Search results for: distribution networks
2256 Factors Affecting M-Government Deployment and Adoption
Authors: Saif Obaid Alkaabi, Nabil Ayad
Abstract:
Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.Keywords: e-government, m-government, system dependability, system security, trust
Procedia PDF Downloads 3812255 Investigating Knowledge Management in Financial Organisation: Proposing a New Model for Implementing Knowledge Management
Authors: Ziba R. Tehrani, Sanaz Moayer
Abstract:
In the age of the knowledge-based economy, knowledge management has become a key factor in sustainable competitive advantage. Knowledge management is discovering, acquiring, developing, sharing, maintaining, evaluating, and using right knowledge in right time by right person in organization; which is accomplished by creating a right link between human resources, information technology, and appropriate structure, to achieve organisational goals. Studying knowledge management financial institutes shows the knowledge management in banking system is not different from other industries but because of complexity of bank’s environment, the implementation is more difficult. The bank managers found out that implementation of knowledge management will bring many advantages to financial institutes, one of the most important of which is reduction of threat to lose subsequent information of personnel job quit. Also Special attention to internal conditions and environment of the financial institutes and avoidance from copy-making in designing the knowledge management is a critical issue. In this paper, it is tried first to define knowledge management concept and introduce existing models of knowledge management; then some of the most important models which have more similarities with other models will be reviewed. In second step according to bank requirements with focus on knowledge management approach, most major objectives of knowledge management are identified. For gathering data in this stage face to face interview is used. Thirdly these specified objectives are analysed with the response of distribution of questionnaire which is gained through managers and expert staffs of ‘Karafarin Bank’. Finally based on analysed data, some features of exiting models are selected and a new conceptual model will be proposed.Keywords: knowledge management, financial institute, knowledge management model, organisational knowledge
Procedia PDF Downloads 3602254 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems
Authors: Muhammad Safi, Abdul Manan
Abstract:
In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.Keywords: AI, avionics systems, communication, electric aircrafts, infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs
Procedia PDF Downloads 812253 Business Feasibility of Online Marketing of Food and Beverages Products in India
Authors: Dimpy Shah
Abstract:
The global economy has substantially changed in last three decades. Now almost all markets are transparent and visible for global customers. The corporates are now no more reliant on local markets for trade. The information technology revolution has changed business dynamics and marketing practices of corporate. The markets are divided into two different formats: traditional and virtual. In very short span of time, many e-commerce portals have captured global market. This strategy is well supported by global delivery system of multinational logistic companies. Now the markets are dealing with global supply chain networks, which are more demand driven and customer oriented. The corporate have realized importance of supply chain integration and marketing in this competitive environment. The Indian markets are also significantly affected with all these changes. In terms of population, India is in second place after China. In terms of demography, almost half of the population is of youth. It has been observed that the Indian youth are more inclined towards e-commerce and prefer to buy goods from web portal. Initially, this trend was observed in Indian service sector, textile and electronic goods and now further extended in other product categories. The FMCG companies have also recognized this change and started integration of their supply chain with e-commerce platform. This paper attempts to understand contemporary marketing practices of corporate in e-commerce business in Indian food and beverages segment and also tries to identify innovative marketing practices for proper execution of their strategies. The findings are mainly focused on supply chain re-integration and brand building strategies with proper utilization of social media.Keywords: FMCG (Fast Moving Consumer Goods), ISCM (Integrated supply chain management), RFID (Radio Frequency Identification), traditional and virtual formats
Procedia PDF Downloads 2752252 Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium
Authors: Huseyin Zengin, Muhammet Emre Turan, Yunus Turen, Hayrettin Ahlatci, Yavuz Sun
Abstract:
This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably.Keywords: microalloyed steels, prior austenite grains, second phase particles, grain coarsening temperature
Procedia PDF Downloads 2652251 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures
Abstract:
The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.Keywords: stirring systems, entropy, reactive system, optimization
Procedia PDF Downloads 2462250 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 932249 A Review On Traditional Agroforestry Systems In Europe Revisited: Biodiversity, Ecosystem Services, And Future Perspectives
Authors: Thuy Hang Le
Abstract:
Traditional agroforestry systems are land-use practices still widespread in tropical and subtropical countries, while in Europe have significantly decreased due to land-use intensification, land abandonment, and urbanization. Nevertheless, scientific evidence reveals that traditional agroforestry systems significantly support biodiversity and ecosystem services and may positively contribute to socioeconomic rural regional development. We worked out a review that follows the PRISMA approach and compiled comprehensive information on traditional agroforestry systems in Europe. Based on the differentiation of different land-use systems, also considering the agricultural as well as forestry components, we compiled information regarding current distribution, management (agrodiversity), biodiversity and agrobiodiversity, ecosystem and landscape services, threats, and restoration initiatives. From a total of 3,304 studies that dealt with agroforestry systems in Europe, both “modern” (e.g., buffer strip) and “traditional” (e.g., meadow orchards), we filtered out 158 studies from 35 European countries which represent the basis for in-depth investigation. We found, for example, that the traditional pastoral agroforestry system in the Mediterranean region, the so-called Dehesa, can harbor up to 300 plant species as well as 238 bird species, of which 134 are breeding birds. With regard to carbon storage, the traditional orchard agroforestry system in Germany stocks ranged between 6.5 and 9.8 Mg C ha−1, showing significantly higher values compared to an intensively used grassland with around 3.4 to 6.7 Mg C ha−1. With the remarkably high benefit for biodiversity and ecosystem services provided, the important role and multifunctionality of traditional agroforestry systems in Europe should be acknowledged and promoted.Keywords: biodiversity, ecosystem services, landscape services, traditional agroforestry systems
Procedia PDF Downloads 732248 Optimization of the Enzymatic Synthesis of the Silver Core-Shell Nanoparticles
Authors: Lela Pintarić, Iva Rezić, Ana Vrsalović Presečki
Abstract:
Considering an enormous increase of the use of metal nanoparticles with the exactly defined characteristics, the main goal of this research was to found the optimal and environmental friendly method of their synthesis. The synthesis of the inorganic core-shell nanoparticles was optimized as a model. The core-shell nanoparticles are composed of the enzyme core belted with the metal ions, oxides or salts as a shell. In this research, enzyme urease was the core catalyst and the shell nanoparticle was made of silver. Silver nanoparticles are widespread utilized and some of their common uses are: as an addition to disinfectants to ensure an aseptic environment for the patients, as a surface coating for neurosurgical shunts and venous catheters, as an addition to implants, in production of socks for diabetics and athletic clothing where they improve antibacterial characteristics, etc. Characteristics of synthesized nanoparticles directly depend on of their size, so the special care during this optimization was given to the determination of the size of the synthesized nanoparticles. For the purpose of the above mentioned optimization, sixteen experiments were generated by the Design of Experiments (DoE) method and conducted under various temperatures, with different initial concentration of the silver nitrate and constant concentration of the urease of two separate manufacturers. Synthesized nanoparticles were analyzed by the Nanoparticle Tracking Analysis (NTA) method on Malvern NanoSight NS300. Results showed that the initial concentration of the silver ions does not affect the concentration of the synthesized silver nanoparticles neither their size distribution. On the other hand, temperature of the experiments has affected both of the mentioned values.Keywords: core-shell nanoparticles, optimization, silver, urease
Procedia PDF Downloads 3132247 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 172246 Studies on Performance of an Airfoil and Its Simulation
Authors: Rajendra Roul
Abstract:
The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer
Procedia PDF Downloads 4142245 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 382244 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions
Authors: Maryam Ghoreishi, Christian Larsen
Abstract:
In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.Keywords: inventory control, pricing, Markov decision theory, advance sales system
Procedia PDF Downloads 3242243 Soil Penetration Resistance and Water Content Spatial Distribution Following Different Tillage and Crop Rotation in a Chinese Mollisol
Authors: Xuewen Chen, Aizhen Liang, Xiaoping Zhang
Abstract:
To better understand the spatial variability of soil penetration resistance (SPR) and soil water content (SWC) induced by different tillage and crop rotation in a Mollisol of Northeast China, the soil was sampled from the tillage experiment which was established in Dehui County, Jilin Province, Northeast China, in 2001. Effect of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) under corn-soybean rotation (C-S) and continuous corn (C-C) system on SPR and SWC were compared with horizontal and vertical variations. The results showed that SPR and SWC spatially varied across the ridge. SPR in the rows was higher than inter-rows, especially in topsoil (2.5-15 cm) of NT and RT plots. SPR of MP changed in the trend with the curve-shaped ridge. In contrast to MP, NT, and RT resulted in average increment of 166.3% and 152.3% at a depth of 2.5-17.5 cm in the row positions, respectively. The mean SPR in topsoil in the rows means soil compaction is not the main factor limiting plant growth and crop yield. SPR in the row of RT soil was lower than NT at a depth of 2.5-12.5 cm. The SWC in NT and RT soil was highest in the inter-rows and least in the rows or shoulders, respectively. However, the lateral variation trend of MP was opposite to NT. From the profile view of SWC, MP was greater than NT and RT in 0-20 cm of the rows. SWC in RT soil was higher than NT in the row of 0-20 cm. Crop rotation did not have a marked impact on SPR and SWC. In addition to the tillage practices, the factor which affects SPR greatly was depth but not position. These two factors have significant effects on SWC. These results indicated that the adoption of RT was a more suitable conservation tillage practices than NT in the black soil of Northeast China.Keywords: row, soil penetration resistance, spatial variability, tillage practice
Procedia PDF Downloads 1342242 Simulation-Based Parametric Study for the Hybrid Superplastic Forming of AZ31
Authors: Fatima Ghassan Al-Abtah, Naser Al-Huniti, Elsadig Mahdi
Abstract:
As the lightest constructional metal on earth, magnesium alloys offer excellent potential for weight reduction in the transportation industry, and it was observed that some magnesium alloys exhibit superior ductility and superplastic behavior at high temperatures. The main limitation of the superplastic forming (SPF) includes the low production rate since it needs a long forming time for each part. Through this study, an SPF process that starts with a mechanical pre-forming stage is developed to promote formability and reduce forming time. A two-dimensional finite element model is used to simulate the process. The forming process consists of two steps. At the pre-forming step (deep drawing), the sheet is drawn into the die to a preselected level, using a mechanical punch, and at the second step (SPF) a pressurized gas is applied at a controlled rate. It is shown that a significant reduction in forming time and improved final thickness uniformity can be achieved when the hybrid forming technique is used, where the process achieved a fully formed part at 400°C. Investigation for the impact of different forming process parameters achieved by comparing forming time and the distribution of final thickness that were obtained from the simulation analysis. Maximum thinning decreased from over 67% to less than 55% and forming time significantly decreased by more than 6 minutes, and the required gas pressure profile was predicted for optimum forming process parameters based on the 0.001/sec target constant strain rate within the sheet.Keywords: magnesium, plasticity, superplastic forming, finite element analysis
Procedia PDF Downloads 1562241 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine
Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali
Abstract:
Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.Keywords: droplet collision, coalescence, low speed, diesel fuel
Procedia PDF Downloads 2362240 The Application of Sequence Stratigraphy to the Sajau (Pliocene) Coal Distribution in Berau Basin, Northeast Kalimantan, Indonesia
Authors: Ahmad Helman Hamdani, Diana Putri Hamdiana
Abstract:
