Search results for: forest biodiversity
859 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 129858 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand
Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott
Abstract:
Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest
Procedia PDF Downloads 285857 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 130856 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 77855 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia
Authors: Amanda Silva Parra, Dayra Yisel García Ramirez
Abstract:
In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems
Procedia PDF Downloads 119854 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 74853 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment
Authors: Ella Sèdé Maforikan
Abstract:
Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment
Procedia PDF Downloads 63852 Spatial Distribution and Habitat Preference of Indian Pangolin (Manis crassicaudata) in Madhesh Province, Nepal
Authors: Asmit Neupane, Narayan Prasad Gautam, Prabin Bhusal
Abstract:
Indian pangolin, locally called as ‘Salak’, ‘Sal machha’, ‘Pakho machha’, is a globally endangered species, nationally categorized as a critically endangered species, protected under the National Parks and Wildlife Conservation (NPWC) Act 1973 and appended in Appendix I of CITES. Indian pangolins occur in the tropical areas of Terai region and Chure foothills of eastern Nepal, and India, Bangladesh, Pakistan, and Sri Lanka. They utilize a wide range of habitats, including primary and secondary tropical forest, limestone forest, bamboo forest, grassland, and agricultural lands. So, in regard to this fact, this research is aimed to provide detailed information regarding the current distribution pattern, status, habitat preference, prevailing threats and attitude of local people towards species conservation in Madhesh Province, Nepal. The study was conducted in four CFs, two from Bara district and two from Dhanusha district. The study area comprised of Churia range and foothills with tropical and sub-tropical vegetation. A total of 24 transects were established, each of 500*50 m2, where indirect signs of Indian pangolin, including active/old burrows, pugmarks and scratches, were found. Altogether 93 burrows were found, where only 20 were active burrows. Similarly, a vegetation survey and social survey was also conducted. The data was analyzed using Stata 16 and SPSS software. Distance from settlement, ground cover, aspect, presence/absence of ants/termites and human disturbance were the important habitat parameters having statistically significant relationship with the distribution of Indian pangolin in the area. The species was found to prefer an elevation of 360 to 540m, 0-15º slope, red soil, North-east aspect, moderate crown and ground cover, without fire and rocks, vicinity of water, roads, settlement, Sal dominated forest and minimum disturbed by human activities. Similarly, the attitude of local people towards Indian pangolin conservation was found to be significantly different with respect to age, sex and education level. The study concludes that majority of active burrows were found in Churia hills, which indicates that Indian pangolin population is gradually moving uphill towards higher elevation as hilly area supports better prey availability and also less human disturbance. Further studies are required to investigate microhabitat preferences, seasonal variability and impacts of climate change on the distribution, habitat and prey availability of Indian pangolin for the sustainable conservation of this species.Keywords: conservation, IUCN red list, local participation, small mammal, status, threats
Procedia PDF Downloads 80851 Diversity and Distribution of Butterflies (Lepidoptera-Rhopalocera) along with Altitudinal Gradient and Vegetation Types at Lahoul Valley, Trans-Himalaya Region, India
Authors: Saveena Bogtapa, Jagbir Singh Kirti
Abstract:
Himalaya is one of the most fascinating ranges in the world. In India, it comprises 18 percent of the land area. Lahoul valley which is a part of Trans-Himalaya region is well known for its unique, diverse flora and fauna. It lies in the North-Eastern corner of the state Himachal Pradesh where its altitude ranges between 2500m to 5000m. Vegetation of this region is dry-temperate to alpine type. The diversity of the area is very less, rare, unique and highly endemic. But today, as a lot of environmental degradation has taken place in this hot spot of biodiversity because of frequent developmental and commercial activities which lead to the diversity of this area comes under a real threat. Therefore, as part of the research, butterflies which are known for their attractiveness as well as usefulness to the ecosystem, are used for the study. The diversity of butterflies of a particular area not only provides a healthy environment but also serves as the first step of conservation to the biodiversity. Their distribution in different habitats and altitude type helps us to understand the species richness and abundance in an area. Moreover, different environmental parameters which affect the butterfly community has also recorded. Hence, the present study documents the butterfly diversity in an unexplored habitat and altitude types at Lahoul valley. The valley has been surveyed along with altitudinal gradients (from 2500m to 4500m) and in various habitats like agriculture land, grassland, scrubland, riverine and in different types of forests. Very rare species of butterflies have been explored, and these will be discussed along with different parameters during the presentation.Keywords: butterflies, diversity, Lahoul valley, altitude, vegetation
