Search results for: ammonia in groundwater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 829

Search results for: ammonia in groundwater

319 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors

Authors: Amin Mojiri, Hamidi Abdul Aziz

Abstract:

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.

Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon

Procedia PDF Downloads 457
318 Geotechnical Engineering Solutions for Adaptation

Authors: Johnstone Walubengo Wangusi

Abstract:

Geotechnical engineering is a multidisciplinary field that encompasses the study of soil, rock, and groundwater properties and their interactions with civil engineering structures. This research paper provides an in-depth overview of geotechnical engineering, covering its fundamental principles, applications in civil infrastructure projects, and the challenges faced by practitioners in the field. Through a comprehensive examination of soil mechanics, foundation design, slope stability analysis, and geotechnical site investigation techniques, this paper aims to highlight the importance of geotechnical engineering in ensuring the safety, stability, and sustainability of infrastructure development. Additionally, it discusses emerging trends, innovative technologies, and future directions in geotechnical engineering research and practice.

Keywords: sustainable geotechnical engineering solutions, education and training for future generations geotechnical engineers, integration of geotechnical engineering and structural engineering, use of AI in geotechnical engineering modelling

Procedia PDF Downloads 35
317 Assessment of Surface Water Quality in Belarus

Authors: Anastasiya Vouchak, Aliaksandr Volchak

Abstract:

Belarus is not short of water. However, there is a problem of water quality. Its pollution has both natural and man-made origin. This research is based on data from State Water Cadastre of the Republic of Belarus registered from 1994 to 2014. We analyzed changes in such hydro-chemical criteria as concentration of ammonium ions, suspended matter, dissolved oxygen, oil-products, nitrites, phosphates in water, dichromate value, water impurity index, 5-day biochemical oxygen demand (BOD). Pollution of water with ammonium ions was observed in Belarus rivers of the Western Dvina, Polota, Schara, Usha, Muhavets, Berzina, Plissa, Svisloch, Pripiat, Yaselda in 2006-2014. The threshold limit value (TLV) was 1.5-3 times as much. Concentration of ammonia in the Berezina exceeded 3 – 5 times the TLVs in 2006-2010. Maximum excess of TLV was registered in the Svisloch (10 km downstream of Minsk) in 2006-2007. It was over 4 mg/dm³ whereas the norm is 0.39 mg/dm³. In 1997 there were ammonia pollution spots in the Dnieper, the Berezina, and the Svisloch Rivers. Since 2006 we have observed pollution spots in the Neman, Ross, Vilia, Sozh, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Dichromate value exceeds the TLVs in 40% cases. The most polluted waters are the Muhavets, Berezina, Pripiat, Yaselda, Gorin Rivers, the Vileyka and Soligorsk reservoirs. The Western Dvina, Neman, Viliya, Schara, Svisloch, and Plissa Rivers are less polluted. The Dnieper is the cleanest in this respect. In terms of BOD, water is polluted in the Neman, Muhavets, Svisloch, Yaselda, Gorin Rivers, the Osipovichi, Zaslavl, and Soligorsk reservoirs. The Western Dvina, Polota, Sozh, Iputs Rivers and Lake Naroch are not polluted in this respect. This criterion has been decreasing in 33 out of 42 cases. The least suspended matter is in the Berezina, Sozh, Iputs Rivers and Lake Naroch. The muddiest water is in the Neman, Usha, Svisloch, Pripyat, Yaselda Rivers, the Osipovichi and Soligorsk reservoirs. Water impurity index shows reduction of this criterion at all gauge stations. Multi-year average values predominantly (66.6%) correspond to the third class of water quality, i.e. moderately polluted. They include the Western Dvina, Ross, Usha, Muhavets, Dnieper, Berezina, Plissa, Iputs, Pripyat, Yaselda, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Water in the Svisloch River downstream of Minsk is of the forth quality class, i.e. most polluted. In the rest cases (33.3%) water is relatively clean. They include the Lidea, Schara, Viliya, Sozh Rivers, Lake Lukoml, Lake Naroch, Vileyka and Zaslavl reservoirs. Multi-year average values range from 7.0 to 9.5 mg О₂/dm³. The Yaselda has the least value - 6.7 mg О₂/dm³. A shortage of dissolved oxygen was found in the Berezina (2010), the Yaselda (2007), the Plissa (2011-2014), the Soligorsk reservoir (1996). Contamination of water with oil-products was observed everywhere in 1994-1999. Some spots were found in the Western Dvina, Vilia, Usha, Dnieper in 2003-2006, in the Svisloch in 2002-2012. We are observing gradual decrease of oil pollutants in surface water. The quality of 67 % surface water is referred to as moderately polluted.

