Search results for: neural progentor cells
4420 Microdosimetry in Biological Cells: A Monte Carlo Method
Authors: Hamidreza Jabal Ameli, Anahita Movahedi
Abstract:
Purpose: In radionuclide therapy, radioactive atoms are coupled to monoclonal antibodies (mAbs) for treating cancer tumor while limiting radiation to healthy tissues. We know that tumoral and normal tissues are not equally sensitive to radiation. In fact, biological effects such as cellular repair processes or the presence of less radiosensitive cells such as hypoxic cells should be taken account. For this reason, in this paper, we want to calculate biological effect dose (BED) inside tumoral area and healthy cells around tumors. Methods: In this study, deposited doses of a radionuclide, gold-198, inside cells lattice and surrounding healthy tissues were calculated with Monte Carlo method. The elemental compositions and density of malignant and healthy tissues were obtained from ICRU Report 44. For reaching to real condition of oxygen effects, the necrosis and hypoxia area inside tumors has been assessed. Results: With regard to linear-quadratic expression which was defined in Monte Carlo, results showed that a large amount of BED is deposited in the well-oxygenated part of the hypoxia area compared to necrosis area. Moreover, there is a significant difference between the curves of absorbed dose with BED and without BED.Keywords: biological dose, monte carlo, hypoxia, radionuclide therapy
Procedia PDF Downloads 4874419 Contraction and Membrane Potential of C2C12 with GTXs
Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto
Abstract:
Culture techniques of skeletal muscle cells are advanced in the field of regenerative medicine and applied research of cultured muscle. As applied research of cultured muscle, myopathy (muscles disease) treatment is expected and development bio of actuator is also expected in biomedical engineering. Grayanotoxins (GTXs) is known as neurotoxins that enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as well as a phytotoxin. In this study, we investigated the effect of GTXs on muscle cells (C2C12) contraction and membrane potential. Contraction of myotubes is induced by applied external electrical stimulation. Contraction and membrane potential change of skeletal muscle cells are induced by injection of current. We, therefore, concluded that effect of Grayanotoxins on contraction and membrane potential of C2C12 relate to acute toxicity of GTXs.Keywords: skeletal muscle cells C2C12, grayanotoxins, contraction, membrane potential, acute toxicity, pytotoxin, motubes
Procedia PDF Downloads 5054418 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 5464417 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network
Procedia PDF Downloads 4354416 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network
Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane
Abstract:
Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.Keywords: ASD, artificial neural network, kinect, stereotypical motor movements
Procedia PDF Downloads 3064415 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems
Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe
Abstract:
The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.Keywords: non-linear systems, fuzzy set Models, neural network, control law
Procedia PDF Downloads 2124414 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells
Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon
Abstract:
By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique
Procedia PDF Downloads 3404413 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code
Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev
Abstract:
The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.Keywords: biometrics, testing, neural network, converter of biometrics-code, Hamming's measure
Procedia PDF Downloads 11384412 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules
Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.Keywords: solar cell, aging, spectral response measurement
Procedia PDF Downloads 1034411 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation
Procedia PDF Downloads 5324410 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia
Authors: Abdelhafid Zenati, Mohamed Tadjine
Abstract:
The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space
Procedia PDF Downloads 2524409 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 4294408 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells
Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia
Abstract:
We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis
Procedia PDF Downloads 2764407 An Investigation of Anticancer Fluorinated Aza-Heterocycles
Authors: Darya O. Prima, Elena V. Vorontsova, Yuri G. Slizhov, Andrey V. Zibarev
Abstract:
A broad family of carbocycle-fluorinated aza-heterocycles including 1,3-benzodiazoles (benzimidazoles), 1,2,3-benzotriazoles, 2,1,3-benzothia/selenadiazoles and 1,4-benzodiazines (quinoxalines) was synthesized in the unified way and assessed for cytotoxicity towards the Hep2 (laryngeal epidermoid carcinoma, a kind of oral cancer) cells. The diazoles, triazoles and selenadiazoles revealed low medium inhibitory concentrations IC50 = 2.2-26.4 µМ and induced the cells’ apoptosis at low concentrations C = 1-25 µМ. For selenadiazoles, cell death dynamics was observed already in the first hours after the treatment. Replacement of one atom F by group Me2N in some cases enlarged apoptotic activity of the compounds towards the Hep2 cells. In contrast, the archetypal (i.e. non-fluorinated) 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole were low toxic (IC50 > 100 µM) and induced apoptosis only at high concentrations. The chlorinated congeners of the heterocycles under discussion were highly toxic towards the Hep2 cells but revealed insignificant ability to induce their apoptosis. Overall, the findings above suggest that fluorinated 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole derivatives can be considered as potential anticancer drugs. For the laryngeal epidermoid carcinoma (for which, according to available statistics, the five-year survival rate remained ~50% during the past 30 years), it is especially important since surgical treatment is seriously complicated here thus encouraging medicament one.Keywords: Apoptosis, aza-heterocycles, cytotoxicity, fluorinated, Hep2 cells, synthesis
