Search results for: pattern recognition receptor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4516

Search results for: pattern recognition receptor

4006 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition

Procedia PDF Downloads 484
4005 Mating Behaviour and Its Significance in Reproductive Performance of Dysdercus koenigii

Authors: Kamal Kumar Gupta

Abstract:

The present research work was carried out on Dysdercus koenigii to understand various aspects of reproductive behavior such as mate finding and recognition, mate selection and mating preference, mating receptivity, and prolonged copulation. The studies carried out on mate searching and courtship behaviour of Dysdercus reflected the courtship behaviour in Dysdercus was brief. The opposite sexes are brought together by the pheromone. The males responded to female sex pheromones by showing directional movements toward the sex partners. Change in mating receptivity pattern of female Dysdercus was ascertained using three parameters of mating behaviour i.e. numbers of male’s encounter, the time taken to mate successfully and per cent females responding to mating. It was seen that a receptive female responded positively to the courting males and a high percentage of females mate usually in a very short time span. The females of Dysdercus showed continued mating receptivity throughout their life. The studies pertaining to mate selection by females showed that females generally do not discriminate among males and usually mate with any male they encountered first. The adults of Dysdercus remain in continuous copula up to 72hr. and mate 5-7 time in their life span. Studies pertaining to significance of prolonged mating in the life time reproductive success of the female Dysdercus indicated that fecundity and fertility and oviposition behavior of the female Dysdercus was related to duration of mating. In order to understand sperm precedence, the sterilized males were produced by exposing them to Gamma radiation. Our studies indicated that a dose of 50 Gy of Gamma radiations induced 95% sterility but does not impair the mating behaviour drastically. To understand role of sperms which were transfer during second mating in fertilizing the subsequent egg batches the sperm utilization pattern of doubly mated female was assessed. The females were mated with normal male or sterilized male in a combination. The sperm utilization pattern was determined by P2 value, our studies indicated a very high P2 value of 0.966, and indicated that sperms of last mating were utilized by the female for fertilization. In light of some of the unique reproductive behaviour of Dysdercus koenigii, such as brief courtship behavior, generalized mate selection by the female, continued mating receptivity and a prolonged pre oviposition period, the present studies on sperm precedence provides an explanation to an unusually prolonged copulation in Dysdercus.

Keywords: dysdercus koenigii, mating behaviour, reproductive performance, entomology

Procedia PDF Downloads 342
4004 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 101
4003 Consumption Culture of Rural Youth: A Study of the Conspicuous Consumption Pattern of a Youth Sample in an Egyptian Village

Authors: Marwa H. Salah

Abstract:

Modern consumption culture represents a widespread phenomenon that affects young people, as it affects all age groups in both urban and rural societies. It has been helped by globalization, specifically cultural globalization, also internal and external migration, and the immense development in information technology as well, these factors have led to the appearance of the conspicuous consumption pattern among young people. This research firstly interested in identifying the nature of this pattern of consumption among young people in the countryside, which represents a society with a special nature, was characterized by the pattern of traditional consumption. Secondly to find out whether the rural character has an impact on the conspicuous consumption of youth. Finally to identify the reasons for the rural youth's tendency to such type of consumption and if it contributes in satisfying certain social needs. The research used the anthropological method. Observation and open-ended interviews were used as tools to collect data and an interview guide was applied on a selective youth sample (40:20 male and 20 female) aged between 17to 34 in an Egyptian village located in Dakahlia governorate. The research showed that rural youth has impacted with the modern consumption culture and not isolated from it despite the lack of financial abilities. The conspicuous consumption is a dominant pattern of consumption among the Egyptian rural youth and it has been practicing by rural youth regardless of their educational & financial levels. Also, the wish to show the social and economic status, bragging and show off is the main reason for the rural youth to adopt the conspicuous consumption, moreover to face the inferior view from their counterparts’ urban youth.

