Search results for: method of integral equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20538

Search results for: method of integral equations

20028 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance.

Keywords: finite element method, Preissmann scheme, HEC-RAS, flood forecasting, Indus river

Procedia PDF Downloads 505
20027 C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method

Authors: Hamioud Saida, Khalfallah Salah

Abstract:

In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision.

Keywords: elastically supported Euler-Bernoulli beam, free-vibration, spectral element method, Winkler foundation

Procedia PDF Downloads 133
20026 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 183
20025 A Source Point Distribution Scheme for Wave-Body Interaction Problem

Authors: Aichun Feng, Zhi-Min Chen, Jing Tang Xing

Abstract:

A two-dimensional linear wave-body interaction problem can be solved using a desingularized integral method by placing free surface Rankine sources over calm water surface and satisfying boundary conditions at prescribed collocation points on the calm water surface. A new free-surface Rankine source distribution scheme, determined by the intersection points of free surface and body surface, is developed to reduce numerical computation cost. Associated with this, a new treatment is given to the intersection point. The present scheme results are in good agreement with traditional numerical results and measurements.

Keywords: source point distribution, panel method, Rankine source, desingularized algorithm

Procedia PDF Downloads 365
20024 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 296
20023 Modification of Newton Method in Two Point Block Backward Differentiation Formulas

Authors: Khairil I. Othman, Nur N. Kamal, Zarina B. Ibrahim

Abstract:

In this paper, we present modified Newton method as a new strategy for improving the efficiency of Two Point Block Backward Differentiation Formulas (BBDF) when solving stiff systems of ordinary differential equations (ODEs). These methods are constructed to produce two approximate solutions simultaneously at each iteration The detailed implementation of the predictor corrector BBDF with PE(CE)2 with modified Newton are discussed. The proposed modification of BBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing Block Backward Differentiation Formula. Numerical results show the advantage of using the new strategy for solving stiff ODEs in improving the accuracy of the solution.

Keywords: newton method, two point, block, accuracy

Procedia PDF Downloads 357
20022 Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations

Authors: Alex Fedoseyev

Abstract:

This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections.

Keywords: comparison with experimental data. generalized hydrodynamic equations, numerical solution, turbulent boundary layer, turbulent flow in channel

Procedia PDF Downloads 66
20021 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow

Authors: Alex Fedoseyev

Abstract:

This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.

Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow

Procedia PDF Downloads 61
20020 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 138
20019 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model

Authors: Qijiao He

Abstract:

MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.

Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation

Procedia PDF Downloads 173
20018 Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator

Authors: Vikas Teotia, Sanjay Malhotra, Elina Mishra, Prashant Kumar, R. R. Singh, Priti Ukarde, P. P. Marathe, Y. S. Mayya

Abstract:

Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed.

Keywords: DTL, focusing, PMQ, proton, rate earth magnets

Procedia PDF Downloads 472
20017 Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable.

Keywords: participating media, LBM, CVFEM- radiation coupled with convection

Procedia PDF Downloads 408
20016 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect

Authors: Minas Balyan

Abstract:

In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.

Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves

Procedia PDF Downloads 408
20015 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model

Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga

Abstract:

The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.

Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives

Procedia PDF Downloads 113
20014 Analysis of Thermal Effect on Functionally Graded Micro-Beam via Mixed Finite Element Method

Authors: Cagri Mollamahmutoglu, Ali Mercan, Aykut Levent

Abstract:

Studies concerning the microstructures are becoming more important as the utilization of various micro-electro mechanical systems (MEMS) are increasing. Thus in recent years, thermal buckling and vibration analysis of microstructures have been subject to many investigations that are utilizing different numerical methods. In this study, thermal effects on mechanical response of a functionally graded (FG) Timoshenko micro-beam are presented in the framework of a mixed finite element formulation. Size effects are taken into consideration via modified couple stress theory. The mixed formulation is based on a function which in turn is derived via Gateaux Differential scientifically. After the resolution of all field equations of the beam, a potential operator is carefully constructed. Then this operator is used for the manufacturing of the functional. Usual procedures of finite element approximation are utilized for the derivation of the mixed finite element equations once the potential is obtained. Resulting finite element formulation allows usage of C₀ type simple linear shape functions and avoids shear-locking phenomena, which is a common shortcoming of the displacement-based formulations of moderately thick beams. The developed numerical scheme is used to obtain the effects of thermal loads on the static bending, free vibration and buckling of FG Timoshenko micro-beams for different power-law parameters, aspect ratios and boundary conditions. The versatility of the mixed formulation is presented over other numerical methods such as generalized differential quadrature method (GDQM). Another attractive property of the formulation is that it allows direct calculation of the contribution of micro effects on the overall mechanical response.