Keywords: belarus, hydro-chemical criteria, water pollution, water quality

Procedia PDF Downloads 141
316 Evaluation of Major and Minor Components in Dakahlia Water Resources for Drinking Purposes

Authors: R. A. Mandour

Abstract:

The physical, chemical, and microbiological analyses of fifty Quaternary water samples representing the different types of drinking water (surface and wells) in the governorate were carried-out. This paper aims to evaluate the drinking water in Dakahlia governorate in comparison with the national and international standards as a step to handle water pollutants affecting human health in this governorate. All investigated water samples were chemically considered suitable for drinking except two samples for iron, two samples for lead and one water sample for manganese having values higher than the permissible limit of EMH and WHO. Also microbiologically there were five water samples having a high total count of bacteria and three samples having high coli form than the permissible limit of EMH. Obviously, groundwater samples from Mit-Ghamr, El-Sinbillawin and Aga districts of Dakahlia governorate should have special attention for treatment.

Keywords: major ions, minor elements, microbiology, EMH, WHO

Procedia PDF Downloads 365
315 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: bioremediation, Green Remediation, phytoremediation, remediation technologies, soil

Procedia PDF Downloads 220
314 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town

Authors: Benjamin Mauck, Kevin Winter

Abstract:

The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.

Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE

Procedia PDF Downloads 237
313 Optimization of Fenton Process for the Treatment of Young Municipal Leachate

Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki

Abstract:

Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.

Keywords: COD removal, color removal, Fenton process, oxidation process, leachate

Procedia PDF Downloads 276
312 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems

Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune

Abstract:

This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.

Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction

Procedia PDF Downloads 137
311 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 160
310 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 91
309 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 91
308 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure

Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong

Abstract:

Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.

Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community

Procedia PDF Downloads 403
307 Measurements of Environmental Pollution in Chemical Fertilizer Industrial Area Using Magnetic Susceptibility Method

Authors: Ramadhani Yasyfi Cysela, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

The World Health Organization (WHO) estimates that about a quarter of the diseases facing mankind today occur due to environmental pollution. The soil is a part of environment that have a widespread problem. The contaminated soil should no longer be used to grow food because the chemicals can leech into the food and harm people who eat it. The chemical fertilizer industry gives specific effect due to soil pollution. To determine ammonia and urea emissions from fertilizer industry, we can use physical characteristic of soil, which is magnetic susceptibility. Rock magnetism is used as a proxy indicator to determine changes in physical properties. Magnetic susceptibilities of samples in low and high frequency have been measured by Bartington MS2B magnetic susceptibility measurement device. The sample was taken from different area which located closer by pollution source and far from the pollution source. The susceptibility values of polluted samples in topsoil were quite low, with range from 187.1- 494.8 [x 10-8 m3 kg-1] when free polluted area’s sample has high values (1188.7- 2237.8 [x 10-8 m3 kg-1 ]). From this studies shows that susceptibility values in areas of the fertilizer industry are lower than the free polluted area.

Keywords: environmental, magnetic susceptibility, rock magnetism, soil pollution

Procedia PDF Downloads 338
306 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 252
305 Control of Pipeline Gas Quality to Extend Gas Turbine Life

Authors: Peter J. H. Carnell, Panayiotis Theophanous

Abstract:

Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.

