Search results for: random working time
21557 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs
Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin
Abstract:
The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model
Procedia PDF Downloads 15221556 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach
Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri
Abstract:
The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait
Procedia PDF Downloads 13121555 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms
Authors: Yaping Zhao, Yimin Zhang
Abstract:
In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.Keywords: random vibration, cantilever beam, mean square response, white noise
Procedia PDF Downloads 38421554 Real Estate Trend Prediction with Artificial Intelligence Techniques
Authors: Sophia Liang Zhou
Abstract:
For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.Keywords: linear regression, random forest, artificial neural network, real estate price prediction
Procedia PDF Downloads 10321553 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 15521552 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 18321551 Analysis of Cross-Correlations in Emerging Markets Using Random Matrix Theory
Authors: Thomas Chinwe Urama, Patrick Oseloka Ezepue, Peters Chimezie Nnanwa
Abstract:
This paper investigates the universal financial dynamics in two dominant stock markets in Sub-Saharan Africa, through an in-depth analysis of the cross-correlation matrix of price returns in Nigerian Stock Market (NSM) and Johannesburg Stock Exchange (JSE), for the period 2009 to 2013. The strength of correlations between stocks is known to be higher in JSE than that of the NSM. Particularly important for modelling Nigerian derivatives in the future, the interactions of other stocks with the oil sector are weak, whereas the banking sector has strong positive interactions with the other sectors in the stock exchange. For the JSE, it is the oil sector and beverages that have greater sectorial correlations, instead of the banks which have the weaker correlation with other sectors in the stock exchange.Keywords: random matrix theory, cross-correlations, emerging markets, option pricing, eigenvalues eigenvectors, inverse participation ratios and implied volatility
Procedia PDF Downloads 29921550 Analysis of the Advent of Multinational Corporations in Developing Countries: Case Study of Nike Factories Expansion in Vietnam
Authors: Khue Do Phan
Abstract:
Nike has been confronted by the press with their harsh working conditions, underpayment and highly-labor intensive requirement to their manufacturing workers and hiring of underage workers in Vietnam, Nike's largest production center. To analyze this topic critically through an international relations perspective, theory of dependency will be used to criticize the notion of exploitation of resources from developed countries towards developing countries. Theory of economic liberalism will be used to support the notion private property, the free market and generally capitalism as beneficial to both developing and developed countries. Workers are mentally, physically and sexually abused in the factories. In addition to this, their working conditions consist of improper training, lack of safety equipment, exposure of chemicals (glues and pants), their average wage is below the minimum wage in their country; the workers have to work around 60 hours or more a week. Even Nike says that the conditions are regulated often to make sure the workers get a voice to have their work rights and safe working environment. The monitors come to analyze the factories but in the end talk to the employers, whom are the direct abusers to the employees. Health benefits are rarely granted to the employees; they are forced to pay their bills first then the company will reimburse them later. They would also get in trouble for using the bathroom, taking a lunch break or sick days off because this would mean it would decrease their hours of work, leading to an even lower wage and a really angry employer. Of course with the press criticizing Nike’s lack of respect for human rights and working rights, Nike has been working on policy making and implementation to deal with the abuses. Due to its large chains and a great number of outsourcing host countries, the changes that Nike wish or attempt to make have not be in effect as quickly nor spreading to all countries it holds accountable for in its outsourcing factories.Keywords: dependency theory, economic liberalism, human rights, outsource
Procedia PDF Downloads 33321549 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings
Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo
Abstract:
The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.Keywords: building structure, seismic waves, spectral analysis, structural response
Procedia PDF Downloads 40021548 Nationalization of the Social Life in Argentina: Accumulation of Capital, State Intervention, Labor Market, and System of Rights in the Last Decades
Authors: Mauro Cristeche
Abstract:
This work begins with a very simple question: How does the State spend? Argentina is witnessing a process of growing nationalization of social life, so it is necessary to find out the explanations of the phenomenon on the specific dynamic of the capitalist mode of production in Argentina and its transformations in the last decades. Then the new question is: what happened in Argentina that could explain this phenomenon? Since the seventies, the capital growth in Argentina faces deep competitive problems. Until that moment the agrarian wealth had worked as a compensation mechanism, but it began to find its limits. In the meantime, some important demographical and structural changes had happened. The strategy of the capitalist class had to become to seek in the cheapness of the labor force the main source of compensation of its weakness. As a result, a tendency to worsen the living conditions and fragmentation of the working class started to develop, manifested by unemployment, underemployment, and the fall of the purchasing power of the salary as a highlighted fact. As a consequence, it is suggested that the role of the State became stronger and public expenditure increased, as a historical trend, because it has to intervene to face the contradictions and constant growth problems posed by the development of capitalism in Argentina. On the one hand, the State has to guarantee the process of buying the cheapened workforce and at the same time the process of reproduction of the working class. On the other hand, it has to help to reproduce the individual capitals but needs to ‘attack’ them in different ways. This is why the role of the State is said to be the general political representative to the national portion of the total social capital. What will be studied is the dynamic of the intervention of the Argentine State in the context of the particular national process of capital growth, and its dynamics in the last decades. What this paper wants to show are the main general causes that could explain the phenomenon of nationalization of the social life and how it has impacted the life conditions of the working class and the system of rights.Keywords: Argentina, nationalization, public policies, rights, state
Procedia PDF Downloads 13621547 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 7521546 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications
Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque
Abstract:
Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.Keywords: energetic certification, virtual reality, augmented reality, sustainability
Procedia PDF Downloads 18621545 A Case Study: Beginning Teacher's Experiences of Mentoring in Secondary Education
Authors: Abdul Rofiq Badril Rizal M. Z.