Procedia PDF Downloads 246850 Polyhydroxybutyrate Production in Bacteria Isolated from Estuaries along the Eastern Coast of India
Authors: Shubhashree Mahalik, Dhanesh Kumar, Jatin Kumar Pradhan
Abstract:
Odisha is one of the coastal states situated on the eastern part of India with 480 km long coastline. The coastal Odisha is referred to as "Gift of Six Rivers". Balasore, a major coastal district of Odisha is bounded by Bay of Bengal in the East having 26 km long seashore. It is lined with several estuaries rich in biodiversity.Several studies have been carried out on the macro flora and fauna of this area but very few documented information are available regarding microbial biodiversity. In the present study, an attempt has been made to isolate and identify bacteria found along the estuaries of Balasore.Many marine microorganisms are sources of natural products which makes them potential industrial organisms. So the ability of the isolated bacteria to secrete one such industrially significant product, PHB (Polyhydroxybutyrate) has been elucidated. Several rounds of sampling, pure culture, morphological, biochemical and phylogenetic screening led to the identification of two PHB producing strains. Isolate 5 was identified to be Brevibacillus sp. and has maximum similarity to Brevibacillus parabrevis (KX83268). The isolate was named as Brevibacillus sp.KEI-5. Isolate 8 was identified asLysinibacillus sp. having closest similarity withLysinibacillus boroni-tolerance (KP314269) and named as Lysinibacillus sp. KEI-8.Media, temperature, carbon, nitrogen and salinity requirement were optimized for both isolates. Submerged fermentation of both isolates in Terrific Broth media supplemented with optimized carbon and nitrogen source at 37°C led to significant accumulation of PHB as detected by colorimetric method.Keywords: Bacillus, estuary, marine, Odisha, polyhydroxy butyrate
Procedia PDF Downloads 351849 Ecosystem Services and Human Well-Being: Case Study of Tiriya Village, Bastar India
Authors: S. Vaibhav Kant Sahu, Surabhi Bipin Seth
Abstract:
Human well-being has multiple constituents including the basic material for a good life, freedom and choice, health, good social relations, and security. Poverty is also multidimensional and has been defined as the pronounced deprivation of well-being. Dhurwa tribe of Bastar (India) have symbiotic relation with nature, it provisions ecosystem service such as food, fuel and fiber; regulating services such as climate regulation and non-material benefits such as spiritual or aesthetic benefits and they are managing their forest from ages. The demand for ecosystem services is now so great that trade-off among services become rule. Aim of study to explore evidences for linkages between ecosystem services and well-being of indigenous community, how much it helps them in poverty reduction and interaction between them. Objective of study was to find drivers of change and evidence concerning link between ecosystem, human development and sustainability, evidence in decision making does it opt for multi sectoral objectives. Which means human well-being as the central focus for assessment, while recognizing that biodiversity and ecosystems also have intrinsic value. Ecosystem changes that may have little impact on human well-being over days or weeks may have pronounced impacts over years or decades; so assessments needed to be conducted at spatial and temporal scales under social, political, economic scales to have high-resolution data. Researcher used framework developed by Millennium ecosystem assessment; since human action now directly or unknowingly virtually alter ecosystem. Researcher used ethnography study to get primary qualitative data, secondary data collected from panchayat office. The responses were transcribed and translated into English, as interview held in Hindi and local indigenous language. Focus group discussion were held with group of 10 women at Tiriya village. Researcher concluded with well-being is not just gap between ecosystem service supply but also increases vulnerability. Decision can have consequences external to the decision framework these consequences are called externalities because they are not part of the decision-making calculus.Keywords: Bastar, Dhurwa tribe, ecosystem services, millennium ecosystem assessment, sustainability
