substances became a scientific and technological challenge. In the present research, thirty basidiomycetes isolated from various ecological niches of Georgia and belonging to different taxonomic groups were screened for their antifungal activities against pathogenic fungi such as Aspergillus, Fusarium, and Guignardia bidwellii. Among mushroom tested, several potential producers of antifungal substances have been revealed, such as Schizophyllum commune, Lentinula edodes, Ganoderma abietinum, Fomes fomentarius, Hericium erinaceus, and Trametes versicolor. For mushroom cultivation and expression of antifungal potential, submerged and solid-state fermentations of different plant raw materials were performed and various approaches and strategies have been exploited. Sch. commune appeared as a most promising producer of antifungal compounds. It was established that among different agro-industrial wastes, the presence of mandarin juice production waste in a nutrient medium, causing the significant increase of antifungal activity Sch. commune (growth inhibition: Aspergillus – 59 %, Fusarium – 55 %, G. bidwellii – 78 %, after 3, 2 and 4 days of cultivation, respectively). Besides this, Sch. commune demonstrate similar antifungal activities in the presence of glucose, glycerol, maltose, mannitol, and xylose, and growth inhibition of Fusarium ranged in 41 % - 49 % during 6 days of cultivation. Inhibition of Aspergillus growth inhibition varied in 27 % - 36 %, and inhibition of G. bidwellii was in the range 49 % - 61 %, respectively. Sch. commune under solid-state fermentation of mandarin peels at 13 days of cultivation demonstrates powerful growth inhibition of pathogenic fungi (growth inhibition: Aspergillus – 50 %, Fusarium – 61 %, G. bidwellii – 68 %, after 3, 4, and 4 days of cultivation, respectively) as well as at 20 days old mushroom (growth inhibition: Aspergillus – 41 %, Fusarium – 54 %, G. bidwellii – 66 %, after 3 days of cultivation). It was established that Sch. commune was effective as a producer of antifungal compounds in submerged as well as in solid-state fermentation. Finally, performed study confirms that the higher basidiomycetes possess antifungal potential, which strongly depends on the physiological factors of growth. Acknowledgments: The work was implemented with the financial support of fundamental science project FR-19-3719 by the Shota Rustaveli National Science Foundation of Georgia.

Keywords: antifungal potential, higher basidiomycetes, pathogenic fungi, submerged and solid-state fermentation

Procedia PDF Downloads 137
623 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)

Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar

Abstract:

Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.

Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus

Procedia PDF Downloads 58
622 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler

Authors: Ruth Diego, Luis M. Romeo, Antonio Morán

Abstract:

In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.

Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas

Procedia PDF Downloads 103
621 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 140
620 Differences in Assessing Hand-Written and Typed Student Exams: A Corpus-Linguistic Study

Authors: Jutta Ransmayr

Abstract:

The digital age has long arrived at Austrian schools, so both society and educationalists demand that digital means should be integrated accordingly to day-to-day school routines. Therefore, the Austrian school-leaving exam (A-levels) can now be written either by hand or by using a computer. However, the choice of writing medium (pen and paper or computer) for written examination papers, which are considered 'high-stakes' exams, raises a number of questions that have not yet been adequately investigated and answered until recently, such as: What effects do the different conditions of text production in the written German A-levels have on the component of normative linguistic accuracy? How do the spelling skills of German A-level papers written with a pen differ from those that the students wrote on the computer? And how is the teacher's assessment related to this? Which practical desiderata for German didactics can be derived from this? In a trilateral pilot project of the Austrian Center for Digital Humanities (ACDH) of the Austrian Academy of Sciences and the University of Vienna in cooperation with the Austrian Ministry of Education and the Council for German Orthography, these questions were investigated. A representative Austrian learner corpus, consisting of around 530 German A-level papers from all over Austria (pen and computer written), was set up in order to subject it to a quantitative (corpus-linguistic and statistical) and qualitative investigation with regard to the spelling and punctuation performance of the high school graduates and the differences between pen- and computer-written papers and their assessments. Relevant studies are currently available mainly from the Anglophone world. These have shown that writing on the computer increases the motivation to write, has positive effects on the length of the text, and, in some cases, also on the quality of the text. Depending on the writing situation and other technical aids, better results in terms of spelling and punctuation could also be found in the computer-written texts as compared to the handwritten ones. Studies also point towards a tendency among teachers to rate handwritten texts better than computer-written texts. In this paper, the first comparable results from the German-speaking area are to be presented. Research results have shown that, on the one hand, there are significant differences between handwritten and computer-written work with regard to performance in orthography and punctuation. On the other hand, the corpus linguistic investigation and the subsequent statistical analysis made it clear that not only the teachers' assessments of the students’ spelling performance vary enormously but also the overall assessments of the exam papers – the factor of the production medium (pen and paper or computer) also seems to play a decisive role.

