Search results for: panel data models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29429

Search results for: panel data models

28919 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques

Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa

Abstract:

This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).

Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences

Procedia PDF Downloads 347
28918 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 484
28917 A Flagship Framework with Feet of Clay: Operational and Structural Challenges of the African Peace and Security Architecture

Authors: Wiriranai Brilliant Masara

Abstract:

The African Peace and Security Architecture is widely celebrated and revered as a paragon of the will to address peace and security challenges in Africa. However, like any other institution, it is embedded with operational and institutional challenges that prevent it from effectively carrying out its mandate and turning goals into achieved results. The article examines the fundamental flaws and weaknesses of the African Peace and Security Architecture by focusing on its institutions, norms, instruments, and its relationship to Africa’s Regional Economic Communities. Therefore, the article reviews the flaws of the five elements of the African Peace and Security Architecture which are the Peace and Security Council, Panel of the Wise, Continental Early Warning System, African Standby Force, and Peace Fund.

Keywords: African Union, African Peace and Security Architecture, peace and security council, continental early warning system, African Standby Force, Panel of the Wise, Peace Fund

Procedia PDF Downloads 140
28916 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 171
28915 A Study on the New Weapon Requirements Analytics Using Simulations and Big Data

Authors: Won Il Jung, Gene Lee, Luis Rabelo

Abstract:

Since many weapon systems are getting more complex and diverse, various problems occur in terms of the acquisition cost, time, and performance limitation. As a matter of fact, the experiment execution in real world is costly, dangerous, and time-consuming to obtain Required Operational Characteristics (ROC) for a new weapon acquisition although enhancing the fidelity of experiment results. Also, until presently most of the research contained a large amount of assumptions so therefore a bias is present in the experiment results. At this moment, the new methodology is proposed to solve these problems without a variety of assumptions. ROC of the new weapon system is developed through the new methodology, which is a way to analyze big data generated by simulating various scenarios based on virtual and constructive models which are involving 6 Degrees of Freedom (6DoF). The new methodology enables us to identify unbiased ROC on new weapons by reducing assumptions and provide support in terms of the optimal weapon systems acquisition.

Keywords: big data, required operational characteristics (ROC), virtual and constructive models, weapon acquisition

Procedia PDF Downloads 289
28914 Understanding the Role of Social Entrepreneurship in Building Mobility of a Service Transportation Models

Authors: Liam Fassam, Pouria Liravi, Jacquie Bridgman

Abstract:

Introduction: The way we travel is rapidly changing, car ownership and use are declining among young people and those residents in urban areas. Also, the increasing role and popularity of sharing economy companies like Uber highlight a movement towards consuming transportation solutions as a service [Mobility of a Service]. This research looks to bridge the knowledge gap that exists between city mobility, smart cities, sharing economy and social entrepreneurship business models. Understanding of this subject is crucial for smart city design, as access to affordable transport has been identified as a contributing factor to social isolation leading to issues around health and wellbeing. Methodology: To explore the current fit vis-a-vis transportation business models and social impact this research undertook a comparative analysis between a systematic literature review and a Delphi study. The systematic literature review was undertaken to gain an appreciation of the current academic thinking on ‘social entrepreneurship and smart city mobility’. The second phase of the research initiated a Delphi study across a group of 22 participants to review future opinion on ‘how social entrepreneurship can assist city mobility sharing models?’. The Delphi delivered an initial 220 results, which once cross-checked for duplication resulted in 130. These 130 answers were sent back to participants to score importance against a 5-point LIKERT scale, enabling a top 10 listing of areas for shared user transports in society to be gleaned. One further round (4) identified no change in the coefficient of variant thus no further rounds were required. Findings: Initial results of the literature review returned 1,021 journals using the search criteria ‘social entrepreneurship and smart city mobility’. Filtering allied to ‘peer review’, ‘date’, ‘region’ and ‘Chartered associated of business school’ ranking proffered a resultant journal list of 75. Of these, 58 focused on smart city design, 9 on social enterprise in cityscapes, 6 relating to smart city network design and 3 on social impact, with no journals purporting the need for social entrepreneurship to be allied to city mobility. The future inclusion factors from the Delphi expert panel indicated that smart cities needed to include shared economy models in their strategies. Furthermore, social isolation born by costs of infrastructure needed addressing through holistic A-political social enterprise models, and a better understanding of social benefit measurement is needed. Conclusion: In investigating the collaboration between key public transportation stakeholders, a theoretical model of social enterprise transportation models that positively impact upon the smart city needs of reduced transport poverty and social isolation was formed. As such, the research has identified how a revised business model of Mobility of a Service allied to a social entrepreneurship can deliver impactful measured social benefits associated to smart city design existent research.