Procedia PDF Downloads 302848 The Experience of Community-based Tourism in Yunguilla, Ecuador and Its Social-Cultural Impact
Authors: York Neudel
Abstract:
The phenomenon of tourism has been considered as tool to overcome cultural frontiers, to comprehend the other and to cope with mutual mistrust and suspicion. Well, that has been a myth, at least when it comes to mass-tourism. Other approaches, like community-based tourism, still are based on the idea of embracing the other in order to help or to understand the cultural difference. In 1997, two American NGOs incentivized a tourism-project in a community in the highlands of Ecuador, in order to protect the cloud forest from destructive exploitation of its own inhabitants. Nineteen years after that, I analyze in this investigation the interactions between the Ecuadorian hosts in the mestizo-community of Yunguilla and the foreign tourist in the quest for “authentic life” in the Ecuadorian cloud forest. As a sort of “contemporary pilgrim” the traveller tries to find authenticity in other times and places far away from their everyday life in Europe or North America. Therefore, tourists are guided by stereotypes and expectations that are produced by the touristic industry. The host, on the other hand, has to negotiate this pre-established imaginary. That generates a kind of theatre-play with front- and backstage in organic gardens, little fabrics and even private housing, since this alternative project offers to share the private space of the host with the tourist in the setting the community-based tourism. In order to protect their privacy, the community creates new hybrid spaces that oscillate between front- and backstages that culminates in a game of hide and seek – a phenomenon that promises interesting frictions for an anthropological case-study.Keywords: Tourism, Authenticity, Community-based tourism, Ecuador, Yunguilla
Procedia PDF Downloads 285847 Water Quality and Coastal Management Profile Assessment of Puerto Galera Bay, Philippines
Authors: Ma. Manna Farrel B. Pinto
Abstract:
As global industrialization progresses, the environment remains to be at risk of disturbances brought by developments of cities and communities. Impacts of flourishing industries such as tourism require rapid growth of establishments and may threaten ecosystems and natural resources. Puerto Galera as a biosphere reserve and declared as the Center of the World’s Center of Marine Shorefish Biodiversity is on the brink of ecological deterioration as tourism further develops in its coastal areas. Apparently, attempts were initiated to establish a baseline for designation of protection in the economic and coastal marine zones of Puerto Galera but continuity of its implementation and coordination of concerned units remains deficient. Indications of eutrophication have been observed based on water quality analysis although parameter values still comply with the national standards for coastal waters. Water quality data, biodiversity and hydrodynamic information, gathered from studies, and local government units were analysed to assess the condition of the coast as well as acting policies implemented by the local authorities. Sources of contaminants were also located in its three main communities, and their shores wherein in recommendations for installing wastewater treatment facilities and further improvement of policies of waste discharge must be addressed. With a conceptual framework proposed in the study, a comprehensive data analysis and coordinated management are necessary to form an integrated coastal management for further protection and preservation of the sustainable coastal marine ecosystem of Puerto Galera.Keywords: coastal management, environmental management, integrated resource management, Puerto Galera
Procedia PDF Downloads 267846 Floristic Diversity, Composition and Environmental Correlates on the Arid, Coralline Islands of the Farasan Archipelago, Red SEA, Saudi Arabia
Authors: Khalid Al Mutairi, Mashhor Mansor, Magdy El-Bana, Asyraf Mansor, Saud AL-Rowaily
Abstract:
Urban expansion and the associated increase in anthropogenic pressures have led to a great loss of the Red Sea’s biodiversity. Floristic composition, diversity, and environmental controls were investigated for 210 relive's on twenty coral islands of Farasan in the Red Sea, Saudi Arabia. Multivariate statistical analyses for classification (Cluster Analysis), ordination (Detrended Correspondence Analysis (DCA), and Redundancy Analysis (RDA) were employed to identify vegetation types and their relevance to the underlying environmental gradients. A total of 191 flowering plants belonging to 53 families and 129 genera were recorded. Geophytes and chamaephytes were the main life forms in the saline habitats, whereas therophytes and hemicryptophytes dominated the sandy formations and coral rocks. The cluster analysis and DCA ordination identified twelve vegetation groups that linked to five main habitats with definite floristic composition and environmental characteristics. The constrained RDA with Monte Carlo permutation tests revealed that elevation and soil salinity were the main environmental factors explaining the vegetation distributions. These results indicate that the flora of the study archipelago represents a phytogeographical linkage between Africa and Saharo-Arabian landscape functional elements. These findings should guide conservation and management efforts to maintain species diversity, which is threatened by anthropogenic activities and invasion by the exotic invasive tree Prosopis juliflora (Sw.) DC.Keywords: biodiversity, classification, conservation, ordination, Red Sea