Keywords: gas composition, gas conditioning, gas turbines, power generation, purification

Procedia PDF Downloads 273
304 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 328
303 Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact

Authors: Hidayatul Fitri, Petr Šařec

Abstract:

The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity.

Keywords: liquid organic fertilizer, digestate, application, ammonia, emission

Procedia PDF Downloads 271
302 HPTLC Fingerprinting of steroidal glycoside of leaves and berries of Solanum nigrum L. (Inab-us-salab/makoh)

Authors: Karishma Chester, Sarvesh K. Paliwal, Sayeed Ahmad

Abstract:

Inab-us-salab also known as Solanum nigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various unani traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of solanaceae, these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time its fractionation and fingerprinting of aglycone (solasodine) and glycosides (solamargine and solasonine) in leaves and berries of S. nigrum using solvent extraction and fractionation followed by HPTLC analysis. The fingerprinting was done using silica gel 60F254 HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5% ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phase at 400 nm, after derivatization with antimony tri chloride reagent for identification of steroidal glycoside. The statistical data obtained can further be validated and can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.

Keywords: solanum nigrum, solasodine, solamargine, solasonine, quantification

Procedia PDF Downloads 383
301 Matric Suction Effects on Behavior of Unsaturated Soil Slope

Authors: Mohsen Mousivand, Hesam Aminpour

Abstract:

Soil slopes are usually located above the groundwater level that are largely unsaturated. It is possible that unsaturated soil of slope has expanded or collapsed as a result of wetting by rain or other factor that this type of soil behavior can cause serious problems including human and financial damage. The main factor causing this difference in behavior of saturated and unsaturated state of soil is matric suction that is created by interface of the soil and water in the soil pores. So far theoretical studies show that matric suction has important effect on the mechanical behavior of soil although the impact of this factor on slope stability has not been studied. This paper presents a numerical study of effect of matric suction on slope stability. The results of the study indicate that safety factor and stability of soil slope increase due to an increasing of matric suction and in view of matric suction leads to more accurate results and safety factor.

Keywords: slope, unsaturated soil, matric suction, stability

Procedia PDF Downloads 322
300 Application of Freeze Desalination for Tace elements Removal from Water

Authors: Fekadu Melak, Tsegaye Girma Asere

Abstract:

Trace element ions, such as Cr(VI) and F−, are of particular interest due to their environmental impact. Both ions exhibit an anionic nature in water that can show similar removal tendencies except for their significant differences in ionic radius. Accordingly, partial freezing was performed to examine freeze separation efficiencies of Cr(VI) and F– from aqueous solutions. Real groundwater and simulated wastewater were included to test effeciency of F– and Cr(VI), respectively. Parameters such as initial ion concentration, salt addition, and freeze duration were explored. Under optimal operating conditions, freeze separation efficiencies of 90 ± 0.12 to 97 ± 0.54% and 58 ± 0.23% to 60 ± 0.34% from 5 mg/L of Cr(VI) and F–, respectively, were demonstrated. The F– ion intercalation into the ice, initiating the decrement of freeze separation efficiency was observed in the salt addition processes. The influences of structuring-destructuring (kosmotropicity-chaotropicity) and the size-exclusion nature of ice crystals were used to explain the plausible mechanism in freeze separation efficiency trace elemental ions.

Keywords: Cr(VI), F-, partial freezing, size exclusion

Procedia PDF Downloads 68
299 Simultaneous Extraction and Estimation of Steroidal Glycosides and Aglycone of Solanum

Authors: Karishma Chester, Sarvesh Paliwal, Sayeed Ahmad

Abstract:

Solanumnigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of Solanaceae these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time simultaneous extraction and quantification of aglycone (solasodine)and glycosides (solamargine and solasonine) inleaves and berries of S.nigrumusing solvent extraction followed by HPTLC analysis. Simultaneous extraction was carried out by sonication in mixture of chloroform and methanol as solvent. The quantification was done using silica gel 60F254HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5 % ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phaseat 400 nm, after derivatization with an isaldehydesul furic acid reagent. The method was validated as per ICH guideline for calibration, linearity, precision, recovery, robustness, specificity, LOD, and LOQ. The statistical data obtained for validation showed that method can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.

