Search results for: forensic accounting & fraud detection
3927 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 293926 Video Text Information Detection and Localization in Lecture Videos Using Moments
Authors: Belkacem Soundes, Guezouli Larbi
Abstract:
This paper presents a robust and accurate method for text detection and localization over lecture videos. Frame regions are classified into text or background based on visual feature analysis. However, lecture video shows significant degradation mainly related to acquisition conditions, camera motion and environmental changes resulting in low quality videos. Hence, affecting feature extraction and description efficiency. Moreover, traditional text detection methods cannot be directly applied to lecture videos. Therefore, robust feature extraction methods dedicated to this specific video genre are required for robust and accurate text detection and extraction. Method consists of a three-step process: Slide region detection and segmentation; Feature extraction and non-text filtering. For robust and effective features extraction moment functions are used. Two distinct types of moments are used: orthogonal and non-orthogonal. For orthogonal Zernike Moments, both Pseudo Zernike moments are used, whereas for non-orthogonal ones Hu moments are used. Expressivity and description efficiency are given and discussed. Proposed approach shows that in general, orthogonal moments show high accuracy in comparison to the non-orthogonal one. Pseudo Zernike moments are more effective than Zernike with better computation time.Keywords: text detection, text localization, lecture videos, pseudo zernike moments
Procedia PDF Downloads 1523925 Treating On-Demand Bonds as Cash-In-Hand: Analyzing the Use of “Unconscionability” as a Ground for Challenging Claims for Payment under On-Demand Bonds
Authors: Asanga Gunawansa, Shenella Fonseka
Abstract:
On-demand bonds, also known as unconditional bonds, are commonplace in the construction industry as a means of safeguarding the employer from any potential non-performance by a contractor. On-demand bonds may be obtained from commercial banks, and they serve as an undertaking by the issuing bank to honour payment on demand without questioning and/or considering any dispute between the employer and the contractor in relation to the underlying contract. Thus, whether or not a breach had occurred under the underlying contract, which triggers the demand for encashment by the employer, is not a question the bank needs to be concerned with. As a result, an unconditional bond allows the beneficiary to claim the money almost without any condition. Thus, an unconditional bond is as good as cash-in-hand. In the past, establishing fraud on the part of the employer, of which the bank had knowledge, was the only ground on which a bank could dishonour a claim made under an on-demand bond. However, recent jurisprudence in common law countries shows that courts are beginning to consider unconscionable conduct on the part of the employer in claiming under an on-demand bond as a ground that contractors could rely on the prevent the banks from honouring such claims. This has created uncertainty in connection with on-demand bonds and their liquidity. This paper analyzes recent judicial decisions in four common law jurisdictions, namely, England, Singapore, Hong Kong, and Sri Lanka, to identify the scope of using the concept of “unconscionability” as a ground for preventing unreasonable claims for encashment of on-demand bonds. The objective of this paper is to argue that on-demand bonds have lost their effectiveness as “cash-in-hand” and that this is, in fact, an advantage and not an impediment to international commerce, as the purpose of such bonds should not be to provide for illegal and unconscionable conduct by the beneficiaries.Keywords: fraud, performance guarantees, on-demand bonds, unconscionability
Procedia PDF Downloads 1053924 The Impact of Religiosity and Ethical Senstivity on Accounting Students’ Ethical Judgement Decision
Authors: Ahmed Mohamed Alteer
Abstract:
The purpose of this paper is come up with theoretical model through understanding the causes and motives behind the auditors' sensitive to ethical dilemma through Auditing Students. This study considers the possibility of auditing students’ ethical judgement being affected by two individual factors, namely ethical sensitivity and religiosity. The finding of this study that there are several ethical theories a models provide a significant understanding of ethical issues and supported that ethical sensitivity and religiosity may affect ethical judgement decision among accounting students. The suggestion model proposes that student ethical judgement is influenced by their ethical sensitivity and their religiosity. Nonetheless, the influence of religiosity on ethical judgement is expected to be via ethical sensitivity.Keywords: asccounting students, ethical sensitivity, religiosity, ethical judgement
Procedia PDF Downloads 6193923 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)
Authors: Ismail Elkhrachy
Abstract:
Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.Keywords: land use, remote sensing, change detection, satellite images, image classification
Procedia PDF Downloads 5243922 Improving Early Detection, Diagnosis And Intervention For Children With Autism Spectrum Disorder: A Cross-sectional Survey In China
Authors: Yushen Dai, Tao Deng, Miaoying Chen, Baoqin Huang, Yan Ji, Yongshen Feng, Shaofei Liu, Dongmei Zhong, Tao Zhang, Lifeng Zhang
Abstract:
Background: Detection and diagnosis are prerequisites for early interventions in the care of children with Autism Spectrum Disorder (ASD). However, few studies have focused on this topic. Aim: This study aims to characterize the timing from symptom detection to intervention in children with ASD and to identify the potential predictors of early detection, diagnosis, and intervention. Methods and procedures: A cross-sectional survey was conducted with 314 parents of children with ASD in Guangzhou, China. Outcomes and Results: This study found that most children (76.24%) were diagnosed within one year after detection, and 25.8% of them did not receive the intervention after diagnosis. Predictors to ASD diagnosis included ASD-related symptoms identified at a younger age, more serious symptoms, and initial symptoms with abnormal development and sensory anomalies. ASD-related symptoms observed at an older age, initial symptoms with the social deficit, sensory anomalies, and without language impairment, parents as the primary caregivers, family with lower income and less social support utilization increased the odds of the time lag between detection and diagnosis. Children whose fathers had a lower level of education were less likely to receive the intervention. Conclusions and Implications: The study described the time for detection, diagnosis, and interventions of children with ASD. Findings suggest that the ASD-related symptoms, the timing at which symptoms first become a concern, primary caregivers’ roles, father’s educational level, and the family economic status should be considered when offering support to improve early detection, diagnosis, and intervention. Helping children and their families take full advantage of support is also important.Keywords: autism spectrum disorder, child, detection, diagnosis, intervention, social support
Procedia PDF Downloads 903921 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3573920 Improvement of Brain Tumors Detection Using Markers and Boundaries Transform
Authors: Yousif Mohamed Y. Abdallah, Mommen A. Alkhir, Amel S. Algaddal
Abstract:
This was experimental study conducted to study segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI images each film scanned using digitizer scanner then treated by using image processing program (MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object has sufficient contrast from the background. We use edge detection and basic morphology tools to detect a brain. The segmentation of MRI images steps using detection and morphology filters were image reading, detection entire brain, dilation of the image, filling interior gaps inside the image, removal connected objects on borders and smoothen the object (brain). The results of this study were that it showed an alternate method for displaying the segmented object would be to place an outline around the segmented brain. Those filters approaches can help in removal of unwanted background information and increase diagnostic information of Brain MRI.Keywords: improvement, brain, matlab, markers, boundaries
Procedia PDF Downloads 5163919 Feasibility of Weakly Interacting Massive Particles as Dark Matter Candidates: Exploratory Study on The Possible Reasons for Lack of WIMP Detection
Authors: Sloka Bhushan
Abstract:
Dark matter constitutes a majority of matter in the universe, yet very little is known about it due to its extreme lack of interaction with regular matter and the fundamental forces. Weakly Interacting Massive Particles, or WIMPs, have been contested to be one of the strongest candidates for dark matter due to their promising theoretical properties. However, various endeavors to detect these elusive particles have failed. This paper explores the various particles which may be WIMPs and the detection techniques being employed to detect WIMPs (such as underground detectors, LHC experiments, and so on). There is a special focus on the reasons for the lack of detection of WIMPs so far, and the possibility of limits in detection being a reason for the lack of physical evidence of the existence of WIMPs. This paper also explores possible inconsistencies within the WIMP particle theory as a reason for the lack of physical detection. There is a brief review on the possible solutions and alternatives to these inconsistencies. Additionally, this paper also reviews the supersymmetry theory and the possibility of the supersymmetric neutralino (A possible WIMP particle) being detectable. Lastly, a review on alternate candidates for dark matter such as axions and MACHOs has been conducted. The explorative study in this paper is conducted through a series of literature reviews.Keywords: dark matter, particle detection, supersymmetry, weakly interacting massive particles
Procedia PDF Downloads 1423918 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection
Authors: Pradthana Sianglam, Wittaya Ngeontae
Abstract:
A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion
Procedia PDF Downloads 3633917 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy
Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz
Abstract:
Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach
Procedia PDF Downloads 1493916 The Impact of the Information Technologies on the Accounting Department of the Romanian Companies
Authors: Dumitru Valentin Florentin
Abstract:
The need to use high volumes of data and the high competition are only two reasons which make necessary the use of information technologies. The objective of our research is to establish the impact of information technologies on the accounting department of the Romanian companies. In order to achieve it, starting from the literature review we made an empirical research based on a questionnaire. We investigated the types of technologies used, the reasons which led to the implementation of certain technologies, the benefits brought by the use of the information technologies, the difficulties brought by the implementation and the future effects of the applications. The conclusions show that there is an evolution in the degree of implementation of the information technologies in the Romanian companies, compared with the results of other studies conducted a few years before.Keywords: information technologies, impact, company, Romania, empirical study
Procedia PDF Downloads 4243915 Proposed Fault Detection Scheme on Low Voltage Distribution Feeders
Authors: Adewusi Adeoluwawale, Oronti Iyabosola Busola, Akinola Iretiayo, Komolafe Olusola Aderibigbe
Abstract:
The complex and radial structure of the low voltage distribution network (415V) makes it vulnerable to faults which are due to system and the environmental related factors. Besides these, the protective scheme employed on the low voltage network which is the fuse cannot be monitored remotely such that in the event of sustained fault, the utility will have to rely solely on the complaint brought by customers for loss of supply and this tends to increase the length of outages. A microcontroller based fault detection scheme is hereby developed to detect low voltage and high voltage fault conditions which are common faults on this network. Voltages below 198V and above 242V on the distribution feeders are classified and detected as low voltage and high voltages respectively. Results shows that the developed scheme produced a good response time in the detection of these faults.Keywords: fault detection, low voltage distribution feeders, outage times, sustained faults
Procedia PDF Downloads 5433914 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications
Authors: Nicole Virgili, Romolo Remetti
Abstract:
The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination
Procedia PDF Downloads 1513913 Human Rights and Fundamental Freedoms in Crisis as Viewed during Bangladesh Parliamentary Election-2018 and Afterwards: A Contestant's Perspective on Social Measures
Authors: Mohammad S. Islam
Abstract:
Elections in Bangladesh are always controversial, and sometimes it becomes a violent affair when state power is combined with politics. Despite the commitment of the ruling party- the polling government to ensure free, fair, and credible elections, the participants of opposition parties and the general voters became very disappointed, terribly frustrated, and severely shocked. It happened when numerous claims of serious irregularities of vote rigging and violence came out in broad daylight during the election. This paper addresses the issues of how the ruling party created frightening and a horror situation to make people silent over electoral fraud and violent incidents, including gang rape. It also seeks to demonstrate that election-2018 was simply the deceptive action of the ruling party to legitimate their power, but not to provide a minimum opportunity for voters to exercise their fundamental right to vote. The fundamental freedom and the rule of law seemed to be ignored completely in this election process and afterwards. With the help of state machinery, the government of the ruling party violated human rights, restricted fundamental freedoms, and humiliated social protection & dignity. The contestant’s views as witnessed and relevant literatures are cited first for conceptual understanding. Then, the paper will examine how a new dimension of circumstantial social measures related to sustained protection can reduce all kinds of violence against humanity towards establishing a peaceful democratic society. Finally, this paper interprets the key findings and considers wider implications.Keywords: electoral fraud, human rights, sustained protection, social measures, vote rigging
Procedia PDF Downloads 1883912 Deep Learning Based Road Crack Detection on an Embedded Platform
Authors: Nurhak Altın, Ayhan Kucukmanisa, Oguzhan Urhan
Abstract:
It is important that highways are in good condition for traffic safety. Road crashes (road cracks, erosion of lane markings, etc.) can cause accidents by affecting driving. Image processing based methods for detecting road cracks are available in the literature. In this paper, a deep learning based road crack detection approach is proposed. YOLO (You Look Only Once) is adopted as core component of the road crack detection approach presented. The YOLO network structure, which is developed for object detection, is trained with road crack images as a new class that is not previously used in YOLO. The performance of the proposed method is compared using different training methods: using randomly generated weights and training their own pre-trained weights (transfer learning). A similar training approach is applied to the simplified version of the YOLO network model (tiny yolo) and the results of the performance are examined. The developed system is able to process 8 fps on NVIDIA Jetson TX1 development kit.Keywords: deep learning, embedded platform, real-time processing, road crack detection
Procedia PDF Downloads 3393911 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes
Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma
Abstract:
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry
Procedia PDF Downloads 703910 Visualization of Latent Sweat Fingerprints Deposit on Paper by Infrared Radiation and Blue Light
Authors: Xiaochun Huang, Xuejun Zhao, Yun Zou, Feiyu Yang, Wenbin Liu, Nan Deng, Ming Zhang, Nengbin Cai