Procedia PDF Downloads 343845 Local Cultural Beliefs and Practices of the Indiginous Communities Related to Wildlife in the Buffer Zone of Chitwan National Park
Authors: Neeta Pokharel
Abstract:
Cultural beliefs and practices have been shaping indigenous community’s resource use and attitude toward the conservation of natural flora and fauna around them. Understanding these cultural dimensions is vital for identifying effective strategies that align with conservation efforts. This study focused on investigating the wildlife-related cultural beliefs and practices of two indigenous communities: Bote and Musahars. The study applied ethnographic methods that included Key-informant interviews, Focal Group discussion, and Household survey methods. Out of 100 respondents, 51% were male and 49% female. A significant portion (65%) of the respondents confirmed animal worship, with a majority worshipping tigers (81.5%), rhinos (73.8%), crocodiles (66%), and dolphins (40%). Additionally, 16.9% disclosed worshipping Elephants, while 10 % affirmed animal worship without specifying the particular animals. Ritualistic practices often involve the sacrifice of pigs, goats, hens, and pigeons. Their cultural ethics place a significant emphasis on biodiversity conservation, as the result shows 41 % refraining from causing harm to wild animals and 9% doing so for ethical considerations, respectively. Moreover, the majority of the respondents believe that cultural practices could enhance conservation efforts. However, the encroachment of modernization and religious conversion within the community poses a tangible risk of cultural degradation, highlighting the urgent need to preserve the cultural practices. Integrating such indigenous practices into the National Biodiversity Strategy and conservation policies can ensure sustainable conservation of endangered animals with appropriate cultural safeguards.Keywords: tribal communities, societal belief, wild fauna, “barana”, safeguarding
Procedia PDF Downloads 82844 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment
Authors: N. Hedayat, E. Karamifar
Abstract:
Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.Keywords: agricultural sustainability, environmental integrity, pollution, eco-system
Procedia PDF Downloads 402843 Spacio-Temporal Variation of the Zooplanktonic Community of Esa-Odo Reservoir, Esa-Odo, Osun State, Nigeria
Authors: Helen Yetunde Omoboye, Adebukola Adenike Adedeji, Israel Funso Adeniyi
Abstract:
This study of the biodiversity, community structure, and production capacity of the zooplankton community is an aspect of bio-monitoring of the aquatic ecosystem. Samples were selected horizontally and vertically from Esa-Odo Reservoir using improvised Meyer’s water sampler. Planktonic samples were collected at two months intervals for two years. Net and total plankton were sampled by filtration and sedimentation methods. Planktonic samples were preserved as 5% formalin and 1% Lugol’s solution. Measurement, enumeration, and scaled pictures of the recorded zooplankton were taken using a photomicrograph. The taxonomic composition of zooplankton biota was determined using identification keys. Eighty three (83) species of zooplankton recorded in this study belong to 4 groups: Rotifera, Cladocera, Copepoda, and Insecta. Rotifera was the most represented group (61.21%). Horizontally, 24 species with the highest mean abundance characterized the lacustrine; while 12 species and 10 species were unique to the transition and riverine zones, respectively. Vertically, most species had their mean abundance decreased from the surface to the bottom of the reservoir. A total of nine (9), two (2), and one (1) species were peculiar to the surface, bottom and mid-depth, respectively. Zooplankton was most abundant during the dry season. In conclusion, Esa-Odo Reservoir comprised highly diversified zooplankton fauna with great potential to support a rich aquatic community and fishery production. The reservoir can be classified as fairly clean based on the abundance of the rotifer group. However, the lake should be subjected to regular proper monitoring because of the presence of some pollution tolerant copepod species identified among the zooplankton fauna.Keywords: zooplankton, spatial, temporal, abundance, biodiversity, reservoir
Procedia PDF Downloads 97842 Diversity and Phylogenetic Placement of Seven Inocybe (Inocybaceae, Fungi) from Benin
Authors: Hyppolite Aignon, Souleymane Yorou, Martin Ryberg, Anneli Svanholm
