Search results for: cardiac images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2857

Search results for: cardiac images

2347 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment

Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark

Abstract:

Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.

Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose

Procedia PDF Downloads 67
2346 Enhancing Learning Ability among Deaf Students by Using Photographic Images

Authors: Aidah Alias, Mustaffa Halabi Azahari, Adzrool Idzwan Ismail, Salasiah Ahmad

Abstract:

Education is one of the most important elements in a human life. Educations help us in learning and achieve new things in life. The ability of hearing gave us chances to hear voices and it is important in our communication. Hearing stories told by others; hearing news and music to create our creative and sense; seeing and hearing make us understand directly the message trying to deliver. But, what will happen if we are born deaf or having hearing loss while growing up? The objectives of this paper are to identify the current practice in teaching and learning among deaf students and to analyse an appropriate method in enhancing learning process among deaf students. A case study method was employed by using methods of observation and interview to selected deaf students and teachers. The findings indicated that the suitable method of teaching for deaf students is by using pictures and body movement. In other words, by combining these two medium of images and body movement, the best medium that the study suggested is by using video or motion pictures. The study concluded and recommended that video or motion pictures is recommended medium to be used in teaching and learning for deaf students.

Keywords: deaf, photographic images, visual communication, education, learning ability

Procedia PDF Downloads 285
2345 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words

Authors: Angelis P. Barlampas

Abstract:

Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <> and <>. General conclusion: The AI mimics the physiological processes of the human mind, but it does that more efficiently and rapidly and provides results in a few seconds, whereas an experienced radiologist needs many days to do that, or even worse, he is unable to accomplish such a huge task.

Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging

Procedia PDF Downloads 53
2344 Looking beyond Lynch's Image of a City

Authors: Sandhya Rao

Abstract:

Kevin Lynch’s Theory on Imeageability, let on explore a city in terms of five elements, Nodes, Paths, Edges, landmarks and Districts. What happens when we try to record the same data in an Indian context? What happens when we apply the same theory of Imageability to a complex shifting urban pattern of the Indian cities and how can we as Urban Designers demonstrate our role in the image building ordeal of these cities? The organizational patterns formed through mental images, of an Indian city is often diverse and intangible. It is also multi layered and temporary in terms of the spirit of the place. The pattern of images formed is loaded with associative meaning and intrinsically linked with the history and socio-cultural dominance of the place. The embedded memory of a place in one’s mind often plays an even more important role while formulating these images. Thus while deriving an image of a city one is often confused or finds the result chaotic. The images formed due to its complexity are further difficult to represent using a single medium. Under such a scenario it’s difficult to derive an output of an image constructed as well as make design interventions to enhance the legibility of a place. However, there can be a combination of tools and methods that allows one to record the key elements of a place through time, space and one’s user interface with the place. There has to be a clear understanding of the participant groups of a place and their time and period of engagement with the place as well. How we can translate the result obtained into a design intervention at the end, is the main of the research. Could a multi-faceted cognitive mapping be an answer to this or could it be a very transient mapping method which can change over time, place and person. How does the context influence the process of image building in one’s mind? These are the key questions that this research will aim to answer.

Keywords: imageability, organizational patterns, legibility, cognitive mapping

Procedia PDF Downloads 314
2343 Evaluation of Cardiac Rhythm Patterns after Open Surgical Maze-Procedures from Three Years' Experiences in a Single Heart Center

Authors: J. Yan, B. Pieper, B. Bucsky, H. H. Sievers, B. Nasseri, S. A. Mohamed

Abstract:

In order to optimize the efficacy of medications, the regular follow-up with long-term continuous monitoring of heart rhythmic patterns has been facilitated since clinical introduction of cardiac implantable electronic monitoring devices (CIMD). Extensive analysis of rhythmic circadian properties is capable to disclose the distributions of arrhythmic events, which may support appropriate medication according rate-/rhythm-control strategy and minimize consequent afflictions. 348 patients (69 ± 0.5ys, male 61.8%) with predisposed atrial fibrillation (AF), undergoing primary ablating therapies combined to coronary or valve operations and secondary implantation of CIMDs, were involved and divided into 3 groups such as PAAF (paroxysmal AF) (n=99, male 68.7%), PEAF (persistent AF) (n=94, male 62.8%), and LSPEAF (long-standing persistent AF) (n=155, male 56.8%). All patients participated in three-year ambulant follow-up (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation recurrence were assessed using cardiac monitor devices, whereby attacks frequencies and their circadian patterns were systemically analyzed. Anticoagulants and regular anti-arrhythmic medications were evaluated and the last were listed in terms of anti-rate and anti-rhythm regimens. Patients in the PEAF-group showed the least AF-burden after surgical ablating procedures compared to both of the other subtypes (p < 0.05). The AF-recurrences predominantly performed such attacks’ property as shorter than one hour, namely within 10 minutes (p < 0.05), regardless of AF-subtypes. Concerning circadian distribution of the recurrence attacks, frequent AF-attacks were mostly recorded in the morning in the PAAF-group (p < 0.05), while the patients with predisposed PEAF complained less attack-induced discomforts in the latter half of the night and the ones with LSPEAF only if they were not physically active after primary surgical ablations. Different AF-subtypes presented distinct therapeutic efficacies after appropriate surgical ablating procedures and recurrence properties in sense of circadian distribution. An optimization of medical regimen and drug dosages to maintain the therapeutic success needs more attention to detailed assessment of the long-term follow-up. Rate-control strategy plays a much more important role than rhythm-control in the ongoing follow-up examinations.