Keywords: micro-beam, functionally graded materials, thermal effect, mixed finite element method

Procedia PDF Downloads 140
20013 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 218
20012 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications

Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe

Abstract:

This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.

Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation

Procedia PDF Downloads 105
20011 Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process

Authors: Adnan Alhathal Alanezi, Alanood A. Alsarayreh

Abstract:

A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically.

Keywords: direct contact membrane distillation, membrane inclination angle, heat and mass transfer, reynolds number

Procedia PDF Downloads 121
20010 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis

Procedia PDF Downloads 421
20009 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM

Procedia PDF Downloads 314
20008 Hydrodynamic Study and Sizing of a Distillation Column by HYSYS Software

Authors: Derrouazin Mohammed Redhouane, Souakri Mohammed Lotfi, Henini Ghania

Abstract:

This work consists, first of all, of mastering one of the powerful process simulation tools currently used in the industrial processes, which is the HYSYS sizing software, and second, of simulating a petroleum distillation column. This study is divided into two parts; where the first one consists of a dimensioning of the column with a fast approximating method using state equations, iterative calculations, and then a precise simulation method with the HYSYS software. The second part of this study is a hydrodynamic study in order to verify by obtained results the proper functioning of the plates.

Keywords: industry process engineering, water distillation, environment, HYSYS simulation tool

Procedia PDF Downloads 130
20007 6 DOF Cable-Driven Haptic Robot for Rendering High Axial Force with Low Off-Axis Impedance

Authors: Naghmeh Zamani, Ashkan Pourkand, David Grow

Abstract:

This paper presents the design and mechanical model of a hybrid impedance/admittance haptic device optimized for applications, like bone drilling, spinal awl probe use, and other surgical techniques were high force is required in the tool-axial direction, and low impedance is needed in all other directions. The performance levels required cannot be satisfied by existing, off-the-shelf haptic devices. This design may allow critical improvements in simulator fidelity for surgery training. The device consists primarily of two low-mass (carbon fiber) plates with a rod passing through them. Collectively, the device provides 6 DOF. The rod slides through a bushing in the top plate and it is connected to the bottom plate with a universal joint, constrained to move in only 2 DOF, allowing axial torque display the user’s hand. The two parallel plates are actuated and located by means of four cables pulled by motors. The forward kinematic equations are derived to ensure that the plates orientation remains constant. The corresponding equations are solved using the Newton-Raphson method. The static force/torque equations are also presented. Finally, we present the predicted distribution of location error, cables velocity, cable tension, force and torque for the device. These results and preliminary hardware fabrication indicate that this design may provide a revolutionary approach for haptic display of many surgical procedures by means of an architecture that allows arbitrary workspace scaling. Scaling of the height and width can be scaled arbitrarily.

Keywords: cable direct driven robot, haptics, parallel plates, bone drilling

Procedia PDF Downloads 258
20006 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

Authors: Roslinda Nazar, Ezad Hafidz Hafidzuddin, Norihan M. Arifin, Ioan Pop

Abstract:

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Keywords: boundary layer, exponentially stretching/shrinking sheet, generalized slip, heat transfer, numerical solutions

Procedia PDF Downloads 432
20005 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage

Authors: Meng H. Lean, Wei-Ping L. Chu

Abstract:

The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.

Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport

Procedia PDF Downloads 355
20004 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 423
20003 Numerical Solutions of an Option Pricing Rainfall Derivatives Model

Authors: Clarinda Vitorino Nhangumbe, Ercília Sousa

Abstract:

Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data.

Keywords: finite differences method, ornstein-uhlenbeck process, partial differential equations approach, rainfall derivatives

Procedia PDF Downloads 110
20002 Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study

Authors: Emmanuel Omokhuale

Abstract:

A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement.

Keywords: free convection flow, vertical cylinder, implicit finite difference method, heat sink and porous medium

Procedia PDF Downloads 143
20001 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)

Authors: Jiya Mohammed, Ibrahim Ismail Giwa

Abstract:

Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.

Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow

Procedia PDF Downloads 475
20000 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 539
19999 Numerical Modeling of Storm Swells in Harbor by Boussinesq Equations Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

The purpose of work is to study the phenomenon of agitation of storm waves at basin caused by different directions of waves relative to the current provision thrown numerical model based on the equation in shallow water using Boussinesq model MIKE 21 BW. According to the diminishing effect of penetration of a wave optimal solution will be available to be reproduced in reduced model. Another alternative arrangement throws will be proposed to reduce the agitation and the effects of the swell reflection caused by the penetration of waves in the harbor.

Keywords: agitation, Boussinesq equations, combination, harbor

Procedia PDF Downloads 390