Keywords: social enterprise, collaborative transportation, new models of ownership, transport social impact

Procedia PDF Downloads 141
28913 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia PDF Downloads 199
28912 Vibrations of Springboards: Mode Shape and Time Domain Analysis

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.

Keywords: springboard analysis, modal analysis, time domain analysis, vibrations

Procedia PDF Downloads 460
28911 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 66
28910 Developing Islamic Module Project for Preschool Teachers Using Modified Delphi Technique

Authors: Mazeni Ismail, Nurul Aliah, Hasmadi Hassan

Abstract:

The purpose of this study is to gather the consensus of experts regarding the use of moral guidance amongst preschool teachers vis-a-vis the Islamic Project module (I-Project Module). This I-Project Module seeks to provide pertinent data on the assimilation of noble values in subject-matter teaching. To obtain consensus for the various components of the module, the Modified Delphi technique was used to develop the module. 12 subject experts from various educational fields of Islamic education, early childhood education, counselling and language fully participated in the development of this module. The Modified Delphi technique was administered in two mean cycles. The standard deviation value derived from questionnaires completed by the participating panel of experts provided the value of expert consensus reached. This was subsequently analyzed using SPSS version 22. Findings revealed that the panel of experts reached a discernible degree of agreement on five topics outlined in the module, viz; content (mean value 3.36), teaching strategy (mean value 3.28), programme duration (mean value 3.0), staff involved and attention-grabbing strategy of target group participating in the value program (mean value 3.5), and strategy to attract attention of target group to utilize i-project (mean value 3.0). With regard to the strategy to attract the attention of the target group, the experts proposed for creative activities to be added in order to enhance teachers’ creativity.

Keywords: Modified Delphi Technique, Islamic project, noble values, teacher moral guidance

Procedia PDF Downloads 183
28909 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194
28908 The Promotion Effects for a Supply Chain System with a Dominant Retailer

Authors: Tai-Yue Wang, Yi-Ho Chen

Abstract:

In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.

Keywords: supply chain, price promotion, mathematical models, dominant retailer

Procedia PDF Downloads 401
28907 The Financial Impact of Covid 19 on the Hospitality Industry in New Zealand

Authors: Kay Fielden, Eelin Tan, Lan Nguyen

Abstract:

In this research project, data was gathered at a Covid 19 Conference held in June 2021 from industry leaders who discussed the impact of the global pandemic on the status of the New Zealand hospitality industry. Panel discussions on financials, human resources, health and safety, and recovery were conducted. The themes explored for the finance panel were customer demographics, hospitality sectors, financial practices, government impact, and cost of compliance. The aim was to see how the hospitality industry has responded to the global pandemic and the steps that have been taken for the industry to recover or sustain their business. The main research question for this qualitative study is: What are the factors that have impacted on finance for the hospitality industry in New Zealand due to Covid 19? For financials, literature has been gathered to study global effects, and this is being compared with the data gathered from the discussion panel through the lens of resilience theory. Resilience theory applied to the hospitality industry suggests that the challenges imposed by Covid 19 have been the catalyst for government initiatives, technical innovation, engaging local communities, and boosting confidence. Transformation arising from these ground shifts have been a move towards sustainability, wellbeing, more awareness of climate change, and community engagement. Initial findings suggest that there has been a shift in customer base that has prompted regional accommodation providers to realign offers and to become more flexible to attract and maintain this realigned customer base. Dynamic pricing structures have been required to meet changing customer demographics. Flexible staffing arrangements include sharing staff between different accommodation providers, owners with multiple properties adopting different staffing arrangements, maintaining a good working relationship with the bank, and conserving cash. Uncertain times necessitate changing revenue strategies to cope with external factors. Financial support offered by the government has cushioned the financial downturn for many in the hospitality industry, and managed isolation and quarantine (MIQ) arrangements have offered immediate financial relief for those hotels involved. However, there is concern over the long-term effects. Compliance with mandated health and safety requirements has meant that the hospitality industry has streamlined its approach to meeting those requirements and has invested in customer relations to keep paying customers informed of the health measures in place. Initial findings from this study lie within the resilience theory framework and are consistent with findings from the literature.