Abstract:
This case study examines the experiences of four beginning teachers currently working in New South Wales secondary schools. Data were collected from semi-structured interviews conducted one on one over the period of one month. The data were coded with findings reported through key areas of discovery, which linked to the research presented in the literature review. The participants involved in the case study all reported positive experiences with mentoring, though none were given the opportunity to take part in a formal mentoring program, and all the mentors offered their time voluntarily. The mentoring took different forms, but the support most valued by the participants was the emotional and curriculum related supported received. All participants wished they had greater access to mentoring and felt it would have benefits for most beginning teachers. The study highlights ongoing issues around the lack of access to mentoring, which could be due to factors such as funding, time and training.Keywords: mentor, mentee, pre-service teacher, beginning teacher
Procedia PDF Downloads 10821544 Racial Bias by Prosecutors: Evidence from Random Assignment
Authors: CarlyWill Sloan
Abstract:
Racial disparities in criminal justice outcomes are well-documented. However, there is little evidence on the extent to which racial bias by prosecutors is responsible for these disparities. This paper tests for racial bias in conviction by prosecutors. To identify effects, this paper leverages as good as random variation in prosecutor race using detailed administrative data on the case assignment process and case outcomes in New York County, New York. This paper shows that the assignment of an opposite-race prosecutor leads to a 5 percentage point (~ 8 percent) increase in the likelihood of conviction for property crimes. There is no evidence of effects for other types of crimes. Additional results indicate decreased dismissals by opposite-race prosecutors likely drive my property crime estimates.Keywords: criminal justice, discrimination, prosecutors, racial disparities
Procedia PDF Downloads 19121543 Math Anxiety Effects on Complex Addition: An ERP Study
Authors: María Isabel Núñez-Peña, Macarena Suárez Pellicioni
Abstract:
In the present study, we used event-related potentials (ERP) to address the question of whether high (HMA) and low math-anxious (LMA) individuals differ on a complex addition verification task, which involved both carrying and non-carrying additions. ERPs were recorded while seventeen HMA and seventeen LMA individuals performed the verification task. Groups did not differ in trait anxiety or gender distribution. Participants were presented with two-digit additions and were asked to decide whether the proposed solution was correct or incorrect. Behavioral data showed a significant Carrying x Proposed solution x Group interaction for accuracy, showing that carrying additions were more error prone than non-carrying ones for both groups, although the difference non-carrying minus carrying was larger for the HMA group. As for ERPs, a P2 component larger in HMA individuals than in their LMA peers was found both for carrying and non-carrying additions. The P2 was followed by a sustained negative slow wave at parietal positions. Because the negative slow waves are thought to reflect the updating of working memory, these results give support to the relationship among working memory, math performance and math anxiety.Keywords: math anxiety, carrying, working memory, P2
Procedia PDF Downloads 44721542 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 16821541 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method
Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani
Abstract:
Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding
Procedia PDF Downloads 11221540 Analysis on Heat Transfer in Solar Parabolic Trough Collectors
Authors: Zaid H. Yaseen, Jamel A. Orfi, Zeyad A. Alsuhaibani
Abstract:
Solar power has a huge potential to be employed in the fields of electricity production, water desalination, and multi-generation. There are various types of solar collectors, and parabolic trough collectors (PTCs) are common among these types. In PTCs, a mirror is used to direct the incident radiation on an absorber tube to utilize the heat in power generation. In this work, a PTC covered with a glass tube is presented and analyzed. Results showed that temperatures of 510℃ for steam can be reached for certain parameters. The work also showed the viability of using Benzene as the working fluid in the absorber tube. Also, some analysis regarding changing the absorber’s tube diameter and the efficiency of the solar collector was demonstrated in this work. The effect of changing the heat transfer correlations for the convection phenomena of the working fluid was illustrated. In fact, two heat transfer correlations, the Dittus-Boelter and Gnielinski correlations, were used, and the outcomes showed a resemblance in the results for the maximum attainable temperature in the working fluid.Keywords: absorber tube, glass tube, incident radiation, parabolic trough collector
Procedia PDF Downloads 921539 Effect of Sedimentation on Torque Transmission in the Larger Radius Magnetorheological Clutch