Keywords: exam paper assessment, pen and paper or computer, learner corpora, linguistics

Procedia PDF Downloads 162
619 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation

Authors: W. Meron Mebrahtu, R. Absi

Abstract:

Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.

Keywords: accuracy, eddy viscosity, sewers, velocity profile

Procedia PDF Downloads 108
618 Valorizing Traditional Greek Wheat Varieties: Use of DNA Barcoding for Species Identification and Biochemical Analysis of Their Nutritional Value

Authors: Niki Mougiou, Spyros Didos, Ioanna Bouzouka, Athina Theodorakopoulou, Michael Kornaros, Anagnostis Argiriou

Abstract:

Grains from traditional old Greek cereal varieties were evaluated and compared to commercial cultivars, like Simeto and Mexicali 81, in an effort to valorize local products and assess the nutritional benefits of ancient grains. The samples studied in this research included common wheat, durum wheat, emmer (Triticum dicoccum) and einkorn (Triticum monococcum), as well as barley, oats and rye grains. The Internal Transcribed Spacer 2 (ITS2) nuclear region was amplified and sequenced as a barcode for species identification, allowing the verification of the label of each product. After that, the total content of bound and free polyphenols and flavonoids, as well as the antioxidant activity of bound and free compounds, was measured by classic colorimetric assays using Folin- Ciocalteu, AlCl₃ and DPPH‧ (2,2-diphenyl-1-picrylhydrazyl) reagents, respectively. Moreover, the level of variation of fatty acids was determined in all samples by gas chromatography. The results showed that local old landraces of emmer and einkorn had the highest polyphenol content, 2.4 and 3.3 times higher than the average value of 5 durum wheat samples, respectively. Regarding the total flavonoid content, einkorn had 2.6-fold and emmer 2-fold higher values than common wheat. The antioxidant activity of free or bound compounds was at the same level, at about 20-30% higher in both einkorn and emmer compared to common wheat. Five main fatty acids were detected in all samples, in order of decreasing amounts: linoleic (C18:2) > palmitic (C16:0) ≈ , oleic (C18:1) > eicosenoic (C20:1, cis-11) > stearic (C18:0). Emmer and einkorn showed a higher diversity of fatty acids and a higher content of mono-unsaturated fatty acids compared to common wheat. The results of this study demonstrate the high nutritional value of old local landraces that have been put aside by more productive, yet with lower qualitative characteristics, commercial cultivars, underlining the importance of maintaining sustainable agricultural practices to ensure their continued cultivation.

Keywords: biochemical analysis, nutritional value, plant barcoding, wheat

Procedia PDF Downloads 83
617 Communication Barriers in Midwifery Students in the Field of Perinatal Palliative Care

Authors: Magdalena Hasplova, Katerina Ivanova

Abstract:

Perinatal palliative care is a relatively young and developing field that includes the care of a fetus or newborn with a life-threatening or limiting defect and his family. However, the training of midwives in perinatal palliative care is insufficient and midwives do not feel prepared for this aspect of their work. This fact can affect the barriers to communication with the mother or family of the endangered child. The main aim was to analyze the awareness of midwifery students on the issue of perinatal palliative care in the Czech Republic. Based on the analysis, draw attention to possible communication barriers that may be caused by insufficient information. The research was carried out using a qualitative method, the method of data collection was a semi-structured interview. Eleven female students took part in the research, and the respondents were selected using the Snowballing method. Some methods of grounded theory (open coding and category creation) were used to analyze the data. Based on the results of the research, questions were set in a questionnaire focused on communication barriers between mothers (family) and health care professionals in the care of newborns with life-threatening or limiting disabilities. Based on the analysis of data, categories 1 were determined. Knowledge of perinatal palliative care 2. Education 3. Practical experience 4. Readiness and concerns in the provision of perinatal palliative care 6. Supervision. The questions in the questionnaire were then derived taking into account the data obtained, and the operationalization of health literacy in the field of perinatal palliative care was performed. The analysis of the interviews revealed that the education of midwives in the Czech Republic in the issue of perinatal palliative care is not uniform. The research confirmed the insufficient knowledge and skills of midwifery students preparing to provide perinatal palliative care. Respondents reported feelings of unpreparedness in the areas of communication with a woman after perinatal loss, psychological support for a woman and her family, the care of a stillborn or dying child, or self-coping with death. The questions in the questionnaire then develop these areas. We assumed that by analyzing and interpreting the data obtained from our research, we will help to better understand the concerns and motivations of students in providing holistic perinatal palliative care. We came to the conclusion that it would be appropriate to set up a unified and comprehensive education on this issue in the Czech Republic. Healthcare professionals are in a unique position that can positively or negatively affect the intensity of perinatal loss. Already properly set up education of health professionals leads to overcoming barriers in communication between health professionals and the family, experiencing perinatal loss.

Keywords: midwife, perinatal loss, perinatal palliative care, communication, barriers, mothers, family

Procedia PDF Downloads 106
616 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations

Authors: Sanjeet Patra, Soham Roychowdhury

Abstract:

In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.

Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation

Procedia PDF Downloads 73
615 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis

Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman

Abstract:

Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.

Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness

Procedia PDF Downloads 74
614 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection

Procedia PDF Downloads 67
613 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss

Procedia PDF Downloads 146
612 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 76
611 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling

Authors: S. Agarwal, A. Rani

Abstract:

Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.

Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters

Procedia PDF Downloads 120
610 Evaluation of Radio Protective Potential of Indian Bamboo Leaves

Authors: Mansi Patel, Priti Mehta

Abstract:

Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.

Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector

Procedia PDF Downloads 141
609 A Conceptual Model of the Factors Affecting Saudi Citizens' Use of Social Media to Communicate with the Government

Authors: Reemiah Alotaibi, Muthu Ramachandran, Ah-Lian Kor, Amin Hosseinian-Far

Abstract:

In the past decade, developers of Web 2.0 technologies have shown increasing interest in the topic of e-government. There has been a rapid growth in social media technology because of its significant role in backing up some essential social needs. Its importance and power is derived from its capacity to support two-way communication. Governments are curious to get engaged in these websites, hoping to benefit from the new forms of communication and interaction offered by such technology. Greater participation by the public can be viewed as a chief indicator of effective government communication. Yet, the level of public participation in government 2.0 is not quite satisfactory. In general, it is still at the early stage in most developing countries, including Saudi Arabia. Although it is a fact that Saudi people are among the most active in using social media, the number of people who use social media to communicate with the public institutions is not high. Furthermore, most of the governmental organisations are not using social media tools to communicate with the public. They use these platforms to disseminate information. Our study focuses on the factors affecting citizens’ adoption of social media in Saudi Arabia. Our research question is: what are the factors affecting Saudi citizens’ use of social media to communicate with the government? To answer this research question, the research aims to validate the UTAUT model for examining social media tools from the citizen perspective. An amendment will be proposed to fit the adoption of social media platforms as a communication channel in government by using a developed conceptual model which integrates constructs from the UTAUT model and others external variables based on the literature review. The set of potential factors that affect these citizens' decisions to adopt social media to communicate with their government has been identified as perceived encouragement, trust and cultural influence. The connection between the above-mentioned constructs from the basis for the research hypothesis will be examined in the light of a quantitative methodology. Data collection will be performed through a survey targeting a number of Saudi citizens who are social media users. The data collected from the primary survey will later be analysed by using statistical methods. The outcomes of this research project are argued to have potential contributions to the fields of social media and e-Government adoption, both on the theoretical and practical levels. It is believed that this research project is the first of its type that attempts to identify the factors that affect citizens’ adoption of social media to communicate with the government. The importance of identifying these factors stems from the potential use of them to enhance the government’s implementation of social media and help in making more accurate decisions and strategies based on comprehending the most important factors that affect citizens’ decisions.

Keywords: social media, adoption, citizen, UTAUT model

Procedia PDF Downloads 409
608 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 226