Search results for: traditional scheduling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7099

Search results for: traditional scheduling algorithms

6589 Communicative Values of Yoruba Traditional Music on Adulthood Socialisation between the Late 20th and Early 21st Centuries

Authors: Odukunle Adebayo Atewolara-Odule

Abstract:

Music is an electronic medium and an integral content of the broadcast media, which has communicative values even in the process of entertaining listeners. The communicative values of music could have implications on what adults learn about culture and society. This study aimed at examining the communicative values of Yoruba traditional music and adulthood socialisation by comparing the situation of the late 20th with early 21st centuries. From the population of literate adults of between the ages of 30 years and 65 years in Ijebu North Local Government area of Ogun state, a sample of 200 respondents was drawn into the study through the stratified technique. A descriptive survey was conducted on the sample with the use of a structured questionnaire as the research instrument. Findings showed a significant relationship between what adults learned about the society and its culture from this category of music (p=0.000<0.05) but there was a higher significant relationship between Yoruba traditional music and adulthood socialisation in the late 20th than in early 21st centuries. Results also showed a significant communicative influence of Yoruba traditional music of the late 20th and early 21st centuries on adulthood socialisation (p=0.000<0.05). Respondents’ demographic characteristics were observed to play significant intervening roles on the communicative influence of Yoruba traditional music on socialisation among the adults between the late 20th and early 21st centuries (p=0.000<0.05). The study recommends that stakeholders should take cognisance of the lyrical contents of Yoruba traditional music due to its implications to inculcate values into people and shape their behaviour.

Keywords: adulthood socialisation, communicative values, traditional music, Voruba

Procedia PDF Downloads 181
6588 Secure Watermarking not at the Cost of Low Robustness

Authors: Jian Cao

Abstract:

This paper describes a novel watermarking technique which we call the random direction embedding (RDE) watermarking. Unlike traditional watermarking techniques, the watermark energy after the RDE embedding does not focus on a fixed direction, leading to the security against the traditional unauthorized watermark removal attack. In addition, the experimental results show that when compared with the existing secure watermarking, namely natural watermarking (NW), the RDE watermarking gains significant improvement in terms of robustness. In fact, the security of the RDE watermarking is not at the cost of low robustness, and it can even achieve more robust than the traditional spread spectrum watermarking, which has been shown to be very insecure.

Keywords: robustness, spread spectrum watermarking, watermarking security, random direction embedding (RDE)

Procedia PDF Downloads 385
6587 A Review of Encryption Algorithms Used in Cloud Computing

Authors: Derick M. Rakgoale, Topside E. Mathonsi, Vusumuzi Malele

Abstract:

Cloud computing offers distributed online and on-demand computational services from anywhere in the world. Cloud computing services have grown immensely over the past years, especially in the past year due to the Coronavirus pandemic. Cloud computing has changed the working environment and introduced work from work phenomenon, which enabled the adoption of technologies to fulfill the new workings, including cloud services offerings. The increased cloud computing adoption has come with new challenges regarding data privacy and its integrity in the cloud environment. Previously advanced encryption algorithms failed to reduce the memory space required for cloud computing performance, thus increasing the computational cost. This paper reviews the existing encryption algorithms used in cloud computing. In the future, artificial neural networks (ANN) algorithm design will be presented as a security solution to ensure data integrity, confidentiality, privacy, and availability of user data in cloud computing. Moreover, MATLAB will be used to evaluate the proposed solution, and simulation results will be presented.

Keywords: cloud computing, data integrity, confidentiality, privacy, availability

Procedia PDF Downloads 133
6586 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting

Authors: Kourosh Modarresi

Abstract:

The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.

Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation

Procedia PDF Downloads 455
6585 Open Source Algorithms for 3D Geo-Representation of Subsurface Formations Properties in the Oil and Gas Industry

Authors: Gabriel Quintero

Abstract:

This paper presents the result of the implementation of a series of algorithms intended to be used for representing in most of the 3D geographic software, even Google Earth, the subsurface formations properties combining 2D charts or 3D plots over a 3D background, allowing everyone to use them, no matter the economic size of the company for which they work. Besides the existence of complex and expensive specialized software for modeling subsurface formations based on the same information provided to this one, the use of this open source development shows a higher and easier usability and good results, limiting the rendered properties and polygons to a basic set of charts and tubes.

