Search results for: experimental alloy
7368 Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel
Authors: S. Gupta, R. Sarkar, S. Pathak, D. H. Kela, A. Pramanick, P. Talukdar
Abstract:
Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism.Keywords: heat treatment, grain size, microstructure, retained austenite and impact toughness
Procedia PDF Downloads 3387367 Turbulent Flow in Corrugated Pipes with Helical Grooves
Authors: P. Mendes, H. Stel, R. E. M. Morales
Abstract:
This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated.Keywords: turbulent flow, corrugated pipe, helical, numerical, experimental, friction factor, correlation
Procedia PDF Downloads 4847366 Effect of Common Yoga Protocol on Reaction Time of Football Players
Authors: Vikram Singh
Abstract:
The objective of the study was to study the effectiveness of common yoga protocol on reaction time (simple visual reaction time-SVRT measured in milliseconds/seconds) of male football players in the age group of 15 to 21 years. The 40 boys were randomly assigned into two groups i.e. control and experimental. SVRT for both the groups were measured on day-1 and post intervention (common yoga protocol here) was measured after 45 days of training to the experimental group only. One way ANOVA (Univariate analysis) and Independent t-test using SPSS 23 statistical package was applied to get and analyze the results. There was a significant difference after 45 days of yoga protocol in simple visual reaction time of experimental group (p = .032), t (33.05) = 3.881, p = .000 (two-tailed). Null hypothesis (that there would be no post measurement differences in reaction times of control and experimental groups) was rejected. Where p<.05. Therefore alternate hypothesis was accepted.Keywords: footballers, t-test, yoga protocol, reaction time
Procedia PDF Downloads 2537365 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors
Authors: Ibrahim Beldjilali, Adel Ghenaiet
Abstract:
The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.Keywords: aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study
Procedia PDF Downloads 1597364 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars
Authors: Ankit Khurana
Abstract:
The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum
Procedia PDF Downloads 4087363 Experimental Research of Canine Mandibular Defect Construction with the Controlled Meshy Titanium Alloy Scaffold Fabricated by Electron Beam Melting Combined with BMSCs-Encapsulating Chitosan Hydrogel
Authors: Wang Hong, Liu Chang Kui, Zhao Bing Jing, Hu Min
Abstract:
Objection We observed the repairment effection of canine mandibular defect with meshy Ti6Al4V scaffold fabricated by electron beam melting (EBM) combined with bone marrow mesenchymal stem cells (BMMSCs) encapsulated in chitosan hydrogel. Method Meshy titanium scaffolds were prepared by EBM of commercial Ti6Al4V power. The length of scaffolds was 24 mm, the width was 5 mm and height was 8mm. The pore size and porosity were evaluated by scanning electron microscopy (SEM). Chitosan /Bio-Oss hydrogel was prepared by chitosan, β- sodium glycerophosphate and Bio-Oss power. BMMSCs were harvested from canine iliac crests. BMMSCs were seeded in titanium scaffolds and encapsulated in Chitosan /Bio-Oss hydrogel. The validity of BMMSCs was evaluated by cell count kit-8 (CCK-8). The osteogenic differentiation ability was evaluated by alkaline phosphatase (ALP) activity and gene expression of OC, OPN and CoⅠ. Combination were performed by injecting BMMSCs/ Chitosan /Bio-Oss hydrogel into the meshy Ti6Al4V scaffolds and solidified. 24 mm long box-shaped bone defects were made at the mid-portion of mandible of adult beagles. The defects were randomly filled with BMMSCs/ Chitosan/Bio-Oss + titanium, Chitosan /Bio-Oss+titanium, titanium alone. Autogenous iliac crests graft as control group in 3 beagles. Radionuclide bone imaging was used to monitor the new bone tissue at 2, 4, 8 and 12 weeks after surgery. CT examination was made on the surgery day and 4 weeks, 12 weeks and 24 weeks after surgery. The animals were sacrificed in 4, 12 and 24 weeks after surgery. The bone formation were evaluated by histology and micro-CT. Results: The pores of the scaffolds was interconnected, the pore size was about 1 mm, the average porosity was about 76%. The pore size of the hydrogel was 50-200μm and the average porosity was approximately 90%. The hydrogel were solidified under the condition of 37℃in 10 minutes. The validity and the osteogenic differentiation ability of BMSCs were not affected by titanium scaffolds and hydrogel. Radionuclide bone imaging shown an increasing tendency of the revascularization and bone regeneration was observed in all the groups at 2, 4, 8 weeks after operation, and there were no changes at 12weeks.The tendency was more obvious in the BMMSCs/ Chitosan/Bio-Oss +titanium group and autogenous group. CT, Micro-CT and histology shown that new bone formed increasingly with the time extend. There were more new bone regenerated in BMMSCs/ Chitosan /Bio-Oss + titanium group and autogenous group than the other two groups. At 24 weeks, the autogenous group was achieved bone union. The BMSCs/ Chitosan /Bio-Oss group was seen extensive new bone formed around the scaffolds and more new bone inside of the central pores of scaffolds than Chitosan /Bio-Oss + titanium group and titanium group. The difference was significantly. Conclusion: The titanium scaffolds fabricated by EBM had controlled porous structure, good bone conduction and biocompatibility. Chitosan /Bio-Oss hydrogel had injectable plasticity, thermosensitive property and good biocompatibility. The meshy Ti6Al4V scaffold produced by EBM combined BMSCs encapsulated in chitosan hydrogel had good capacity on mandibular bone defect repair.Keywords: mandibular reconstruction, tissue engineering, electron beam melting, titanium alloy