Keywords: consumption culture, youth, conspicuous consumption, rural society

Procedia PDF Downloads 189
4002 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 111
4001 Possible Protective Role of Angiotensin II Antagonist on Bacterial Endotoxin Induced Acute Lung Injury: Morphological Study on Adult Male Albino Rat

Authors: Mohamed Bakry Mohamed Ali, Mohamed Ehab El-Din Mustafa, Joseph Naiem Sabet Aziz, Sarah Mahmoud Ali Kaooh

Abstract:

Background: Acute lung injury (ALI) is one of the major challenges in intensive care medicine. The most common extrapulmonary cause of ALI is sepsis, accounting more than 30% of the cases in humans. Lipopolysaccharide (LPS) has gained wide acceptance as a clinically relevant model of ALI. Lipopolysaccharide is a glycoprotein forming the major constituent of bacterial endotoxin. Losartan is angiotensin II type 1 (AT1) receptor antagonists. It is widely used for management of hypertension. It was recently suggested that losartan protects against septic ALI. It would thereby prevent LPS-induced ALI. Aim of the work and design of the experiment: This work investigated the injurious effect of lipopolysaccharide (LPS) and ALI on adult male albino rat at 24 hours and 14 days of LPS administration and the possible protective role of losartan pretreatment. LPS has deteriorated animal survival and behavior. It increased lung weight and induced lung histological damage. These changes could be much reduced by the losartan pretreatment. Conclusion: Administration of losartan before LPS could largely reduce these LPS/ ALI induced short and long term alterations. It could be recommended that patients susceptible to developing ALI, as in ICU, should receive a protective dose of angitensin II type 1 (AT1) receptor blocker as losartan.

Keywords: acute lung injury (ALI), lipopolysaccharide (LPS), losartan

Procedia PDF Downloads 607
4000 Behavioral and EEG Reactions in Children during Recognition of Emotionally Colored Sentences That Describe the Choice Situation

Authors: Tuiana A. Aiusheeva, Sergey S. Tamozhnikov, Alexander E. Saprygin, Arina A. Antonenko, Valentina V. Stepanova, Natalia N. Tolstykh, Alexander N. Savostyanov

Abstract:

Situation of choice is an important condition for the formation of essential character qualities of a child, such as being initiative, responsible, hard-working. We have studied the behavioral and EEG reactions in Russian schoolchildren during recognition of syntactic errors in emotionally colored sentences that describe the choice situation. Twenty healthy children (mean age 9,0±0,3 years, 12 boys, 8 girls) were examined. Forty sentences were selected for the experiment; the half of them contained a syntactic error. The experiment additionally had the hidden condition: 50% of the sentences described the children's own choice and were emotionally colored (positive or negative). The other 50% of the sentences described the forced-choice situation, also with positive or negative coloring. EEG were recorded during execution of error-recognition task. Reaction time and quality of syntactic error detection were chosen as behavioral measures. Event-related spectral perturbation (ERSP) was applied to characterize the oscillatory brain activity of children. There were two time-frequency intervals in EEG reactions: (1) 500-800 ms in the 3-7 Hz frequency range (theta synchronization) and (2) 500-1000 ms in the 8-12 Hz range (alpha desynchronization). We found out that behavioral and brain reactions in child brain during recognition of positive and negative sentences describing forced-choice situation did not have significant differences. Theta synchronization and alpha desynchronization were stronger during recognition of sentences with children's own choice, especially with negative coloring. Also, the quality and execution time of the task were higher for this types of sentences. The results of our study will be useful for improvement of teaching methods and diagnostics of children affective disorders.

Keywords: choice situation, electroencephalogram (EEG), emotionally colored sentences, schoolchildren

Procedia PDF Downloads 269
3999 Pre-Malignant Breast Lesions, Methods of Treatment and Outcome

Authors: Ahmed Mostafa, Mohamed Mahmoud, Nesreen H. Hafez, Mohamed Fahim

Abstract:

This retrospective study includes 60 patients with pre-invasive breast cancer. Aim of the study: Evaluation of premalignant lesions of the breast (DCIS), different treatment methods and outcome. Patients and methods: 60 patients with DCIS were studied from the period between 2005 to 2012, for 38 patients the primary surgical method was wide local resection (WLE) (63.3%) and the other cases (22 patients, 36.7%) had mastectomy, fourteen cases from those who underwent local excision received radiotherapy, while no adjuvant radiotherapy was given for those who underwent mastectomy. In case of hormonal receptor positive DCIS lesions hormonal treatment (Tamoxifen) was given after local control. Results: No difference in overall survival between mastectomy & breast conserving therapy (wide local excision and adjuvant radiotherapy), however local recurrence rate is higher in case of breast conserving therapy, also no role of Axillary evacuation in case of DCIS. The use of hormonal therapy decreases the incidence of local recurrence by about 98%. Conclusion: The main management of DCIS is local treatment (wide local excision and radiotherapy) with hormonal treatment in case of hormone receptor positive lesions.