Keywords: atrial fibrillation, CIMD, MAZE, rate-control, rhythm-control, rhythm patterns

Procedia PDF Downloads 157
2342 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 161
2341 Transparency Phenomenon in Kuew Teow

Authors: Muhammad Heikal Ismail, Law Chung Lim, Hii Ching Lik

Abstract:

In maintaining food quality and shelf life, drying is employed in food industry as the most reliable perseverance technique. In this way, heat pump drying and hot air drying of fresh rice noodles was deduced to freeze drying in achieving quality attributes of oil content Scanning Electron Microscope (SEM) images, texture, and colour. Soxthlet analysis shows freeze dried noodles contain more than 10 times oil content, distinct pores of SEM images, higher hardness by more than three times, and wider colour changes by average more than two times to both methods to explain the less transparency physical outlook of freeze dried samples.

Keywords: freeze drying, heat pump drying, noodles, Soxthlet

Procedia PDF Downloads 486
2340 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases

Procedia PDF Downloads 143
2339 Case Report: Peripartum Cardiomyopathy, a Rare but Fatal Condition in Pregnancy and Puerperium

Authors: Sadaf Abbas, HimGauri Sabnis

Abstract:

Introduction: Peripartum cardiomyopathy is a rare but potentially life-threatening condition that presents as heart failure during the last month of pregnancy or within five months postpartum. The incidence of postpartum cardiomyopathy ranges from 1 in 1300 to 1 in 15,000 pregnancies. Risk factors include multiparty, advanced maternal age, multiple pregnancies, pre-eclampsia, and chronic hypertension. Study: A 30-year-old Para3+0 presented to the Emergency Department of St’Marry Hospital, Isle of Wight, on the seventh day postpartum, with acute shortness of breath (SOB), chest pain, cough, and a temperature of 38 degrees. The risk factors were smoking and class II obesity (BMI of 40.62). The patient had mild pre-eclampsia in the last pregnancy and was on labetalol and aspirin during an antenatal period, which was stopped postnatally. There was also a history of pre-eclampsia and haemolysis, elevated liver enzymes, low platelets (HELLP syndrome) in previous pregnancies, which led to preterm delivery at 35 weeks in the second pregnancy, and the first baby was stillborn at 24 weeks. On assessment, there was a national early warning score (NEWS score) of 3, persistent tachycardia, and mild crepitation in the lungs. Initial investigations revealed an enlarged heart on chest X-ray, and a CT pulmonary angiogram indicated bilateral basal pulmonary congestion without pulmonary embolism, suggesting fluid overload. Laboratory results showed elevated CRP and normal troponin levels initially, which later increased, indicating myocardial involvement. Echocardiography revealed a severely dilated left ventricle with an ejection fraction (EF) of 31%, consistent with severely impaired systolic function. The cardiology team reviewed the patient and admitted to the Coronary Care Unit. As sign and symptoms were suggestive of fluid overload and congestive cardiac failure, management was done with diuretics, beta-blockers, angiotensin-converting enzyme inhibitors (ACE inhibitors), proton pump inhibitors, and supportive care. During admission, there was complications such as acute kidney injury, but then recovered well. Chest pain had resolved following the treatment. After being admitted for eight days, there was an improvement in the symptoms, and the patient was discharged home with a further plan of cardiac MRI and genetic testing due to a family history of sudden cardiac death. Regular appointment has been made with the Cardiology team to follow-up on the symptoms. Since discharge, the patient made a good recovery. A cardiac MRI was done, which showed severely impaired left ventricular function, ejection fraction (EF) of 38% with mild left ventricular dilatation, and no evidence of previous infarction. Overall appearance is of non-ischemic dilated cardiomyopathy. The main challenge at the time of admission was the non-availability of a cardiac radiology team, so the definitive diagnosis was delayed. The long-term implications include risk of recurrence, chronic heart failure, and, consequently, an effect on quality of life. Therefore, regular follow-up is critical in patient’s management. Conclusions: Peripartum cardiomyopathy is one of the cardiovascular diseases whose causes are still unknown yet and, in some cases, are uncontrolled. By raising awareness about the symptoms and management of this complication it will reduce morbidity and mortality rates and also the length of stay in the hospital.