The Sajau coal measures of Berau Basin, northeastern Kalimantan were deposited within a range of facies associations spanning a spectrum of settings from fluvial to marine. The transitional to terrestrial coal measures are dominated by siliciclastics, but they also contain three laterally extensive marine bands (mudstone). These bands act as marker horizons that enable correlation between fully marine and terrestrial facies. Examination of this range of facies and their sedimentology has enabled the development of a high-resolution sequence stratigraphic framework. Set against the established backdrop of third-order Sajau transgression, nine fourth-order sequences are recognized. Results show that, in the composite sequences, peat accumulation predominantly correlates in transitional areas with early transgressive sequence sets (TSS) and highstand sequence set (HSS), while in more landward areas it correlates with the middle TSS to late highstand sequence sets (HSS). Differences in peat accumulation regimes within the sequence stratigraphic framework are attributed to variations in subsidence and background siliciclastic input rates in different depositional settings, with these combining to produce differences in the rate of accommodation change. The preservation of coal resources in the middle to late HSS in this area was most likely related to the rise of the regional base level throughout the Sajau.Keywords: sequence stratigraphy, coal, Pliocene, Berau basin
Procedia PDF Downloads 4662239 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction
Authors: Anjela Koblischka-Veneva, Michael R. Koblischka
Abstract:
In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇
Procedia PDF Downloads 1352238 Assessment of Gamma Radiation Exposure of Soils Associated with Granitic Rocks in Kapıdağ Peninsula, Turkey
Authors: Buket Canbaz Öztürk, N. Füsun Çam, Günseli Yaprak, Osman Candan
Abstract:
The external terrestrial radiation exposure is related to the types of rock from which the soils originate. Higher radiation levels are associated with igneous rocks, such as granite, and lower levels with sedimentary rocks. Therefore, this study aims to assess the gamma radiation exposure of soils associated with granitic rocks in Kapıdağ Peninsula, Turkey. In the ongoing study, a comprehensive survey carried out systematically as a part of the environmental monitoring program on radiologic impact of the granitoid areas in Western Anatolia. The activity measurements of the gamma emitters (238U, 232Th and 40K) in the surface soil samples and the granitic rocks carried out by means of NaI(Tl) gamma-ray spectrometry system. To evaluate the radiological hazard of the natural radioactivity, the absorbed dose rate (D), the annual effective dose rate (AED), the radium equivalent activity (Raeq) and the external (Hex) hazard index were calculated according to the UNSCEAR 2000 report. The corresponding absorbed dose rates in air from all natural radionuclides were always much lower than 200 nGy h-1 and did not exceed the typical range of worldwide average values noticed in the UNSCEAR (2000) report. Furthermore, the correlation between soil and granitic rock samples were utilized, and external gamma radiation exposure distribution was mapped in Kapıdağ Peninsula.Keywords: external absorbed dose, granitic rocks, Kapıdağ Peninsula, soil
Procedia PDF Downloads 2352237 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones
Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu
Abstract:
Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclonesKeywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow
Procedia PDF Downloads 4082236 Lagrangian Approach for Modeling Marine Litter Transport
Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo
Abstract:
The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift
Procedia PDF Downloads 1912235 Supplier Selection and Order Allocation Using a Stochastic Multi-Objective Programming Model and Genetic Algorithm
Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh
Abstract:
In this paper, we develop a supplier selection and order allocation multi-objective model in stochastic environment in which purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. To do so, we use dependent chance programming (DCP) that maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. After transforming the above mentioned stochastic multi-objective programming problem into a stochastic single objective problem using minimum deviation method, we apply a genetic algorithm to get the later single objective problem solved. The employed genetic algorithm performs a simulation process in order to calculate the stochastic objective function as its fitness function. At the end, we explore the impact of stochastic parameters on the given solution via a sensitivity analysis exploiting coefficient of variation. The results show that as stochastic parameters have greater coefficients of variation, the value of objective function in the stochastic single objective programming problem is worsened.Keywords: dependent chance programming, genetic algorithm, minimum deviation method, order allocation, supplier selection