Abstract:
A simple device termed infrared radiation (IR) was developed for rapid visualization of sweat fingerprints deposit on paper with blue light (450 nm, 11 W). In this approach, IR serves as the pretreatment device before the sweat fingerprints was illuminated by blue light. An annular blue light source was adopted for visualizing latent sweat fingerprints. Sample fingerprints were examined under various conditions after deposition, and experimental results indicate that the recovery rate of the latent sweat fingerprints is in the range of 50%-100% without chemical treatments. A mechanism for the observed visibility is proposed based on transportation and re-impregnation of fluorescer in paper at the region of water. And further exploratory experimental results gave the full support to the visible mechanism. Therefore, such a method as IR-pretreated in detecting latent fingerprints may be better for examination in the case where biological information of samples is needed for consequent testing.Keywords: forensic science, visualization, infrared radiation, blue light, latent sweat fingerprints, detection
Procedia PDF Downloads 4973909 The Development of a Miniaturized Raman Instrument Optimized for the Detection of Biosignatures on Europa
Authors: Aria Vitkova, Hanna Sykulska-Lawrence
Abstract:
In recent years, Europa has been one of the major focus points in astrobiology due to its high potential of harbouring life in the vast ocean underneath its icy crust. However, the detection of life on Europa faces many challenges due to the harsh environmental conditions and mission constraints. Raman spectroscopy is a highly capable and versatile in-situ characterisation technique that does not require any sample preparation. It has only been used on Earth to date; however, recent advances in optical and laser technology have also allowed it to be considered for extraterrestrial exploration. So far, most efforts have been focused on the exploration of Mars, the most imminent planetary target. However, as an emerging technology with high miniaturization potential, Raman spectroscopy also represents a promising tool for the exploration of Europa. In this study, the capabilities of Raman technology in terms of life detection on Europa are explored and assessed. Spectra of biosignatures identified as high priority molecular targets for life detection on Europa were acquired at various excitation wavelengths and conditions analogous to Europa. The effects of extremely low temperatures and low concentrations in water ice were explored and evaluated in terms of the effectiveness of various configurations of Raman instruments. Based on the findings, a design of a miniaturized Raman instrument optimized for in-situ detection of life on Europa is proposed.Keywords: astrobiology, biosignatures, Europa, life detection, Raman Spectroscopy
Procedia PDF Downloads 2123908 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 913907 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements
Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal
Abstract:
In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.Keywords: Kalman filter, innovation, false detection, improvement
Procedia PDF Downloads 6023906 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 1303905 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies
Authors: Amina Jibrin Ahmed
Abstract:
The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities
Procedia PDF Downloads 5183904 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4143903 Fetal Ilium as a Tool for Sex Determination: Discriminant Functional Analysis
Authors: Luv Sharma
Abstract:
Sex determination has been the most intriguing puzzle for forensic pathologists and anthropologists, for which efforts have been made for a long. Sexual dimorphism is well established in the adult pelvis, and it is known to provide the highest level of information about sexual dimorphism. This study was conducted to know whether this dimorphism exists in fetal bones or not. A total of 34 pairs of fetal pelvis bones (22 males and 12 Females), ages ranging from 4 months to full term, were collected from unidentified dead fetuses brought to the Department of Forensic Medicine for routine medicolegal autopsies to study for sexual dimorphism in the Department of Anatomy, Pt. BD Sharma PGIMS, Rohtak. Samples were divided into 2 age groups, and various metric parameters were recorded with the help of a digital vernier caliper. Data obtained was subjected to descriptive and discriminant functional analysis. Results of Descriptive and Discriminant Functional Analysis showed that sex determination can be done with 100% accuracy by using different combinations of parameters of fetal ilium. This study illustrates that sexual dimorphism exists from early fetal life after mid-pregnancy; it can be clearly established by discriminant functional analysis.Keywords: Ilium, fetus, sex determination, morphometric
Procedia PDF Downloads 593902 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1023901 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods
Authors: Abdelghani Chahmi
Abstract:
This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation
Procedia PDF Downloads 1393900 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4883899 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging
Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini
Abstract:
Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation
Procedia PDF Downloads 1313898 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 359