Keywords: cardiomyopathy, cardiomegaly, pregnancy, puerperium

Procedia PDF Downloads 36
2338 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: dynamic time warping, glottal area waveform, linear predictive coding, high-speed laryngeal images, Hilbert transform

Procedia PDF Downloads 240
2337 Alteration of Bone Strength in Osteoporosis of Mouse Femora: Computational Study Based on Micro CT Images

Authors: Changsoo Chon, Sangkuy Han, Donghyun Seo, Jihyung Park, Bokku Kang, Hansung Kim, Keyoungjin Chun, Cheolwoong Ko

Abstract:

The purpose of the study is to develop a finite element model based on 3D bone structural images of Micro-CT and to analyze the stress distribution for the osteoporosis mouse femora. In this study, results of finite element analysis show that the early osteoporosis of mouse model decreased a bone density in trabecular region; however, the bone density in cortical region increased.

Keywords: micro-CT, finite element analysis, osteoporosis, bone strength

Procedia PDF Downloads 363
2336 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
2335 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 124
2334 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 262
2333 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee

Abstract:

The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 265
2332 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.

Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair

Procedia PDF Downloads 171
2331 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 67
2330 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 300
2329 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications

Authors: Chee Sun Won

Abstract:

This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.

Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication

Procedia PDF Downloads 419
2328 Efficient Schemes of Classifiers for Remote Sensing Satellite Imageries of Land Use Pattern Classifications

Authors: S. S. Patil, Sachidanand Kini

Abstract:

Classification of land use patterns is compelling in complexity and variability of remote sensing imageries data. An imperative research in remote sensing application exploited to mine some of the significant spatially variable factors as land cover and land use from satellite images for remote arid areas in Karnataka State, India. The diverse classification techniques, unsupervised and supervised consisting of maximum likelihood, Mahalanobis distance, and minimum distance are applied in Bellary District in Karnataka State, India for the classification of the raw satellite images. The accuracy evaluations of results are compared visually with the standard maps with ground-truths. We initiated with the maximum likelihood technique that gave the finest results and both minimum distance and Mahalanobis distance methods over valued agriculture land areas. In meanness of mislaid few irrelevant features due to the low resolution of the satellite images, high-quality accord between parameters extracted automatically from the developed maps and field observations was found.

Keywords: Mahalanobis distance, minimum distance, supervised, unsupervised, user classification accuracy, producer's classification accuracy, maximum likelihood, kappa coefficient

Procedia PDF Downloads 184
2327 Integration of an Augmented Reality System for the Visualization of the HRMAS NMR Analysis of Brain Biopsy Specimens Using the Brainlab Cranial Navigation System

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux, Mariana Kuras, Vincent Récamier, Martial Piotto, Karim Elbayed, François Proust, Izzie Namer

Abstract:

This paper proposes an augmented reality system dedicated to neurosurgery in order to assist the surgeon during an operation. This work is part of the ExtempoRMN project (Funded by Bpifrance) which aims at analyzing during a surgical operation the metabolic content of tumoral brain biopsy specimens by HRMAS NMR. Patients affected with a brain tumor (gliomas) frequently need to undergo an operation in order to remove the tumoral mass. During the operation, the neurosurgeon removes biopsy specimens using image-guided surgery. The biopsy specimens removed are then sent for HRMAS NMR analysis in order to obtain a better diagnosis and prognosis. Image-guided refers to the use of MRI images and a computer to precisely locate and target a lesion (abnormal tissue) within the brain. This is performed using preoperative MRI images and the BrainLab neuro-navigation system. With the patient MRI images loaded on the Brainlab Cranial neuro-navigation system in the operating theater, surgeons can better identify their approach before making an incision. The Brainlab neuro-navigation tool tracks in real time the position of the instruments and displays their position on the patient MRI data. The results of the biopsy analysis by 1H HRMAS NMR are then sent back to the operating theater and superimposed on the 3D localization system directly on the MRI images. The method we have developed to communicate between the HRMAS NMR analysis software and Brainlab makes use of a combination of C++, VTK and the Insight Toolkit using OpenIGTLink protocol.