Procedia PDF Downloads 4457362 Effect of Temperature on Corrosion Fatigue Cracking Behavior of Inconel 625 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 625 is a nickel-based alloy having outstanding corrosion resistance and developed for use at service temperatures ranging from cryogenic to 980°C. It got a wide range of applications in nuclear, petrochemical, chemical, marine, aeronautical, and aerospace industries. Currently, it is one of the candidate materials to be used as a structural material in ultra-supercritical (USC) power plants. In the high-temperature corrosive medium environment, metallic materials are susceptible to corrosion fatigue (CF). CF is an interaction between cyclic stress and corrosive medium environment that acts on a susceptible material and results in initiation and propagation of cracks. For the application of Inconel 625 as a structural material in USC power plants, CF behavior must be evaluated in steam and supercritical water (SCW) environment. Fatigue crack growth rate (FCGR) curves obtained from CF experiments are required to predict residual life of metallic materials used in power plants. In this study, FCGR tests of Inconel 625 were obtained by using compact tension specimen at 550-650 °C in steam (8 MPa) and SCW (25 MPa). The dissolved oxygen level was kept constant at 8000 ppb for the test conducted in steam and SCW. The tests were performed under sine wave loading waveform, 1 Hz loading frequency, stress ratio of 0.6 and maximum stress intensity factor of 32 MPa√m. Crack growth rate (CGR) was detected by using direct current potential drop technique. Results showed that CGR increased with an increase in temperature in the tested environmental conditions. The mechanism concerning the influence of temperature on FCGR are further discussed.Keywords: corrosion fatigue, crack growth rate, nickel-based alloy, temperature
Procedia PDF Downloads 1317361 Development of Surface Modification Technology for Control Element Drive Mechanism Nozzle and Fatigue Enhancement of Ni-Based Alloys
Authors: Auezhan Amanov, Inho Cho, Young-Sik Pyun
Abstract:
Control element drive mechanism (CEDM) nozzle is manufactured as welded on the reactor vessel and currently uses Alloy 690 material. The top of the reactor is equipped with about 100 CEDM nozzles with an internal diameter of about 70 mm. Relatively large Inlet/Outlet nozzles are equipped with two outlet nozzles and four inlet nozzles on the reactor wall. The inner diameter of the nozzle is vulnerable to stress corrosion cracking (SCC), and in order to solve this problem, an ultrasonic nanocrystal surface modification (UNSM) treatment is performed on the inner diameter of the nozzle and the weld surface. The ultimate goal is to improve the service life of parts by applying compressive residual stress and suppressing primary water stress corrosion cracking (PWSCC). The main purpose is to design and fabricate a UNSM treatment device for the internal diameter processing of CEDM nozzles and inlet/outlet nozzles. In order to develop the system, the basic technology such as the development of UNSM tooling is developed and the mechanical properties and fatigue performance of before and after UNSM treatment of reactor nozzle material made of Ni-based alloys using the specimen are compared and evaluated. The inner diameter of the nozzle was treated by a newly developed UNSM treatment under the optimized treatment parameters. It was found that the mechanical properties and fatigue performance of nozzle were improved in comparison with the untreated nozzle, which may be attributed to the increase in hardness, induced compressive residual stress.Keywords: control element drive mechanism nozzle, fatigue, Ni-based alloy, ultrasonic nanocrystal surface modification, UNSM
Procedia PDF Downloads 1117360 Experimental Performance of Vertical Diffusion Stills Utilizing Folded Sheets for Water Desalination
Authors: M. Mortada, A. Seleem, M. El-Morsi, M. Younan
Abstract:
The present study introduces the folding technology to be utilized for the first time in vertical diffusion stills. This work represents a model of the distillation process by utilizing chevron pattern of folded structure. An experimental setup has been constructed, to investigate the performance of the folded sheets in the vertical effect diffusion still for a specific range of operating conditions. An experimental comparison between the folded type and the flat type sheets has been carried out. The folded pattern showed a higher performance and there is an increase in the condensate to feed ratio that ranges from 20-30 % through the operating hot plate temperature that ranges through 60-90°C. In addition, a parametric analysis of the system using Design of Experiments statistical technique, has been developed using the experimental results to determine the effect of operating conditions on the system's performance and the best operating conditions of the system has been evaluated.Keywords: chevron pattern, fold structure, solar distillation, vertical diffusion still
Procedia PDF Downloads 4627359 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction
Authors: A. Armin, R. Fotouhi, W. Szyszkowski
Abstract:
In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.Keywords: finite element analysis, experimental results, blade force, soil-blade contact modeling
Procedia PDF Downloads 3207358 Finite Element Modeling of Two-Phase Microstructure during Metal Cutting
Authors: Junior Nomani
Abstract:
This paper presents a novel approach to modelling the metal cutting of duplex stainless steels, a two-phase alloy regarded as a difficult-to-machine material. Calculation and control of shear strain and stresses during cutting are essential to achievement of ideal cutting conditions. Too low or too high leads to higher required cutting force or excessive heat generation causing premature tool wear failure. A 2D finite element cutting model was created based on electron backscatter diffraction (EBSD) data imagery of duplex microstructure. A mesh was generated using ‘object-oriented’ software OOF2 version V2.1.11, converting microstructural images to quadrilateral elements. A virtual workpiece was created on ABAQUS modelling software where a rigid body toolpiece advanced towards workpiece simulating chip formation, generating serrated edge chip formation cutting. Model results found calculated stress strain contour plots correlated well with similar finite element models tied with austenite stainless steel alloys. Virtual chip form profile is also similar compared experimental frozen machining chip samples. The output model data provides new insight description of strain behavior of two phase material on how it transitions from workpiece into the chip.Keywords: Duplex stainless steel, ABAQUS, OOF2, Chip formation
Procedia PDF Downloads 1007357 The Effect of MOOC-Based Distance Education in Academic Engagement and Its Components on Kerman University Students
Authors: Fariba Dortaj, Reza Asadinejad, Akram Dortaj, Atena Baziyar
Abstract:
The aim of this study was to determine the effect of distance education (based on MOOC) on the components of academic engagement of Kerman PNU. The research was quasi-experimental method that cluster sampling with an appropriate volume was used in this study (one class in experimental group and one class in controlling group). Sampling method is single-stage cluster sampling. The statistical society is students of Kerman Payam Noor University, which) were selected 40 of them as sample (20 students in the control group and 20 students in experimental group). To test the hypothesis, it was used the analysis of univariate and Co-covariance to offset the initial difference (difference of control) in the experimental group and the control group. The instrument used in this study is academic engagement questionnaire of Zerang (2012) that contains component of cognitive, behavioral and motivational engagement. The results showed that there is no significant difference between mean scores of academic components of academic engagement in experimental group and the control group on the post-test, after elimination of the pre-test. The adjusted mean scores of components of academic engagement in the experimental group were higher than the adjusted average of scores after the test in the control group. The use of technology-based education in distance education has been effective in increasing cognitive engagement, motivational engagement and behavioral engagement among students. Experimental variable with the effect size 0.26, predicted 26% of cognitive engagement component variance. Experimental variable with the effect size 0.47, predicted 47% of the motivational engagement component variance. Experimental variable with the effect size 0.40, predicted 40% of behavioral engagement component variance. So teaching with technology (MOOC) has a positive impact on increasing academic engagement and academic performance of students in educational technology. The results suggest that technology (MOOC) is used to enrich the teaching of other lessons of PNU.Keywords: educational technology, distance education, components of academic engagement, mooc technology
Procedia PDF Downloads 1497356 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response
Procedia PDF Downloads 3197355 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications
Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu
Abstract:
Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. aphase microstructure for the EBM production contrast to the a’phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)
Procedia PDF Downloads 4547354 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe
Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati
Abstract:
This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).Keywords: loop heat pipe, nanofluid, optimization, thermal resistance
Procedia PDF Downloads 4617353 The Effect of Reverse Trendelenburg Position on the Back Pain after Cardiovascular Angiography and Interventions
Authors: Pramote Thangkratok
Abstract:
The aims of this experimental study were to investigate the effect of Reverse Trendelenburg Position on the Back Pain after Cardiovascular Angiography and Interventions. In addition, to compare bleeding and hematoma occurrences at the Access site between experimental and control groups. The randomized controlled trial (RCT) was conducted in 70 patients who underwent Cardiovascular Angiography and Interventions via the femoral artery and received post procedural care at the intermediate cardiac care unit, Bangkok Heart Hospital. From December 2015 to February 2016. The control group (35 patients) was to get standard care after the intervention, whereas the experimental group (35 patients) was Reverse Trendelenburg Position 30-45 degrees. The groups were not significantly different in terms of demographic characteristics, Age, Gender, BMI, blood pressure, heart rate. While not significantly different from each other, the intensity of back pain control group had a significantly higher pain score than experimental group. Vascular complications in terms of bleeding and hematoma were not significantly different between the control and experimental groups. The findings show that Reverse Trendelenburg Position after Cardiovascular Angiography and Interventions would reduce or prevent the back pain without increasing the chance of bleeding and hematoma.Keywords: reverse trendelenburg position, back pain, cardiovascular angiography, cardiovascular interventions
Procedia PDF Downloads 2887352 Improving the Social Interactions of Students with Conduct Disorder in Dil Betigil Primary School
Authors: Dawit Thomas Lambamo
Abstract:
Conduct disorder has become a major health and social problem; it is the most common psychiatric problem diagnosed among students which affect the academic and social interaction of students. This intervention was conducted in Dil Betigil primary school. After identifying six students with conduct disorder in Dil Betigil primary school, the intervention was conducted using a true experimental research design specifically pretest and posttest control group design. Data from teachers and parents of the students with conduct disorder were collected using adapted conduct disorder scale and semi-structured interview. The independent sample t-test of Pretest results of both experimental and control group indicated that there is no statistically significant difference between experimental and control groups. Intervention is carried out to enhance their social interaction and to decrees aggressive, a serious violation of rules and theft behavior of students in collaboration with teachers and parents. After six intervention weeks the post-test result showed that there was statistically significant difference in aggression and serious violation between the experimental and control groups, but there was no statistically significant mean difference regarding deceitful or theft between the experimental and control group.Keywords: conduct, disorder, social interaction, interaction
Procedia PDF Downloads 3167351 Improving Young Learners' Vocabulary Acquisition: A Pilot Program in a Game-Based Environment
Authors: Vasiliki Stratidou
Abstract:
Modern simulation mobile games have the potential to enhance students’ interest, motivation and creativity. Research conducted on the effectiveness of digital games for educational purposes has shown that such games are also ideal at providing an appropriate environment for language learning. The paper examines the issue of simulation mobile games in regard to the potential positive impacts on L2 vocabulary learning. Sixteen intermediate level students, aged 10-14, participated in the experimental study for four weeks. The participants were divided into experimental (8 participants) and control group (8 participants). The experimental group was planned to learn some new vocabulary words via digital games while the control group used a reading passage to learn the same vocabulary words. The study investigated the effect of mobile games as well as the traditional learning methods on Greek EFL learners’ vocabulary learning in a pre-test, an immediate post-test, and a two-week delayed retention test. A teacher’s diary and learners’ interviews were also used as tools to estimate the effectiveness of the implementation. The findings indicated that the experimental group outperformed the control group in acquiring new words through mobile games. Therefore, digital games proved to be an effective tool in learning English vocabulary.Keywords: control group, digital games, experimental group, second language vocabulary learning, simulation games