Authors: Manish Kumar Thakur, Chiranjit Sarkar
Abstract:
Sedimentation of magnetorheological (MR) fluid affects its working. MR fluid is a smart fluid that has unique qualities such as quick responsiveness and easy controllability. It is used in the MR damper, MR brake, and MR clutch. In this work effect of sedimentation on torque transmission in the shear mode operated MR clutch is investigated. A test rig is developed to test the impact of sedimentation on torque transmission in the MR clutch. Torque transmission capability of MR clutch has been measured under two conditions to confirm the result of sedimentation. The first experiment is done just after filling and the other after one week. It has been observed that transmission torque is decreased after sedimentation. Hence sedimentation affects the working of the MR clutch.Keywords: clutch, magnetorheological fluid, sedimentation, torque
Procedia PDF Downloads 18421538 Study of Changes in the Pulsation Period of Six Cepheid Variables
Authors: Mohamed Abdel Sabour, Mohamed Nouh, Ian Stevans, Essam Elkholy
Abstract:
We study the period change of six Cepheids using 19376 accurate flux observations of the Solar Mass Ejection Imager (SMEI) onboard the Coriolis spacecraft. All observations for the six Cepheids have been derived as templates for each star, independent of the specific sites utilized to establish and update the O-C values. Sometimes, sinusoidal patterns are superimposed on the star's O-C changes, which cannot be regarded as random fluctuations in the pulsation period. Random period changes were detected and computed using Eddington's and Plakidis's approaches. A comparison of the observed and predicted period change reveals a good agreement with some published models and a very substantial divergence with others. Between the reported period change and that estimated by the current technique, a linear fit with a correlation coefficient of 90.08 percent was obtained. The temporal rate of period change in Cepheid stars might be connected to how well these stars' mass losses are known today.Keywords: cepheids, period change, mass loss, O-C changes, period change, mass loss, O-C
Procedia PDF Downloads 4021537 The Relationship between the Competence Perception of Student and Graduate Nurses and Their Autonomy and Critical Thinking Disposition
Authors: Zülfiye Bıkmaz, Aytolan Yıldırım
Abstract:
This study was planned as a descriptive regressive study in order to determine the relationship between the competency levels of working nurses, the levels of competency expected by nursing students, the critical thinking disposition of nurses, their perceived autonomy levels, and certain socio demographic characteristics. It is also a methodological study with regard to the intercultural adaptation of the Nursing Competence Scale (NCS) in both working and student samples. The sample of the study group of nurses at a university hospital for at least 6 months working properly and consists of 443 people filled out questionnaires. The student group, consisting of 543 individuals from the 4 public university nursing 3rd and 4th grade students. Data collection tools consisted of a questionnaire prepared in order to define the socio demographic, economic, and personal characteristics of the participants, the ‘Nursing Competency Scale’, the ‘Autonomy Subscale of the Sociotropy – Autonomy Scale’, and the ‘California Critical Thinking Disposition Inventory’. In data evaluation, descriptive statistics, nonparametric tests, Rasch analysis and correlation and regression tests were used. The language validity of the ‘NCS’ was performed by translation and back translation, and the context validity of the scale was performed with expert views. The scale, which was formed into its final structure, was applied in a pilot application from a group consisting of graduate and student nurses. The time constancy of the test was obtained by analysis testing retesting method. In order to reduce the time problems with the two half reliability method was used. The Cronbach Alfa coefficient of the scale was found to be 0.980 for the nurse group and 0.986 for the student group. Statistically meaningful relationships between competence and critical thinking and variables such as age, gender, marital status, family structure, having had critical thinking training, education level, class of the students, service worked in, employment style and position, and employment duration were found. Statistically meaningful relationships between autonomy and certain variables of the student group such as year, employment status, decision making style regarding self, total duration of employment, employment style, and education status were found. As a result, it was determined that the NCS which was adapted interculturally was a valid and reliable measurement tool and was found to be associated with autonomy and critical thinking.Keywords: nurse, nursing student, competence, autonomy, critical thinking, Rasch analysis
Procedia PDF Downloads 39321536 Effects of Modified Low-Dye Taping on First Ray Mobility Test and Sprint Time
Authors: Yu-Ju Tsai, Ching-Chun Wang, Wen-Tzu Tang, Huei-Ming Chai
Abstract:
A pronated foot is frequently associated with a hypermobile first ray, then developing further severe foot problems. Low-Dye taping with athletic tape has been widely used to restrict excessive first ray motion and re-build height of the medial longitudinal arch in general population with pronated foot. It is not the case, however, for sprinters since they feel too much restriction of foot motions. Currently, the kinesio tape, more elastic than the athletic tape, has been widely used to re-adjust joint positions. It was interesting whether modified low-Dye taping using kinesio tape was beneficial for altering first ray mobility and still giving enough arch support. The purpose of this study was to investigate the effect of modified low-Dye taping on first ray mobility test and 60-m sprint time for sprinters with pronated foot. The significance of this study provides new insight into a treatment alternative of modified low-Dye taping for sprinter with pronated foot. Ten young male sprinters, aged 20.8±1.6 years, with pronated foot were recruited for this study. The pronated foot was defined as the foot that the navicular drop test was greater than 1.0 cm. Three optic shutters were placed at the start, 30-m, and 60-m sites to record sprint time. All participants were asked to complete 3 trials of the 60-m dash with both taping and non-taping conditions in a random order. The low-Dye taping was applied using the method postulated by Ralph Dye in 1939 except the kinesio tape was used instead. All outcome variables were recorded for taping and non-taping conditions. Paired t-tests were used to analyze all outcome variables between 2 conditions. Although there were no statistically significant differences in dorsal and plantar mobility between taping and non-taping conditions, a statistical significance was found in a total range of motion (dorsiflexion plus plantarflexion angle) of the first ray when a modified low-Dye taping was applied (p < 0.05). Time to complete 60-m sprint was significantly increased with low-Dye taping (p < 0.05) while no significance was found for time to 30-m. it indicated that modified low-Dye taping changed maximum sprint speed of 60-m dash. Conclusively, modified low-Dye taping was capable of increasing first ray mobility and further altered maximum sprint speed.Keywords: first ray mobility, kinesio taping, pronated foot, sprint time
Procedia PDF Downloads 27621535 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang
Abstract:
The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking
Procedia PDF Downloads 9221534 Cultural Transformation in Interior Design in Commercial Space in India
Authors: Siddhi Pedamkar, Reenu Singh
Abstract:
This report is based on how a culture transforms from one era to another era in commercial space. This transformation is observed in commercial as well as residential spaces. The spaces have specific color concepts, surface detailing furniture, and function-specific layouts. But the cultural impact is very rarely seen in commercial spaces, mostly because the interior is divine by function to a large extent. Information was collected from books and research papers. A quantitative survey was conducted to understand people's perceptions about the impact of culture on design entities and how culture dictates the different types of space and their character. The survey also highlights the impact of types of interior lighting, colour schemes, and furniture types on the interior environment. The questionnaire survey helped in framing design parameters for contemporary interior design. The design parameters are used to propose design options for new-age furniture that can be used in co-working spaces. For the new and contemporary working spaces, new age design furniture, interior elements such as visual partition, semi-visual partition, lighting, and layout can be transformed by cultural changes in the working style of people and organization.Keywords: commercial space, culture, environment, furniture, interior
Procedia PDF Downloads 11721533 Nurturing Green Creativity in Women Intrapreneurs through Green HRM: Testing Moderated Mediation Model: A Step Towards Saudi Vision 2030
Authors: Tahira Iram, Ahmad Raza Bilal
Abstract:
In 2016, the Kingdom of Saudi Arabia (KSA) initiated Saudi Vision 2030, an ambitious plan to lessen the country's dependency on fossil fuels and increase economic diversification. The Vision 2030 framework strives to establish a thriving economy, a vibrant society, and an ambitious nation. This study aims to investigate the role of green service innovation (SI) and green work engagement (WE) in mediating the nexus between green HRM and green creativity (GC) under the conditional role of spiritual leadership (SL). A survey was done of 300 female intrepreneurs working in the organization within Saudi Arabia. This study has collected data via a stratified random sampling technique. The framework was tested using PLS-SEM software. The findings reveal that WE fully intervenes in the nexus between green HRM and GC. Moreover, SL positively moderates the nexus between green HRM and SI. Thus based on findings, it is recommended that female intrapreneurs prioritize environmentally responsible operations to gain and sustain a competitive edge over rivals in the Saudi competitive market.Keywords: green HRM, spiritual leadership, Vision 2030, women intrapreneurs, green service innovation behavior, green creativity