Procedia PDF Downloads 2562234 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 1362233 High-Speed Imaging and Acoustic Measurements of Dual-frequency Ultrasonic Processing of Graphite in Water
Authors: Justin Morton, Mohammad Khavari, Abhinav Priyadarshi, Nicole Grobert, Dmitry G. Eskin, Jiawei Mi, Kriakos Porfyrakis, Paul Prentice
Abstract:
Ultrasonic cavitation is used for various processes and applications. Recently, ultrasonic assisted liquid phase exfoliation has been implemented to produce two dimensional nanomaterials. Depending on parameters such as input transducer power and the operational frequency used to induce the cavitation, bubble dynamics can be controlled and optimised. Using ultra-high-speed imagining and acoustic pressure measurements, a dual-frequency systemand its effect on bubble dynamics was investigated. A high frequency transducer (1.174 MHz) showed that bubble fragments and satellite bubbles induced from a low frequency transducer (24 kHz) were able to extend their lifecycle. In addition, this combination of ultrasonic frequencies generated higher acoustic emissions (∼24%) than the sum of the individual transducers. The dual-frequency system also produced an increase in cavitation zone size of∼3 times compared to the low frequency sonotrode. Furthermore, the high frequency induced cavitation bubbleswere shown to rapidly oscillate, although remained stable and did not transiently collapse, even in the presence of a low pressure field. Finally, the spatial distribution of satellite and fragment bubbles from the sonotrode were shown to increase, extending the active cavitation zone. These observations elucidated the benefits of using a dual-frequency system for generating nanomaterials with the aid of ultrasound, in deionised water.Keywords: dual-frequency, cavitation, bubble dynamics, graphene
Procedia PDF Downloads 1952232 Estimation of World Steel Production by Process
Authors: Reina Kawase
Abstract:
World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%.Keywords: global steel production, production distribution scenario, steel making process, supply-demand balance
Procedia PDF Downloads 4502231 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests
Authors: N. Türkmenoğlu Bayraktar, E. Kishalı
Abstract:
Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.Keywords: building envelope, IRT, refurbishment, non-destructive test
Procedia PDF Downloads 3842230 Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction
Authors: Aleksandrs Kovalcuks, Mara Duma
Abstract:
Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.Keywords: cholesterol, egg yolk oil, lutein, phospholipids, solvent extraction
Procedia PDF Downloads 5092229 Supply Chains Resilience within Machine-Made Rug Producers in Iran
Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz
Abstract:
In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience
Procedia PDF Downloads 1622228 Analyzing of Speed Disparity in Mixed Vehicle Technologies on Horizontal Curves
Authors: Tahmina Sultana, Yasser Hassan
Abstract:
Vehicle technologies rapidly evolving due to their multifaceted advantages. Adapted different vehicle technologies like connectivity and automation on the same roads with conventional vehicles controlled by human drivers may increase speed disparity in mixed vehicle technologies. Identifying relationships between speed distribution measures of different vehicles and road geometry can be an indicator of speed disparity in mixed technologies. Previous studies proved that speed disparity measures and traffic accidents are inextricably related. Horizontal curves from three geographic areas were selected based on relevant criteria, and speed data were collected at the midpoint of the preceding tangent and starting, ending, and middle point of the curve. Multiple linear mixed effect models (LME) were developed using the instantaneous speed measures representing the speed of vehicles at different points of horizontal curves to recognize relationships between speed variance (standard deviation) and road geometry. A simulation-based framework (Monte Carlo) was introduced to check the speed disparity on horizontal curves in mixed vehicle technologies when consideration is given to the interactions among connected vehicles (CVs), autonomous vehicles (AVs), and non-connected vehicles (NCVs) on horizontal curves. The Monte Carlo method was used in the simulation to randomly sample values for the various parameters from their respective distributions. Theresults show that NCVs had higher speed variation than CVs and AVs. In addition, AVs and CVs contributed to reduce speed disparity in the mixed vehicle technologies in any penetration rates.Keywords: autonomous vehicles, connected vehicles, non-connected vehicles, speed variance
Procedia PDF Downloads 1452227 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 157