Keywords: global pandemic, hospitality industry, new Zealand, resilience

Procedia PDF Downloads 101
28906 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 343
28905 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 24
28904 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 335
28903 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale

Authors: Imene Skhakhfa, Lahbaci Ouerdachi

Abstract:

To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.

Keywords: model calibration, intensity, runoff, hydrograph

Procedia PDF Downloads 486
28902 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 330
28901 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
28900 Analysis of Palm Oil Production and Rubber Production to Gross Domestic Product in Ten Districts of West Kalimantan

Authors: Evy Sulistianingsih, Mariatul Kiftiah, Dedi Rosadi, Heni Wahyuni

Abstract:

This research attempts to analyse palm oil production and rubber production to prosperity of the community of ten districts in West Kalimantan namely Sanggau, Sintang, Sambas, Ketapang, Bengkayang, Landak, Singkawang, Kapuas Hulu, Melawi and Sekadau by panel regression. Gross Domestic Product (GDP) of the districts will be used to be a prosperity indicator on this research. Based on the result of analysis, it can be concluded that palm oil and rubber production statistically give contribution to GDP. Adjusted coefficient determination of Fixed Effect Model indicates that 76% of GDP’s variation can be explained by palm oil and rubber production. In another point of view, there should be a district’s government intervention to regulate the plantations. In addition, there is an obligation of the government to monitor regularly the plantations and to conduct researches in order to govern better planning of lands that have been used to the plantations. So that, the environmental effects that have been caused by the plantation can be diminished.

Keywords: gross domestic product (GDP), panel, palm, welfare

Procedia PDF Downloads 255
28899 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
28898 Population Structure Analysis of Pakistani Indigenous Cattle Population by Using High Density SNP Array

Authors: Hamid Mustafa, Huson J. Heather, Kim Eiusoo, McClure Matt, Khalid Javed, Talat Nasser Pasha, Afzal Ali1, Adeela Ajmal, Tad Sonstegard

Abstract:

Genetic differences associated with speciation, breed formation or local adaptation can help to preserve and effective utilization of animals in selection programs. Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among ten Pakistani indigenous cattle breeds. In total, 25 individuals from three cattle populations, including Achi (n=08), Bhagnari (n=04) and Cholistani (n=13) were genotyped for 777, 962 single nucleotide polymorphism (SNP) markers. Population structure was examined using the linkage model in the program STRUCTURE. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. We further searched for spatial patterns of genetic diversity among these breeds under the recently developed spatial principal component analysis framework. Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time.

Keywords: Pakistan, cattle, genetic diversity, population structure

Procedia PDF Downloads 620
28897 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
28896 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images

Authors: Yalçın Bozkurt

Abstract:

Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breeds

Keywords: artificial neural networks, bodyweight, cattle, digital body measurements

Procedia PDF Downloads 372
28895 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents

Authors: M. Ouassaf, S. Belaid

Abstract:

A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.

Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR

Procedia PDF Downloads 156
28894 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 166
28893 Financial Development, Institutional Quality and Environmental Conditions in the Middle East and North Africa Region: Evidence From Oil- And Non-oil-Producing Countries

Authors: Jamel Boukhatem, Semia Rachid, Marmar Nasr

Abstract:

Considering the differences between oil- and non-oil-producing countries, this paper aims to evaluate the impact of financial development (FD) and institutional quality (IQ) on CO2 emissions in 15 MENA (Middle East and North Africa) countries over the period 1996-2018 using the Panel ARDL approach. We found evidence to support an unconditional long run effect of FD on environmental conditions (EC), with quite significant differences between the two groups of countries. While FD leads to environmental degradation (ED) in non-oil-producing countries, it helps protect the environment in oil-producing ones. Regarding the effects of IQ on EC, they are not significant in both short- and long run for non-oil-producing countries, but they are significant for oil-producing ones only in the long run. In the short run, IQ indicators haven’t significant effects on EC for the two groups of countries.

Keywords: financial development, institutional quality, environmental conditions, Panel ARDL

Procedia PDF Downloads 82
28892 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.

Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics

Procedia PDF Downloads 459
28891 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: artificial intelligence and office, NLP, deep learning, text classification

Procedia PDF Downloads 200
28890 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.

Keywords: epidemic model, HIV, MCMC, parameter estimation

Procedia PDF Downloads 600