Keywords: ductal carcinoma in situ, surgical treatment, radiotherapy, breast conserving therapy, hormonal treatment

Procedia PDF Downloads 321
3998 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
3997 Numerical Simulation of Erosion Control in Slurry Pump Casing by Geometrical Flow Pattern Modification Analysis

Authors: A. R. Momeninezhad

Abstract:

Erosion of Slurry Pumps in Related Industries, is one of the major costs in their production process. Many factories in extractive industries try to find ways to diminish this cost. In this paper, we consider the flow pattern modifications by geometric variations made of numerical simulation of flow inside pump casing, which is one of the most important parts analyzed for erosion. The mentioned pump is a cyclone centrifugal slurry pump, which is operating in Sarcheshmeh Copper Industries in Kerman-Iran, named and tagged as HM600 cyclone pump. Simulation shows many improvements in local wear information and situations for better and more qualified design of casing shape and impeller position, before and after geometric corrections. By theory of liquid-solid two-phase flow, the local wear defeats are analyzed and omitted.

Keywords: flow pattern, slurry pump, simulation, wear

Procedia PDF Downloads 457
3996 Crossing of the Intestinal Barrier Thanks to Targeted Biologics: Nanofitins

Authors: Solene Masloh, Anne Chevrel, Maxime Culot, Leonardo Scapozza, Magali Zeisser-Labouebe

Abstract:

The limited stability of clinically proven therapeutic antibodies limits their administration by the parenteral route. However, oral administration remains the best alternative as it is the most convenient and less invasive one. Obtaining a targeted treatment based on biologics, which can be orally administered, would, therefore, be an ideal situation to improve patient adherence and compliance. Nevertheless, the delivery of macromolecules through the intestine remains challenging because of their sensitivity to the harsh conditions of the gastrointestinal tract and their low permeability across the intestinal mucosa. To address this challenge, this project aims to demonstrate that targeting receptor-mediated endocytosis followed by transcytosis could maximize the intestinal uptake and transport of large molecules, such as Nanofitins. These affinity proteins of 7 kDa with binding properties similar to antibodies have already demonstrated retained stability in the digestive tract and local efficiency. However, their size does not allow passive diffusion through the intestinal barrier. Nanofitins having a controlled affinity for membrane receptors involved in the transcytosis mechanism used naturally for the transport of large molecules in humans were generated. Proteins were expressed using ribosome display and selected based on affinity to the targeted receptor and other characteristics. Their uptake and transport ex vivo across viable porcine intestines were investigated using an Ussing chambers system. In this paper, we will report the results achieved while addressing the different challenges linked to this study. To validate the ex vivo model, first, we proved the presence of the receptors targeted in humans on the porcine intestine. Then, after the identification of an optimal way of detection of Nanofitins, transport experiments were performed on porcine intestines with viability followed during the time of the experiment. The results, showing that the physiological process of transcytosis is capable of being triggered by the binding of Nanofitins on their target, will be reported here. In conclusion, the results show that Nanofitins can be transported across the intestinal barrier by triggering the receptor-mediated transcytosis and that the ex vivo model is an interesting technique to assess biologics absorption through the intestine.

Keywords: ex-vivo, Nanofitins, oral administration, transcytosis

Procedia PDF Downloads 178
3995 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 271
3994 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519
3993 A Systematic Review on Measuring the Physical Activity Level and Pattern in Persons with Chronic Fatigue Syndrome

Authors: Kuni Vergauwen, Ivan P. J. Huijnen, Astrid Depuydt, Jasmine Van Regenmortel, Mira Meeus

Abstract:

A lower activity level and imbalanced activity pattern are frequently observed in persons with chronic fatigue syndrome (CFS) / myalgic encephalomyelitis (ME) due to debilitating fatigue and post-exertional malaise (PEM). Identification of measurement instruments to evaluate the activity level and pattern is therefore important. The objective is to identify measurement instruments suited to evaluate the activity level and/or pattern in patients with CFS/ME and review their psychometric properties. A systematic literature search was performed in the electronic databases PubMed and Web of Science until 12 October 2016. Articles including relevant measurement instruments were identified and included for further analysis. The psychometric properties of relevant measurement instruments were extracted from the included articles and rated based on the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. The review was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 49 articles and 15 unique measurement instruments were found, but only three instruments were evaluated in patients with CFS/ME: the Chronic Fatigue Syndrome-Activity Questionnaire (CFS-AQ), Activity Pattern Interview (API) and International Physical Activity Questionnaire-Short Form (IPAQ-SF), three self-report instruments measuring the physical activity level. The IPAQ-SF, CFS-AQ and API are all equally capable of evaluating the physical activity level, but none of the three measurement instruments are optimal to use. No studies about the psychometric properties of activity monitors in patients with CFS/ME were found, although they are often used as the gold standard to measure the physical activity pattern. More research is needed to evaluate the psychometric properties of existing instruments, including the use of activity monitors.