Abstract:
Climate change and human actions cause the extinction of wild mushrooms. In Benin, the diversity of fungi is large and may still contain species new to science but the inventory effort remains low and focuses on particularly edible species (Russula, Lactarius, Lactifluus, and also Amanita). In addition, inventories have started recently and some groups of fungi are not sufficiently sampled, however, the degradation of fungal habitat continues to increase and some species are already disappearing. (Yorou and De Kesel, 2011), however, the degradation of fungi habitat continues to increase and some species may disappear without being known. This genus (Inocybe) overlooked has a worldwide distribution and includes more than 700 species with many undiscovered or poorly known species worldwide and particularly in tropical Africa. It is therefore important to orient the inventory to other genera or important families such as Inocybe (Fungi, Agaricales) in order to highlight their diversity and also to know their phylogenetic positions with a combined approach of gene regions. This study aims to evaluate the species richness and phylogenetic position of Inocybe species and affiliated taxa in West Africa. Thus, in North Benin, we visited the Forest Reserve of Ouémé Supérieur, the Okpara forest and the Alibori Supérieur Forest Reserve. In the center, we targeted the Forest Reserve of Toui-Kilibo. The surveys have been carried during the raining season in the study area meaning from June to October. A total of 24 taxa were collected, photographed and described. The DNA was extracted, the Polymerase Chain Reaction was carried out using primers (ITS1-F, ITS4-B) for Internal transcribed spacer (ITS), (LROR, LWRB, LR7, LR5) for nuclear ribosomal (LSU), (RPB2-f5F, RPB2-b6F, RPB2- b6R2, RPB2-b7R) for RNA polymerase II gene (RPB2) and sequenced. The ITS sequences of the 24 collections of Inocybaceae were edited in Staden and all the sequences were aligned and edited with Aliview v1.17. The sequences were examined by eye for sufficient similarity to be considered the same species. 13 different species were present in the collections. In addition, sequences similar to the ITS sequences of the thirteen final species were searched using BLAST. The nLSU and RPB2 markers for these species have been inserted in a complete alignment, where species from all major Inocybaceae clades as well as from all continents except Antarctica are present. Our new sequences for nLSU and RPB2 have been manually aligned in this dataset. Phylogenetic analysis was performed using the RAxML v7.2.6 maximum likelihood software. Bootstrap replications have been set to 100 and no partitioning of the dataset has been performed. The resulting tree was viewed and edited with FigTree v1.4.3. The preliminary tree resulting from the analysis of maximum likelihood shows us that these species coming from Benin are much diversified and are distributed in four different clades (Inosperma, Inocybe, Mallocybe and Pseudosperma) on the seven clades of Inocybaceae but the phylogeny position of 7 is currently known. This study marks the diversity of Inocybe in Benin and the investigations will continue and a protection plan will be developed in the coming years.Keywords: Benin, diversity, Inocybe, phylogeny placement
Procedia PDF Downloads 150841 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 157840 Filling the Policy Gap for Coastal Resources Management: Case of Evidence-Based Mangrove Institutional Strengthening in Cameroon
Authors: Julius Niba Fon, Jean Hude E. Moudingo
Abstract:
Mangrove ecosystems in Cameroon are valuable both in services and functions as they play host to carbon sinks, fishery breeding grounds and natural coastal barriers against storms. In addition to the globally important biodiversity that they contain, they also contribute to local livelihoods. Despite these appraisals, a reduction of about 30 % over a 25 years period due to anthropogenic and natural actions has been recorded. The key drivers influencing mangrove change include population growth, climate change, economic and political trends and upstream habitat use. Reversing the trend of mangrove loss and growing vulnerability of coastal peoples requires a real commitment by the government to develop and implement robust level policies. It has been observed in Cameroon that special ecosystems like mangroves are insufficiently addressed by forestry and/or environment programs. Given these facts, the Food Agriculture Organization (FAO) in partnership with the Government of Cameroon and other development actors have put in place the project for sustainable community-based management and conservation of mangrove ecosystems in Cameroon. The aim is to address two issues notably the present weak institutional and legal framework for mangrove management, and the unrestricted and unsustainable harvesting of mangrove resources. Civil society organizations like the Cameroon Wildlife Conservation Society, Cameroon Ecology and Organization for the Environment