Procedia PDF Downloads 3394406 One-Step Time Series Predictions with Recurrent Neural Networks
Authors: Vaidehi Iyer, Konstantin Borozdin
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning
Procedia PDF Downloads 2294405 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network
Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba
Abstract:
Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network
Procedia PDF Downloads 2344404 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells
Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok
Abstract:
Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy
Procedia PDF Downloads 1514403 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy
Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im
Abstract:
Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by zona pellucida with layer of cumulus cells ranging between 59.29-202.14 µm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 µg/mL porcine follicle-stimulating hormone, 1 µg/mL LH, 1µg/mL estradiol with ethanol, and 50 µg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.Keywords: cumulus cells, electron microscopy, in vitro, porcine oocyte
Procedia PDF Downloads 3854402 Surface Modified Polyamidoamine Dendrimer with Gallic Acid Overcomes Drug Resistance in Colon Cancer Cells HCT-116
Authors: Khushbu Priyadarshi, Chandramani Pathak
Abstract:
Cancer cells can develop resistance to conventional therapies especially chemotherapeutic drugs. Resistance to chemotherapy is another challenge in cancer therapeutics. Therefore, it is important to address this issue. Gallic acid (GA) is a natural plant compound that exhibits various biological properties including anti-proliferative, anti-inflammatory, anti-oxidant and anti-bacterial. Despite of the wide spectrum biological properties GA has cytotoxic response and low bioavailability. To overcome this problem, GA was conjugated with the Polyamidoamine(PAMAM) dendrimer for improving the bioavailability and efficient delivery in drug-resistant HCT-116 Colon Cancer cells. Gallic acid was covalently linked to 4.0 G PAMAM dendrimer. PAMAM dendrimer is well established nanocarrier but has cytotoxicity due to presence of amphiphilic nature of amino group. In our study we have modified surface of PAMAM dendrimer with Gallic acid and examine their anti-proliferative effects in drug-resistant HCT-116 cells. Further, drug-resistant colon cancer cells were established and thereafter treated with different concentration of PAMAM-GA to examine their anti-proliferative potential. Our results show that PAMAM-GA conjugate induces apoptotic cell death in HCT-116 and drug-resistant cells observed by Annexin-PI staining. In addition, it also shows that multidrug-resistant drug transporter P-gp protein expression was downregulated with increasing the concentration of GA conjugate. After that we also observed the significant difference in Rh123 efflux and accumulation in drug sensitive and drug-resistant cancer cells. Thus, our study suggests that conjugation of anti-cancer agents with PAMAM could improve drug resistant property and cytotoxic response to treatment of cancer.Keywords: drug resistance, gallic acid, PAMAM dendrimer, P-glycoprotein
Procedia PDF Downloads 1494401 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5054400 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks
Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry
Abstract:
Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices
Procedia PDF Downloads 514399 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks
Authors: Juan Sebastián Hernández
Abstract:
The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR
Procedia PDF Downloads 1034398 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4154397 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir
Abstract:
In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization
Procedia PDF Downloads 3464396 The Effect of Manual Acupuncture-induced Injury as a Mechanism Contributing to Muscle Regeneration
Authors: Kamal Ameis
Abstract:
This study aims to further improve our understanding of the underlying mechanism of local injury that occurs after manual acupuncture needle manipulation, and that initiates the muscle regeneration process, which is essential for muscle maintenance and adaptation. Skeletal muscle is maintained by resident stem cells called muscle satellite cells. These cells are normally in quiescent state, but following muscle injury, they re-enter the cell cycle and execute a myogenic program resulting in muscle fiber regeneration. Our previous work in young rats demonstrated that acupuncture treatment induced injury that activated resident satellite (stem) cells, which leads to muscle regeneration. Skeletal muscle regeneration is an adaptive response to injury that requires a tightly orchestrated event between signaling pathways activated by growth factor and intrinsic regulatory program controlled by myogenic transcription factor. We identified several gene expressions uniquely important for muscle regeneration in response to acupuncture treatment at different time course using different biological techniques, including Immunocytochemistry, western blotting, and Real Time PCR. This study uses a novel but non-invasive model of injury induced by manual acupuncture to further our current understanding of regenerative mechanism of muscle stem cells. From a clinical perspective, this model of injury induced by manual acupuncture may be easily translatable into a clinical tool that can be used as an alternative to physical exercise for patients challenged by bed rest or forced inactivity. Finally, the knowledge gained from this research could be useful for studies of the local effects of various modalities of induced injury, such as the traditional method of healing by cupping (hijamah), which may enhanced muscle stem cells and muscle fiber regeneration.Keywords: acupuncture, injury, regeneration, muscle stem cells