Procedia PDF Downloads 2397350 Hot Cracking Susceptibility Evaluation of the Advanced UNS S31035 Austenitic Stainless Steel by Varestraint Weldability Testing
Authors: Mikael M. Johansson, Peter Stenvall, Leif Karlsson, Joel Andersson
Abstract:
Sandvik Sanicro 25, UNS S31035, is an advanced high temperature austenitic stainless steel that potentially can be used in super-heaters and reheaters in the next generation of advanced ultra-super critical power plants. The material possesses both high creep strength and good corrosion resistance at temperatures up to 700°C. Its high temperature properties are positioned between other commercially available high temperature austenitic stainless steels and nickel-based alloys. It is, however, well known that an austenitic solidification mode combined with a fully austenitic microstructure exacerbate susceptibility towards hot cracking. The problem increases even more for thick walled material in multipass welding and could compromise the integrity of the welded component. Varestraint weldability testing is commonly used to evaluate susceptibility towards hot cracking of materials. In this paper, Varestraint test results are evaluated for base material of both UNS S31035 steel and are compared to those of the well-known and well-characterized UNS S31008 grade. The more creep resistant alloy, UNS S31035, is metallurgically more complicated than the UNS S31008 grade and has additions of several alloying elements to improve its high temperature properties. It benefits from both solid solution hardening as well as precipitation hardening. This investigation therefore attempts, based on the Varestraint weldability test, to understand if there are any differences in cracking mechanisms between these two grades due to the additional alloying elements used in UNS S31035. Results from Varestraint testing and crack type investigations will be presented and discussed in some detail. It is shown that hot cracking susceptibility of the UNS S31035 steel is only slightly higher than that of UNS S31008 despite the more complicated metallurgy. Weldability of the two alloys is therefore judged to be comparable making the newer alloy well suited also for critical applications.Keywords: austenitic stainless steel, hot cracking susceptibility, UNS S31035, UNS S31008, varestraint weldability testing
Procedia PDF Downloads 1307349 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models
Authors: A. B. M. Rezaul Islam, Ernur Karadogan
Abstract:
Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis
Procedia PDF Downloads 1447348 Effects of Aerobic Dance on Systolic Blood Pressure in Stage 1 Hypertensive Individuals in Uganda
Authors: Loyce Nahwera, Joy Wachira, Edwin Kiptolo, Constance Nsibambi, Mshilla Maghanga, Timothy Makubuya
Abstract:
Introduction: Hypertension is one of the most prominent risk factors for cardiovascular diseases globally, and it can be modified through lifestyle interventions such as exercise. The objective of this study was to investigate the effects of a 12-week aerobic dance programme on systolic blood pressure (SBP) in stage 1 hypertensive individuals. Methods: This study employed an experimental research design. A total of 36 stage 1 hypertensive individuals who were randomly assigned into experimental and control groups completed the study. Systolic BP was measured using a mercury sphygmomanometer at baseline, mid-point and after the program. The experimental group participants trained 3 days a week, 45 minutes per session, at a moderate intensity of 40-60% of maximum oxygen consumption (VO2max) monitored by Garmin heart rate monitors. Data were analyzed using SPSS version 20. The significance level was set at p<0.05. A paired sample t-test was used to compare mean differences within the groups. Results: Data from the 36 participants (22 males and 14 females) (experimental; n=18, control; n=18) show that the experimental group had a mean SBP of 143.83±6.382 mmHg at baseline while the control had a mean of 137.61±6.400 mmHg. Following the end of a 6-week aerobic dance, the mean SBP of the experimental group reduced to 138.06±9.539 mmHg while that of the control marginally decreased to 137.00±8.073 mmHg. At the completion of a 12-week program, the mean SBP of the experimental group reduced to 136.33±9.191 mmHg, while that of the control marginally increased to 139.56±9.954 mmHg. This implies that both the 6-week and 12-week aerobic dance program reduced the SBP of the experimental group by 5.77±7.133 mmHg and 7.50±8.487 mmHg, respectively, while the control group fast reduced marginally by 0.61 before ultimately increasing by 1.95±7.974 mmHg at 12-weeks. The changes were statistically significant (p<0.05) at both 6 and 12 weeks of an aerobic dance program. Conclusion: The study concluded that aerobic dance is an effective non-pharmacological method for managing SBP of stage 1 hypertensive individuals both in the short-term (6 weeks) and long-term (12 weeks).Keywords: aerobic dance, blood pressure, stage 1 hypertension, systolic blood pressure.