Keywords: neuro-navigation, augmented reality, biopsy, BrainLab, HR-MAS NMR

Procedia PDF Downloads 365
2326 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 188
2325 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 167
2324 Investigating the Editing's Effect of Advertising Photos on the Virtual Purchase Decision Based on the Quantitative Electroencephalogram (EEG) Parameters

Authors: Parya Tabei, Maryam Habibifar

Abstract:

Decision-making is an important cognitive function that can be defined as the process of choosing an option among available options to achieve a specific goal. Consumer ‘need’ is the main reason for purchasing decisions. Human decision-making while buying products online is subject to various factors, one of which is the quality and effect of advertising photos. Advertising photo editing can have a significant impact on people's virtual purchase decisions. This technique helps improve the quality and overall appearance of photos by adjusting various aspects such as brightness, contrast, colors, cropping, resizing, and adding filters. This study, by examining the effect of editing advertising photos on the virtual purchase decision using EEG data, tries to investigate the effect of edited images on the decision-making of customers. A group of 30 participants were asked to react to 24 edited and unedited images while their EEG was recorded. Analysis of the EEG data revealed increased alpha wave activity in the occipital regions (O1, O2) for both edited and unedited images, which is related to visual processing and attention. Additionally, there was an increase in beta wave activity in the frontal regions (FP1, FP2, F4, F8) when participants viewed edited images, suggesting involvement in cognitive processes such as decision-making and evaluating advertising content. Gamma wave activity also increased in various regions, especially the frontal and parietal regions, which are associated with higher cognitive functions, such as attention, memory, and perception, when viewing the edited images. While the visual processing reflected by alpha waves remained consistent across different visual conditions, editing advertising photos appeared to boost neural activity in frontal and parietal regions associated with decision-making processes. These Findings suggest that photo editing could potentially influence consumer perceptions during virtual shopping experiences by modulating brain activity related to product assessment and purchase decisions.

Keywords: virtual purchase decision, advertising photo, EEG parameters, decision Making

Procedia PDF Downloads 53
2323 Grain Boundary Detection Based on Superpixel Merges

Authors: Gaokai Liu

Abstract:

The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.

Keywords: grain boundary detection, image segmentation, material images, region merging

Procedia PDF Downloads 170
2322 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation

Procedia PDF Downloads 153
2321 Architectural Adaptation for Road Humps Detection in Adverse Light Scenario

Authors: Padmini S. Navalgund, Manasi Naik, Ujwala Patil

Abstract:

Road hump is a semi-cylindrical elevation on the road made across specific locations of the road. The vehicle needs to maneuver the hump by reducing the speed to avoid car damage and pass over the road hump safely. Road Humps on road surfaces, if identified in advance, help to maintain the security and stability of vehicles, especially in adverse visibility conditions, viz. night scenarios. We have proposed a deep learning architecture adaptation by implementing the MISH activation function and developing a new classification loss function called "Effective Focal Loss" for Indian road humps detection in adverse light scenarios. We captured images comprising of marked and unmarked road humps from two different types of cameras across South India to build a heterogeneous dataset. A heterogeneous dataset enabled the algorithm to train and improve the accuracy of detection. The images were pre-processed, annotated for two classes viz, marked hump and unmarked hump. The dataset from these images was used to train the single-stage object detection algorithm. We utilised an algorithm to synthetically generate reduced visible road humps scenarios. We observed that our proposed framework effectively detected the marked and unmarked hump in the images in clear and ad-verse light environments. This architectural adaptation sets up an option for early detection of Indian road humps in reduced visibility conditions, thereby enhancing the autonomous driving technology to handle a wider range of real-world scenarios.

Keywords: Indian road hump, reduced visibility condition, low light condition, adverse light condition, marked hump, unmarked hump, YOLOv9

Procedia PDF Downloads 28
2320 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 98
2319 In Situ Volume Imaging of Cleared Mice Seminiferous Tubules Opens New Window to Study Spermatogenic Process in 3D

Authors: Lukas Ded

Abstract:

Studying the tissue structure and histogenesis in the natural, 3D context is challenging but highly beneficial process. Contrary to classical approach of the physical tissue sectioning and subsequent imaging, it enables to study the relationships of individual cellular and histological structures in their native context. Recent developments in the tissue clearing approaches and microscopic volume imaging/data processing enable the application of these methods also in the areas of developmental and reproductive biology. Here, using the CLARITY tissue procedure and 3D confocal volume imaging we optimized the protocol for clearing, staining and imaging of the mice seminiferous tubules isolated from the testes without cardiac perfusion procedure. Our approach enables the high magnification and fine resolution axial imaging of the whole diameter of the seminiferous tubules with possible unlimited lateral length imaging. Hence, the large continuous pieces of the seminiferous tubule can be scanned and digitally reconstructed for the study of the single tubule seminiferous stages using nuclear dyes. Furthermore, the application of the antibodies and various molecular dyes can be used for molecular labeling of individual cellular and subcellular structures and resulting 3D images can highly increase our understanding of the spatiotemporal aspects of the seminiferous tubules development and sperm ultrastructure formation. Finally, our newly developed algorithms for 3D data processing enable the massive parallel processing of the large amount of individual cell and tissue fluorescent signatures and building the robust spermatogenic models under physiological and pathological conditions.

Keywords: CLARITY, spermatogenesis, testis, tissue clearing, volume imaging

Procedia PDF Downloads 137
2318 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 138