Procedia PDF Downloads 1484395 A Combination of Mesenchymal Stem Cells and Low-Intensity Ultrasound for Knee Meniscus Regeneration: A Preliminary Study
Authors: Mohammad Nasb, Muhammad Rehan, Chen Hong
Abstract:
Background Meniscus defects critically alter knee function and lead to degenerative changes. Regenerative medicine applications including stem cell transplantation have showed a promising efficacy in finding alternatives to overcome traditional treatment limitations. However, stem cell therapy remains limited due to the substantially reduced viability and inhibitory microenvironment. Since tissue growth and repair are under the control of biochemical and mechanical signals, several approaches have recently been investigated (e.g., low intensity pulsed ultrasound [LIPUS]) to promote the regeneration process. This study employed LIPUS to improve growth and osteogenic differentiation of mesenchymal stem cells derived from human embryonic stem cells to improve the regeneration of meniscus tissue. Methodology: The Mesenchymal stromal cells (MSCs) were transplanted into the epicenter of the injured meniscus in rabbits, which were randomized into two main groups: a treatment group (n=32 New Zealand rabbits) including 4 subgroups of 8 rabbits in each subgroup (LIPUS treatment, MSC treatment, LIPUS with MSC and control), and a second group (n=9) to track implanted cells and their progeny using green fluorescence protein (GFP). GFP consists of the MSC and LIPUS-MSC combination subgroups. Rabbits were then subjected to histological, immunohistochemistry, and MRI assessment. Results: The quantity of the newly regenerated tissue in the combination treatment group that had Ultrasound irradiation after mesenchymal stem cells were better at all end points. Likewise, Tissue quality scores were also greater in knees treated with both approaches compared with controls and single treatment at all end points, achieving significance at twelve and twenty-four weeks [p < 0.05], and [p = 0.008] at twelve weeks. Differentiation into type-I and II collagen-expressing cells were higher in the combination group at up to twenty-four weeks. Conclusions: the combination of mesenchymal stem cells and LIPUS showed greater adhering to the sites of meniscus injury, differentiate into cells resembling meniscal fibrochondrocytes, and improve both quality and quantity of meniscal regeneration.Keywords: stem cells, regenerative medicine, osteoarthritis, knee
Procedia PDF Downloads 1194394 Trans-Activator of Transcription-Tagged Active AKT1 Variants for Delivery to Mammalian Cells
Authors: Tarana Siddika, Ilka U. Heinemann, Patrick O’Donoghue
Abstract:
Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Threonine308, Serine473), yet cell stimulation also activates many other kinases and fails to differentiate the effect of the two main activating sites of AKT1 on downstream substrate phosphorylation and cell growth. While both AKT1 activating sites are associated with disease and used as clinical markers, in some cancers, high levels of Threonine308 phosphorylation are associated with poor prognosis while in others poor survival correlates with high Serine473 levels. To produce cells with specific AKT1 activity, a system was developed to deliver active AKT1 to human cells. AKT1 phospho-variants were produced from Escherichia coli with programmed phosphorylation by genetic code expansion. Tagging of AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) helped to enter AKT1 proteins in mammalian cells. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308, TAT-pAKT1S473 and TAT-pAKT1T308S473 proteins induced selective phosphorylation of the known AKT1 substrate GSK-3αβ, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Serine240/244 in transfected cells. Increase in cell growth and proliferation was observed due to the transfection of different phosphorylated AKT1 protein variants compared to cells with TAT-AKT1 protein. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on specific AKT1 activity and phosphorylation.Keywords: cell penetrating peptide, cell signaling, protein kinase b (AKT1), phosphorylation
Procedia PDF Downloads 1184393 Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture
Authors: Melanie Macgregor-Ramiasa, Isabel Hopp, Patricia Murray, Krasimir Vasilev
Abstract:
Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support.Keywords: nanotopography, stem cells, differentiation, plasma polymer, oxazoline, gold nanoparticles
Procedia PDF Downloads 2804392 Influence of Recombination of Free and Trapped Charge Carriers on the Efficiency of Conventional and Inverted Organic Solar Cells
Authors: Hooman Mehdizadeh Rad, Jai Singh
Abstract:
Organic solar cells (OSCs) have been actively investigated in the last two decades due to their several merits such as simple fabrication process, low-cost manufacturing, and lightweight. In this paper, using the optical transfer matrix method (OTMM) and solving the drift-diffusion equations processes of recombination are studied in inverted and conventional bulk heterojunction (BHJ) OSCs. Two types of recombination processes are investigated: 1) recombination of free charge carriers using the Langevin theory and 2) of trapped charge carriers in the tail states with exponential energy distribution. These recombination processes are incorporated in simulating the current- voltage characteristics of both conventional and inverted BHJ OSCs. The results of this simulation produces a higher power conversion efficiency in the inverted structure in comparison with conventional structure, which agrees well with the experimental results.Keywords: conventional organic solar cells, exponential tail state recombination, inverted organic solar cells, Langevin recombination
Procedia PDF Downloads 1854391 Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis
Authors: K. Suresh, R. Arunkumar
Abstract:
The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention.Keywords: apoptosis, HEp-2 cell line, KB cell line mitochondria, gramine, nanosuspension
Procedia PDF Downloads 453