Keywords: solanumnigrum, solasodine, solamargine, solasonine, quantification

Procedia PDF Downloads 320
298 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses

Authors: Nuri Caglayan, H. Kursat Celik

Abstract:

There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.

Keywords: air quality, fuzzy logic model, livestock housing, fan speed

Procedia PDF Downloads 359
297 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 317
296 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: UWS (Urea-Water-Solution), selective catalytic reduction (SCR), evaporation, thermolysis, injection

Procedia PDF Downloads 383
295 Effectiveness of Jackfruit Seed Starch as Coagulant Aid in Landfill Leachate Treatment

Authors: Mohd Suffian Yusoff, Noor Aina Mohamad Zuki, Mohd Faiz Muaz Ahmad Zamri

Abstract:

Currently, aluminium sulphate (alum), ferric chloride and polyaluminium chloride (PAC) are the most common coagulants being used for leachate coagulation-flocculation treatment. However, the impact of these residual’s coagulants have sparked huge concern ceaselessly. Therefore, development of natural coagulant as an alternative coagulant for treatment process has been given full attentions. In this attempt jackfruit seed starch (JSS) was produce by extraction method. The removal efficiency was determined using jar test method. The removal of organic matter and ammonia were compared between JSS used in powder form and diluted form in leachate. The yield of starch from the extraction method was 33.17 % with light brown in colour. The removal of turbidity was the highest at pH 8 for both diluted and powdered JSS with 38% and 8.7% of removal. While for colour removal the diluted JSS showed 18.19% of removal compared to powdered JSS. The diluted JSS also showed the highest removal of suspended solid with 3.5% compared to powdered JSS with 2.8%. Instead of coagulant, JSS as coagulant aid has succeed to reduce the dosage of PAC from 900 mg/L to 528 mg/L by maintaining colour and turbidity removal up to 94% and 92 % respectively. The JSS coagulant also has decreased the negative charge of the leachate nearly to the neutral charge (0.209 mv). The result proved that JSS was more effective to be used as coagulant aid landfill leachate treatment.

Keywords: landfill leachate, natural coagulant, jackfruit seed starch, coagulant

Procedia PDF Downloads 495
294 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants

Authors: F. Hassaine-Sadi, S. Chelouaou

Abstract:

In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.

Keywords: synergistic extraction, lead, copper, environment

Procedia PDF Downloads 432
293 Effect of Lignocellulose-Degrading Bacteria Isolated from Termite Gut on the Nutritive Value of Wheat Straw as Ruminant Feed

Authors: Ayoub Azizi-Shotorkhoft, Tahereh Mohammadabadi, Hosein Motamedi, Morteza Chaji, Hasan Fazaeli

Abstract:

This study was conducted to investigate nutritive value of wheat straw processed with termite gut symbiotic bacteria with lignocellulosic-degrading potential including Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola in vitro. These bacteria were isolated by culturing termite guts contents in different culture media containing different lignin and lignocellulosic materials that had been prepared from water-extracted sawdust and wheat straw. Results showed that incubating wheat straw with all of three isolated bacteria increased (P<0.05) acid-precipitable polymeric lignin (APPL) compared to control, and highest amount of APPL observed following treatment with B. licheniformis. Highest and lowest (P<0.05) in vitro gas production and ruminal organic matter digestibility were obtained when treating wheat straw with B. licheniformis and control, respectively. However, other fermentation parameters such as b (i.e., gas production from the insoluble fermentable fractions at 144h), c (i.e., rate of gas production during incubation), ruminal dry matter digestibility, metabolizable energy, partitioning factor, pH and ammonia nitrogen concentration were similar between experimental treatments (P>0.05). It is concluded that processing wheat straw with isolated bacteria improved its nutritive value as ruminants feed.