Procedia PDF Downloads 7921532 Multivariate Analysis of Spectroscopic Data for Agriculture Applications
Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman
Abstract:
In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.Keywords: Brown rot disease, NIR spectroscopy, potato, random forest
Procedia PDF Downloads 19021531 Using Machine Learning Techniques to Extract Useful Information from Dark Data
Authors: Nigar Hussain
Abstract:
It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.Keywords: big data, dark data, machine learning, heatmap, random forest
Procedia PDF Downloads 2821530 Impact of Strategic Leadership on Corporate Performance
Authors: Adesina Nathaniel Olanrewaju
Abstract:
The motivation behind this study is the need to see strategic leadership as one of the key driving forces for improving corporate performance. Strategic leadership is seen as a potent source of management development and sustained competitive advantage for both employee and organizational performance. There is currently a charge on leaders as a major cause of organizational failure. Stakeholders give what they can afford, not necessarily what the organization needs and impose operational and financial decisions on the leaders, 200 respondents were fit for the analysis from the six geo-political regions in Nigeria. The selection was done equally among various parastatals through random sampling technique from the south-south, south-east, south-west, north-east, north-west and north-central. A descriptive research of the survey was employed. The data were subjected to t-test analysis and correlation and regression were used for the analysis. The findings revealed that there is a strong relationship and impact between a strategic leader and corporate performance. Recommendations were made based on the findings that strategic leaders should be given the blueprint, company’s policy and the stakeholders’ expectation within a time frame the work is to be carried out.Keywords: time, strategic, organization, stakeholder, leader, performance
Procedia PDF Downloads 30521529 Analyze Needs for Training on Academic Procrastination Behavior on Students in Indonesia
Authors: Iman Dwi Almunandar, Nellawaty A. Tewu, Anshari Al Ghaniyy
Abstract:
The emergence of academic procrastination behavior among students in Indonesian, especially the students of Faculty of Psychology at YARSI University becomes a habit to be underestimated, so often interfere with the effectiveness of learning process. The lecturers at the Faculty of Psychology YARSI University have very often warned students to be able to do and collect assignments accordance to predetermined deadline. However, they are still violated it. According to researchers, this problem needs to do a proper training for the solution to minimize academic procrastination behavior on students. In this study, researchers conducted analyze needs for deciding whether need the training or not. Number of sample is 30 respondents which being choose with a simple random sampling. Measurement of academic procrastination behavior is using the theory by McCloskey (2011), there are six dimensions: Psychological Belief about Abilities, Distractions, Social Factor of Procrastination, Time Management, Personal Initiative, Laziness. Methods of analyze needs are using Questioner, Interview, Observations, Focus Group Discussion (FGD), Intelligence Tests. The result of analyze needs shows that psychology students generation of 2015 at the Faculty of Psychology YARSI University need for training on Time Management.Keywords: procrastination, psychology, analyze needs, behavior
Procedia PDF Downloads 37921528 Metabolic Cost and Perceived Exertion during Progressive and Randomized Walking Protocols
Authors: Simeon E. H. Davies
Abstract:
This study investigated whether selected metabolic responses and the perception of effort varied during four different walk protocols where speed increased progressively 3, 4, 5, 6, and 7 km/hr (progressive treadmill walk (PTW); and progressive land walk (PLW); or where the participant adjusted to random changes of speed e.g. 6, 3, 7, 4, and 5 km/hr during a randomized treadmill walk (RTW); and a randomized land walk (RLW). Mean stature and mass of the seven participants was 1.75m and 70kg respectively, with a mean body fat of 15%. Metabolic measures including heart rate, relative oxygen uptake, ventilation, increased in a linear fashion up to 6 km/hr, however at 7 km/hr there was a significant increase in metabolic response notably during the PLW, and to a similar, although lesser extent in RLW, probably as a consequence of the loss of kinetic energy when turning at each cone in order to maintain the speed during each shuttle. Respiration frequency appeared to be a more sensitive indicator of physical exertion, exhibiting a rapid elevation at 5 km/hr. The perception of effort during each mode and at each speed was largely congruent during each walk protocol.Keywords: exertion, metabolic, progressive, random, walking
Procedia PDF Downloads 460