and Development have been working to reduce the deforestation and degradation trend of Cameroon mangroves and also bringing the mangrove agenda to the fore in national and international arenas. Following a desktop approach, we found out that in situ and ex situ initiatives on mangrove management and conservation exist on propagation of improved fish smoke ovens to reduce fuel wood consumption, mangrove forest regeneration, shrimps farming and mangrove protected areas management. The evidence generated from the field experiences are inputs for processes of improving the legal and institutional framework for mangrove management in Cameroon, such as the elaboration of norms for mangroves management engaged by the government.Keywords: mangrove ecosystem, legal and institutional framework, climate change, civil society organizations
Procedia PDF Downloads 365839 Landslide Vulnerability Assessment in Context with Indian Himalayan
Authors: Neha Gupta
Abstract:
Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high.Keywords: landslide, multi-criteria analysis, MCA, physical vulnerability, social vulnerability
Procedia PDF Downloads 301838 Water Balance in the Forest Basins Essential for the Water Supply in Central America
Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan
Abstract:
The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.Keywords: Costa Rica, infiltration, soil, water
Procedia PDF Downloads 385837 Urbanization on Green Cover and Groundwater Relationships in Delhi, India
Authors: Kiranmay Sarma
Abstract:
Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.Keywords: groundwater, urbanization, GIS, green cover, Delhi
Procedia PDF Downloads 289836 Study of the Allelopathic Effects of Certain Aromatic Plants on Grapevines
Authors: Tinatin Shengelia, Mzia Beruashvili
Abstract:
In organic farming, including organic viticulture, biodiversity plays a crucial role. Properly selected ‘companion’ and helper plants create favorable conditions for the growth and development of the main crop. Additionally, they can provide protection from pests and diseases, suppress weeds, improve the crop’s visual and taste characteristics, enhance nutrient absorption from the soil, and, as a result of all these factors, increase yields. The use of companion plants is particularly relevant for organic farms, where the range of pesticides and fertilizers is significantly restricted by organic regulations, and they must be replaced with alternative, environmentally safe methods. Therefore, the aim of this research was to study the allelopathic effects of companion aromatic plants on grapevines. The research employed methods used in organic farming and the biological control of harmful organisms. The experiments were conducted in control and experimental plots, each with three replications on equal areas (50 m²). The allelopathic potential of medicinal hyssop (Hyssopus officinalis), basil (Ocimum basilicum), marigold or Imeretian saffron (Tagetes patula), and lavender (Lavandula angustifolia L.) was studied in vineyards located in the Mtskheta-Mtianeti and Kakheti regions. The impact of these plants on grapevines (Vitis vinifera L.) (variety Muscat petitgrain), their growth and development according to the BBCH scale, yields, and diseases caused by certain pathogenic microorganisms (downy mildew, powdery mildew, anthracnose) were determined. Additionally, the biological, agricultural, and economic efficiency of using these companion plants was assessed.Keywords: organic farming, biodiversity, allelopathy, aromatic plants
Procedia PDF Downloads 22835 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 136834 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 184833 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe
Authors: Eleni Stefania Kalapoda
Abstract:
The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.Keywords: mass-timber innovation, concrete structure, carbon footprint, densification
Procedia PDF Downloads 109832 The Triple Threat: Microplastic, Nanoplastic, and Macroplastic Pollution and Their Cumulative Impacts on Marine Ecosystem
Authors: Tabugbo B. Ifeyinwa, Josephat O. Ogbuagu, Okeke A. Princewill, Victor C. Eze
Abstract:
The increasing amount of plastic pollution in maritime settings poses a substantial risk to the functioning of ecosystems and the preservation of biodiversity. This comprehensive analysis combines the most recent data on the environmental effects of pollution from macroplastics, microplastics, and nanoplastics within marine ecosystems. Our goal is to provide a comprehensive understanding of the cumulative impacts that plastic waste accumulates on marine life by outlining the origins, processes, and ecological repercussions connected with each size category of plastic debris. Microplastics and nanoplastics have more sneaky effects that are controlled by chemicals. These effects can get through biological barriers and affect the health of cells and the whole body. Compared to macroplastics, which primarily contribute to physical harm through entanglement and