Keywords: chronic fatigue syndrome, data collection, physical activity, psychometrics

Procedia PDF Downloads 227
3992 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 113
3991 Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate

Authors: Mi-Hye Hwang, Young Min Son, Kichan Lee, Bang-Hun Hyun, Byeong Yeal Jung

Abstract:

Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism.

Keywords: botulism, livestock, vaccine, recombinant protein, toxin

Procedia PDF Downloads 239
3990 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 101
3989 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 339
3988 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation

Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan

Abstract:

Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.

Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform

Procedia PDF Downloads 311
3987 The Structural Pattern: An Event-Related Potential Study on Tang Poetry

Authors: ShuHui Yang, ChingChing Lu

Abstract:

Measuring event-related potentials (ERPs) has been fundamental to our understanding of how people process language. One specific ERP component, a P600, has been hypothesized to be associated with syntactic reanalysis processes. We, however, propose that the P600 is not restricted to reanalysis processes, but is the index of the structural pattern processing. To investigate the structural pattern processing, we utilized the effects of stimulus degradation in structural priming. To put it another way, there was no P600 effect if the structure of the prime was the same with the structure of the target. Otherwise, there would be a P600 effect if the structure were different between the prime and the target. In the experiment, twenty-two participants were presented with four sentences of Tang poetry. All of the first two sentences, being prime, were conducted with SVO+VP. The last two sentences, being the target, were divided into three types. Type one of the targets was SVO+VP. Type two of the targets was SVO+VPVP. Type three of the targets was VP+VP. The result showed that both of the targets, SVO+VPVP and VP+VP, elicited positive-going brainwave, a P600 effect, at 600~900ms time window. Furthermore, the P600 component was lager for the target’ VP+VP’ than the target’ SVO+VPVP’. That meant the more dissimilar the structure was, the lager the P600 effect we got. These results indicate that P600 was the index of the structure processing, and it would affect the P600 effect intensity with the degrees of structural heterogeneity.

Keywords: ERPs, P600, structural pattern, structural priming, Tang poetry

Procedia PDF Downloads 140
3986 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 163
3985 Evaluation of Sensor Pattern Noise Estimators for Source Camera Identification

Authors: Benjamin Anderson-Sackaney, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent source camera identification (SCI) systems. Then, the performance of various sensor pattern noise (SPN) estimators was experimentally assessed, under common photo response non-uniformity (PRNU) frameworks. The experiments used 1350 natural and 900 flat-field images, captured by 18 individual cameras. 12 different experiments, grouped into three sets, were conducted. The results were analyzed using the receiver operator characteristic (ROC) curves. The experimental results demonstrated that combining the basic SPN estimator with a wavelet-based filtering scheme provides promising results. However, the phase SPN estimator fits better with both patch-based (BM3D) and anisotropic diffusion (AD) filtering schemes.

Keywords: sensor pattern noise, source camera identification, photo response non-uniformity, anisotropic diffusion, peak to correlation energy ratio

Procedia PDF Downloads 441
3984 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer

Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang

Abstract:

Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.

Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase

Procedia PDF Downloads 412
3983 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: authentication, key-session, security, wireless sensors

Procedia PDF Downloads 318
3982 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 46
3981 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 86
3980 An Optimized RDP Algorithm for Curve Approximation

Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park

Abstract:

It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.

Keywords: curve approximation, essential point, RDP algorithm

Procedia PDF Downloads 535
3979 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 101
3978 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis

Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng

Abstract:

Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.

Keywords: attribution trace, probabilistic relevance, network attack, attacker identification

Procedia PDF Downloads 366
3977 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

Authors: Tingke Wu, Man Yuan

Abstract:

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Keywords: driving forces, Hubei, optimizing strategies, spatial pattern, territory

Procedia PDF Downloads 105