Procedia PDF Downloads 547347 Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers
Authors: Santiago Montoya-Ospina, Raúl E. Jiménez-Mejía, Rosa Elvira Correa Gutiérrez
Abstract:
An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber.Keywords: acoustic impedance, finite-difference time-domain, hemi-anechoic characterization
Procedia PDF Downloads 1637346 An Experimental Investigation of Microscopic and Macroscopic Displacement Behaviors of Branched-Preformed Particle Gel in High Temperature Reservoirs
Authors: Weiyao Zhu, Bingbing Li, Yajing Liu, Zhiyong Song
Abstract:
Branched-preformed particle gel (B-PPG) is a newly developed profile control and oil displacement agent for enhanced oil recovery in major oilfields. To provide a better understanding of the performance of B-PPG in high temperature reservoirs, a comprehensive experimental investigation was conducted by utilizing glass micromodel and synthetic core. The microscopic experimental results show that the B-PPG can selectively flow and plug in large pores. In terms of enhanced oil recovery, the decrease of residual oil in the margin regions (24.6%) was higher than that in the main stream (13.7%), which indicates it enlarged the sweep area. In addition, the effects of B-PPG injection concentration and injection rate on enhanced oil recovery were implemented by core flooding. The macroscopic experimental results indicate that the enhanced oil recovery increased with the increasing of injection concentration. However, the injection rate had a peak value. It is significant to get insight into the behaviors of B-PPG in reservoirs.Keywords: branched-preformed particle gel, enhanced oil recovery, micromodel, core flooding
Procedia PDF Downloads 1987345 Experimental Study of the Fan Electric Drive Based on a Two-Speed Motor in Dynamic Modes
Authors: Makhsud Bobojanov, Dauletbek Rismukhamedov, Furkat Tuychiev, Khusniddin Shamsutdionov
Abstract:
The article presents the results of experimental study of a two-speed asynchronous motor 4A80B6/4U3 with pole-changing winding on a fan drive VSUN 160x74-0.55-4 in static and dynamic modes. A prototype of a pole-changing Motor was made based on the results of the calculation and the performance and mechanical characteristics of the Motor were removed at the experimental stand, as well as useful capacities and other parameters from both poles were determined. In dynamic mode, the curves of changes of torque and current of the stator were removed by direct start, constant speed operation, by switching of speeds and stopping.Keywords: two speed motor, pole-changing motor, electric drive of fan, dynamic modes
Procedia PDF Downloads 1357344 The Effect of Group Counseling on the Victimhood Perceptions of Adolescent Who Are the Subject of Peer Victimization and on Their Coping Strategies
Authors: İsmail Seçer, Taştan Seçer
Abstract:
In this study, the effect of the group counseling on the victimhood perceptions of the primary school 7th and 8th grade students who are determined to be the subject of peer victimization and their dealing way with it was analyzed. The research model is Solomon Four Group Experimental Model. In this model, there are four groups that were determined with random sampling. Two of the groups have been used as experimental group and the other two have been used as control group. Solomon model is defined as real experimental model. In real experimental models, there are multiple groups consisting of subject which have similar characteristics, and selection of the subjects is done with random sampling. For this purpose, 230 students from Kültür Kurumu Primary School in Erzurum were asked to fill Adolescent Peer Victim Form. 100 students whose victim scores were higher and who were determined to be the subject of bullying were talked face to face and informed about the current study, and they were asked if they were willing to participate or not. As a result of these interviews, 60 students were determined to participate in the experimental study and four group consisting of 15 people were created with simple random sampling method. After the groups had been formed, experimental and control group were determined with casting lots. After determining experimental and control groups, an 11-session group counseling activity which was prepared by the researcher according to the literature was applied. The purpose of applying group counseling is to change the ineffective dealing ways with bullying and their victimhood perceptions. Each session was planned to be 75 minutes and applied as planned. In the control groups, counseling activities in the primary school counseling curricula was applied for 11 weeks. As a result of the study, physical, emotional and verbal victimhood perceptions of the participants in the experimental groups were decreased significantly compared to pre-experimental situations and to those in control group. Besides, it was determined that this change observed in the victimhood perceptions of the experimental group occurred independently