Keywords: termite gut bacteria, wheat straw, nutritive value, ruminant

Procedia PDF Downloads 326
292 Smart Food Packaging Using Natural Dye and Nanoclay as a Meat Freshness Indicator

Authors: Betina Luiza Koop, Lenilton Santos Soares, Karina Cesca, Germán Ayala Valencia, Alcilene Rodrigues Monteiro

Abstract:

Active and smart food packaging has been studied to control and extend the food shelf-life. However, active compounds such as anthocyanins (ACNs) are unstable to high temperature, light, and pH changes. Several alternatives to stabilize and protect the anthocyanins have been researched, such as adsorption on nanoclays. Thus, this work aimed to stabilize anthocyanin extracted from jambolan fruit (Syzygium cumini), a noncommercial fruit, to development of food package sensors. The anthocyanin extract from jambolan pulp was concentrated by ultrafiltration and adsorbed on montmorillonite. The final biohybrid material was characterized by pH and color. Anthocyanins were adsorbed on nanoclay at pH 1.5, 2.5, and 3.5 and temperatures of 10 and 20 °C. The highest adsorption values were obtained at low pH at high temperatures. The color and antioxidant activity of the biohybrid was maintained for 60 days. A test of the color stability at pH from 1 to 13, simulating spoiled food using ammonia vapor, was performed. At pH from 1 to 5, the ACNs pink color was maintained, indicating that the flavylium cation form was preserved. At pH 13, the biohybrid presented yellow color due to the ACN oxidation. These results showed that the biohybrid material developed has potential application as a sensor to indicate the freshness of meat products.

Keywords: anthocyanin, biohybrid, food, smart packaging

Procedia PDF Downloads 57
291 Performance of an Anaerobic Osmotic Membrane Bioreactor Hybrid System for Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

The submerged anaerobic osmotic membrane bioreactor (AnOMBR) integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR used cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5 L bioreactor at 30-35 ℃. Active layer was orientated to feed stream for minimizing membrane fouling and scaling. Additionally, a peristaltic pump was used to circulate magnesium sulphate (MgSO₄) solution applied as draw solution (DS). Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneously control the salt accumulation in the bioreactor. During experiment progress, the average water flux was around 1.6 LMH. The AnOMBR process showed greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial of ammonia was removed. On the other hand, the average methane production of 0.22 L/g sCOD was obtained. Subsequently, the overall performance demonstrates that a novel submerged AnOMBR system is potential for simultaneous wastewater treatment and resource recovery from wastewater. Therefore, the new concept of this system can be used to replace for the conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 219
290 Some Aspects of Water Resources Management in Arid and Semi-Arid Regions, Case Study of Western Iran

Authors: Amir Hamzeh Haghiabi

Abstract:

Water resource management is of global significance as it plays a key role in the socioeconomic development of all nations. On account of the fact that Iran is situated in a highly pressurized belt in the world, precipitation is limited, so that the average annual precipitation in the country is about 250 mm, only about one third to one quarter of the world average for rainfall. Karkheh basin is located in the semiarid and arid regions of Western Iran, an area with severe water scarcity. 70 % of rainfall is directly evaporated. The potential annual evaporation of the southern and northern regions is 3,600 mm 1,800 mm, respectively. In this paper, Some aspects of water resources management for this region, the specifications of the Karkheh reservoir dam & hydroelectric power plant as the biggest dam in history of Iran with total volume of reservoir 7.3 Bm3 are illustrated. Also the situation of water availability in the basin, surface and groundwater potential are considered.

Keywords: Iran, water availability, water resources, Zagros

Procedia PDF Downloads 635