Keywords: chart, earth, formations, subsurface, visualization

Procedia PDF Downloads 442
6584 Sustainable Behavior and Design in Chinese Traditional Culture

Authors: Jin Chuhao

Abstract:

Sustainable design is the key for the human to realize the harmonious development. However, sustainable design requires localization that combines their own regional culture’s characteristics, then forms the most common cultural identity. As a result, the concept of sustainable design integrates into social behavior and promotes the harmonious development. Chinese Confucian doctrine is one of the important thoughts of human culture, which is accepted by more and more people. This paper summarizes the sustainable concept from the Chinese traditional culture and local design, discusses how they change the life of human being and produces enlightenment and significance to China and world.

Keywords: sustainable design, Chinese traditional culture, harmonious development, Confucianism

Procedia PDF Downloads 687
6583 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 274
6582 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 375
6581 Irrigation Scheduling for Wheat in Bangladesh under Water Stress Conditions Using Water Productivity Model

Authors: S. M. T. Mustafa, D. Raes, M. Huysmans

Abstract:

Proper utilization of water resource is very important in agro-based Bangladesh. Irrigation schedule based on local environmental conditions, soil type and water availability will allow a sustainable use of water resources in agriculture. In this study, the FAO crop water model (AquaCrop) was used to simulate the different water and fertilizer management strategies in different location of Bangladesh to obtain a management guideline for the farmer. Model was calibrated and validated for wheat (Triticum aestivum L.). The statistical indices between the observed and simulated grain yields obtained were very good with R2, RMSE, and EF values of 0.92, 0.33, and 0.83, respectively for model calibration and 0.92, 0.68 and 0.77, respectively for model validations. Stem elongation (jointing) to booting and flowering stage were identified as most water sensitive for wheat. Deficit irrigation on water sensitive stage could increase the grain yield for increasing soil fertility levels both for loamy and sandy type soils. Deficit irrigation strategies provides higher water productivity than full irrigation strategies and increase the yield stability (reduce the standard deviation). The practical deficit irrigation schedule for wheat for four different stations and two different soils were designed. Farmer can produce more crops by using deficit irrigation schedule under water stress condition. Practical application and validation of proposed strategies will make them more credible.

Keywords: crop-water model, deficit irrigation, irrigation scheduling, wheat

Procedia PDF Downloads 432
6580 Digital Platform of Crops for Smart Agriculture

Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye

Abstract:

In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.

Keywords: prediction, machine learning, artificial intelligence, digital agriculture

Procedia PDF Downloads 80
6579 Improvement of the Numerical Integration's Quality in Meshless Methods

Authors: Ahlem Mougaida, Hedi Bel Hadj Salah

Abstract:

Several methods are suggested to improve the numerical integration in Galerkin weak form for Meshless methods. In fact, integrating without taking into account the characteristics of the shape functions reproduced by Meshless methods (rational functions, with compact support etc.), causes a large integration error that influences the PDE’s approximate solution. Comparisons between different methods of numerical integration for rational functions are discussed and compared. The algorithms are implemented in Matlab. Finally, numerical results were presented to prove the efficiency of our algorithms in improving results.

Keywords: adaptive methods, meshless, numerical integration, rational quadrature

Procedia PDF Downloads 364
6578 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.

Keywords: feature selection, LIWC, machine learning, politics

Procedia PDF Downloads 383
6577 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
6576 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
6575 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
6574 Application of Additive Manufacturing for Production of Optimum Topologies

Authors: Mahdi Mottahedi, Peter Zahn, Armin Lechler, Alexander Verl

Abstract:

Optimal topology of components leads to the maximum stiffness with the minimum material use. For the generation of these topologies, normally algorithms are employed, which tackle manufacturing limitations, at the cost of the optimal result. The global optimum result with penalty factor one, however, cannot be fabricated with conventional methods. In this article, an additive manufacturing method is introduced, in order to enable the production of global topology optimization results. For a benchmark, topology optimization with higher and lower penalty factors are performed. Different algorithms are employed in order to interpret the results of topology optimization with lower factors in many microstructure layers. These layers are then joined to form the final geometry. The algorithms’ benefits are then compared experimentally and numerically for the best interpretation. The findings demonstrate that by implementation of the selected algorithm, the stiffness of the components produced with this method is higher than what could have been produced by conventional techniques.

Keywords: topology optimization, additive manufacturing, 3D-printer, laminated object manufacturing

Procedia PDF Downloads 339
6573 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, WangQun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.