ingestion by marine fauna, microplastics, and nanoplastics are associated with non-physical effects. The review underlines a vital need for research that crosses disciplinary boundaries to untangle the intricate interactions that the various sizes of plastic pollution have with marine animals, evaluate the long-term ecological repercussions, and identify effective measures for mitigating the effects of plastic pollution. Additionally, we urge governmental interventions and worldwide cooperation to solve this pervasive environmental concern. Specifically, we identify significant knowledge gaps in the detection and effect assessment of nanoplastics. To protect marine biodiversity and preserve ecosystem services, this review highlights how urgent it is to address the broad spectrum of plastic pollution.Keywords: macroplastic pollution, marine ecosystem, microplastic pollution, nanoplastic pollution
Procedia PDF Downloads 77831 Composition, Abundance and Diversity of Zooplankton in Sarangani Bay, Sarangani Province, Philippines
Authors: Jeter Canete, Noreen Joyce Estrella, Yedda Sachi Patrice Madelo
Abstract:
Zooplankton plays a crucial role in aquatic ecosystems and a number of water parameters involved in it. Despite their relevance, there is inadequate information about zooplankton communities in Sarangani Bay, Sarangani Province: one of the most essential waterbodies in Mindanao. The aim of the present study was to determine the composition, abundance, and diversity of zooplankton as well as to provide more recent data about the physico-chemical characteristics of Sarangani Bay. Zooplankton samples were collected by vertical hauls using a zooplankton net (mouth diameter: 0.5m; mesh size opening: round, 350μm) in three stations in the coastal waters of Alabel, Malapatan, and Maasim during November 2018. A total of 74 species of zooplankton belonging mainly to Kingdom Protozoa, Phylum Arthropoda, Chaetognatha, and Chordata were identified. Results showed a total zooplankton abundance of 1,984,166 ind/m³ with the highest count recorded at Malapatan (717,169 ind/m³) and the lowest at Maasim (624,411 ind/m³). Among 22 zooplankton groups identified, subclass Copepoda was found to be the most dominant (73.10%), followed by Appendicularia (12.18%) and Vertebrata (3.54%). Diversity analysis revealed an even distribution of species and a diverse ecosystem in all stations sampled. Correlation analysis indicated a strong relationship between zooplankton abundance and physico-chemical parameters. Overall, the physico-chemical profile of Sarangani Bay did not differ from the standards set by DENR, and analysis of the zooplankton communities revealed that Sarangani Bay favorably supports marine organisms to flourish. The findings of this study provide useful knowledge on zooplankton communities and can be used to create management strategies to protect the aquatic biodiversity in Sarangani Bay.Keywords: aquatic biomonitoring, biodiversity, physicochemical analysis, population survey, Sarangani Bay, Sarangani Province, zooplankton
Procedia PDF Downloads 333830 Access to the Forest Ecosystem Services: Understanding the Interaction between Livelihood Capitals and Access
Authors: Abu S. M. G. Kibria, Alison M. Behie, Robert Costanza, Colin Groves, Tracy Farrell
Abstract:
This study is aimed to understand the level of access and the influence of livelihood capitals in maintaining access and control of ecosystem services (ESS) in the Sundarbans, Bangladesh. Besides the villagers, we consider other stakeholders including the forest department, coast guard, police, merchants, pirates and villagers who ‘controlled’ or ‘maintained’ access to ESS (crab catching, shrimp fry, honey, shrimp, mixed fish, fuel wood) in this region. Villagers used human, physical, natural and social capitals to gain access to ESS. The highest level of access was observed in crab catching and the lowest was found in honey collection, both of which were done when balancing the costs and benefits of accessing one ESS against another. The outcomes of these ongoing access negotiations were determined by livelihood capitals of the households. In addition, it was often found that the certain variables could have a positive effect on one ESS and a negative effect on another. For instance, human, social and natural capitals (eldest daughter’s education and No. of livelihood group membership and) had significant positive effects on honey collection while two components of human and social capitals including ‘eldest son’s education’ and ‘severity of pirate problem’ had exactly the opposite impact. These complex interactions were also observed in access to other ESS. It thus seems that access to ESS is not anything which is provided, but rather it is achieved by using livelihood capitals. Protecting any ecosystem from over exploitation and improve wellbeing can be achieved by properly balancing the livelihood capital-access nexus.Keywords: provisioning services, access level, livelihood capital, interaction, access gain
Procedia PDF Downloads 283