from the effect of variables such as gender, age and academic success. The first evidence of the study related to the dealing ways is that the scores of the participants in the experimental group related to the ineffective dealing ways such as despair and avoidance is decreased significantly compared to the pre-experimental situation and to those in control group. The second evidence related to the dealing ways is that the scores of the participants in the experimental group related to effective dealing ways such as seeking for help, consulting social support, resistance and optimism is increased significantly compared to the pre-experimental situation and to those in control group. According to the evidence obtained through the study, it can be said that group counseling is an effective approach to change the victimhood perceptions of the individuals who are the subject of bullying and their dealing strategies with it.Keywords: bullying, perception of victimization, coping strategies, ancova analysis
Procedia PDF Downloads 3917343 Vibration Measurements of Single-Lap Cantilevered SPR Beams
Authors: Xiaocong He
Abstract:
Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions
Procedia PDF Downloads 4297342 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites
Authors: Mohammad S. Rouhi, Magdalena Juntikka
Abstract:
Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics
Procedia PDF Downloads 1617341 Transverse Behavior of Frictional Flat Belt Driven by Tapered Pulley -Change of Transverse Force Under Driving State–
Authors: Satoko Fujiwara, Kiyotaka Obunai, Kazuya Okubo
Abstract:
A skew is one of important problems for designing the conveyor and transmission with frictional flat belt, in which running belt is deviated in width direction due to the transverse force applied to the belt. The skew often not only degrades the stability of the path of belt but also causes some damages of the belt and auxiliary machines. However, the transverse behavior such as the skew has not been discussed quantitatively in detail for frictional belts. The objective of this study is to clarify the transverse behavior of frictional flat belt driven by tapered pulley. Commercially available rubber flat belt reinforced by polyamide film was prepared as the test belt where the thickness and length were 1.25 mm and 630 mm, respectively. Test belt was driven between two pulleys made of aluminum alloy, where diameter and inter-axial length were 50 mm and 150 mm, respectively. Some tapered pulleys were applied where tapered angles were 0 deg (for comparison), 2 deg, 4 deg, and 6 deg. In order to alternatively investigate the transverse behavior, the transverse force applied to the belt was measured when the skew was constrained at the string under driving state. The transverse force was measured by a load cell having free rollers contacting on the side surface of the belt when the displacement in the belt width direction was constrained. The conditions of observed bending stiffness in-plane of the belt were changed by preparing three types of belts (the width of the belt was 20, 30, and 40 mm) where their observed stiffnesses were changed. The contributions of the bending stiffness in-plane of belt and initial inter-axial force to the transverse were discussed in experiments. The inter-axial force was also changed by setting a distance (about 240 mm) between the two pulleys. Influence of observed bending stiffness in-plane of the belt and initial inter-axial force on the transverse force were investigated. The experimental results showed that the transverse force was increased with an increase of observed bending stiffness in-plane of the belt and initial inter-axial force. The transverse force acting on the belt running on the tapered pulley was classified into multiple components. Those were components of forces applied with the deflection of the inter-axial force according to the change of taper angle, the resultant force by the bending moment applied on the belt winding around the tapered pulley, and the reaction force applied due to the shearing deformation. The calculation result of the transverse force was almost agreed with experimental data when those components were formulated. It was also shown that the most contribution was specified to be the shearing deformation, regardless of the test conditions. This study found that transverse behavior of frictional flat belt driven by tapered pulley was explained by the summation of those components of forces.Keywords: skew, frictional flat belt, transverse force, tapered pulley
Procedia PDF Downloads 1477340 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels
Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand
Abstract:
The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution
Procedia PDF Downloads 5327339 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product
Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth
Abstract:
Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations
Procedia PDF Downloads 86