Keywords: data cleaning, dependency rules, violation data discovery, data repair

Procedia PDF Downloads 564
6572 The Determination of Contamination Rate of Traditional White Cheese in Behbahan Markets to Coliforms and Pathogenic Escherichia Coli

Authors: Sana Mohammad Jafar, Hossaini Seyahi Zohreh

Abstract:

Infections and food intoxication caused by microbial contamination of food is of major issues in different countries, and diseases caused by the consumption of contaminated food included a large percentage of the country's health problems. Since traditional cheese for cultural reasons, good taste and smell in many parts of the area still has the important place in people's food basket, transmission of pathogenic bacteria could be at risk human health through the consumption of this food. In this study selected randomly 100 samples of 250 grams of traditional cheeses supplied in the city Behbahan market and adjacent to the ice was transferred to the laboratory and microbiological tests were performed immediately. According to the results, from 100 samples tested traditional cheese, 94 samples (94% of samples) were contaminated with coliforms, which of this number 75 samples (75% of samples) the contamination rate was higher than the limit (more than 100 cfu/g). Of the total samples, 36 samples (36% of samples) were contaminated with fecal coliform which of this number 30 samples (30% of samples) were contaminated with Escherichia.coli bacteria. Based on the results of agglutination test,no samples was found positive as pathogenic Escherichia.coli.

Keywords: determination, traditional cheese, Behbahan, Escherichia coli

Procedia PDF Downloads 504
6571 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 368
6570 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 81
6569 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 387
6568 Prospects for Sustainable Chemistry in South Africa: A Plural Healthcare System

Authors: Ntokozo C. Mthembu

Abstract:

The notion of sustainable chemistry has become significant in the discourse for a global post-colonial era, including South Africa, especially when it comes to access to the general health system and related policies in relation to disease or ease of human life. In view of the stubborn vestiges of coloniality in the daily lives of indigenous African people in general, the fundamentals of present Western medical and traditional medicine systems and related policies in the democratic era were examined in this study. The situation of traditional healers in relation to current policy was also reviewed. The advent of democracy in South Africa brought about a variety of development opportunities and limitations, particularly with respect to indigenous African knowledge systems such as traditional medicine. There were high hopes that the limitations of previous narrow cultural perspectives would be rectified in the democratic era through development interventions, but some sections of society, such as traditional healers, remain marginalised. The Afrocentric perspective was explored in dissecting government interventions related to traditional medicine. This article highlights that multiple medical systems should be adopted and that health policies should be aligned in order to guarantee mutual respect and to address the remnants of colonialism in South Africa, Africa and the broader global community.

Keywords: traditional healing system, healers, pluralist healthcare system, post-colonial era

Procedia PDF Downloads 149
6567 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 618
6566 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
6565 Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms

Authors: Alexander Winkler, Jozef Suchý

Abstract:

This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation.

Keywords: robot force control, stiffness control, damping control, impedance control, stability

Procedia PDF Downloads 520
6564 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 37
6563 Performance of Non-Deterministic Structural Optimization Algorithms Applied to a Steel Truss Structure

Authors: Ersilio Tushaj

Abstract:

The efficient solution that satisfies the optimal condition is an important issue in the structural engineering design problem. The new codes of structural design consist in design methodology that looks after the exploitation of the total resources of the construction material. In recent years some non-deterministic or meta-heuristic structural optimization algorithms have been developed widely in the research community. These methods search the optimum condition starting from the simulation of a natural phenomenon, such as survival of the fittest, the immune system, swarm intelligence or the cooling process of molten metal through annealing. Among these techniques the most known are: the genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search and big bang crunch optimization. In this study, five of these algorithms are applied for the optimum weight design of a steel truss structure with variable geometry but fixed topology. The design process selects optimum distances and size sections from a set of commercial steel profiles. In the formulation of the design problem are considered deflection limitations, buckling and allowable stress constraints. The approach is repeated starting from different initial populations. The design problem topology is taken from an existing steel structure. The optimization process helps the engineer to achieve good final solutions, avoiding the repetitive evaluation of alternative designs in a time consuming process. The algorithms used for the application, the results of the optimal solutions, the number of iterations and the minimal weight designs, will be reported in the paper. Based on these results, it would be estimated, the amount of the steel that could be saved by applying structural analysis combined with non-deterministic optimization methods.

Keywords: structural optimization, non-deterministic methods, truss structures, steel truss

Procedia PDF Downloads 230
6562 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 30
6561 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
6560 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142