Search results for: industrial wireless network (IWN)
2926 The Conception of the Students about the Presence of Mental Illness at School
Authors: Aline Giardin, Maria Rosa Chitolina, Maria Catarina Zanini
Abstract:
In this paper, we analyze the conceptions of high school students about mental health issues, and discuss the creation of mental basic health programs in schools. We base our findings in a quantitative survey carried out by us with 156 high school students of CTISM (Colégio Técnico Industrial de Santa Maria) school, located in Santa Maria city, Brazil. We have found that: (a) 28 students relate the subject ‘mental health’ with psychiatric hospitals and lunatic asylums; (b) 28 students have relatives affected by mental diseases; (c) 76 students believe that mental patients, if treated, can live a healthy life; (d) depression, schizophrenia and bipolar disorder are the most cited diseases; (e) 84 students have contact with mental patients, but know nothing about the disease; (f) 123 students have never been instructed about mental diseases while in the school; and (g) 135 students think that a mental health program would be important in the school. We argue that these numbers reflect a vision of mental health that can be related to the reductionist education still present in schools and to the lack of integration between health professionals, sciences teachers, and students. Furthermore, this vision can also be related to a stigmatization process, which interferes with the interactions and with the representations regarding mental disorders and mental patients in society.Keywords: mental health, schools, mental illness, conception
Procedia PDF Downloads 4742925 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint
Authors: Melike Yaylacı, Tuğba Bilgin
Abstract:
Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters
Procedia PDF Downloads 1022924 Effect of Concentration of Alkaline and Curing Temperature on Compressive Strength of Geopolymer Concert
Authors: Nursah Kutuk, Sevil Cetinkaya
Abstract:
Geopolymers are becoming new concrete materials to use alongside cement, which are formed due to reaction between alumino-silicates and oxides with alkaline media. Silicates obtained from natural minerals or industrial wastes are used for geopolymer synthesis. Geopolymers have recently received wide attention because of their advantages over other cementitious material like Portland cement. Some of the advantages are high compressive strength, low environmental impact, chemical and fire resistance and thermal stability. In this study, geopolymers were prepared by using inorganic materials such as kaolinite and calcite. The experiments were carried out by varying the concentration of NaOH as 5, 10, 15 and 20 M, and at cure temperature of 22, 45 and 65 °C. Compressive strengths for each mixes at each cure temperature were measured. Results of the analyses indicated that the compressive strength of geopolymers did not increase steadily with increasing concentration of NaOH, but did increase steadily with increasing cure temperature. We examined the effect Na2SiO3/NaOH weight ratio on the properties of the geopolymers, too. It was seen that Na2SiO3/NaOH weight ratio was also important to prepare geopolymers that can be applied to construction industry.Keywords: geopolymers, compressive strength, kaolinite, calcite
Procedia PDF Downloads 3062923 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method
Authors: J. Satya Eswari, Ch. Venkateswarlu
Abstract:
The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization
Procedia PDF Downloads 4162922 Characterization and Detection of Cadmium Ion Using Modification Calixarene with Multiwalled Carbon Nanotubes
Authors: Amira Shakila Razali, Faridah Lisa Supian, Muhammad Mat Salleh, Suriani Abu Bakar
Abstract:
Water contamination by toxic compound is one of the serious environmental problems today. These toxic compounds mostly originated from industrial effluents, agriculture, natural sources and human waste. These study are focused on modification of multiwalled carbon nanotube (MWCNTs) with nanoparticle of calixarene and explore the possibility of using this nanocomposites for the remediation of cadmium in water. The nanocomposites were prepared by dissolving calixarene in chloroform solution as solvent, followed by additional multiwalled carbon nanotube (MWCNTs) then sonication process for 3 hour and fabricated the nanocomposites on substrate by spin coating method. Finally, the nanocomposites were tested on cadmium ion (10 mg/ml). The morphology of nanocomposites was investigated by FESEM showing the formation of calixarene on the outer walls of carbon nanotube and cadmium ion also clearly seen from the micrograph. This formation was supported by using energy dispersive x-ray (EDX). The presence of cadmium ions in the films, leads to some changes in the surface potential and Fourier Transform Infrared spectroscopy (FTIR).This nanocomposites have potential for development of sensor for pollutant monitoring and nanoelectronics devices applicationsKeywords: calixarene, multiwalled carbon nanotubes, cadmium, surface potential
Procedia PDF Downloads 4972921 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements
Authors: Marlies Achenbach
Abstract:
System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies
Procedia PDF Downloads 4312920 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object
Procedia PDF Downloads 2392919 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1612918 The Damage Assessment of Industrial Buildings Located on Clayey Soils Using in-Situ Tests
Authors: Ismail Akkaya, Mucip Tapan, Ali Ozvan
Abstract:
Some of the industrially prefabricated buildings located on clayey soils were damaged due to soil conditions. The reasons of these damages are generally due to different settlement capacity, the different plasticity of soils and the level of ground water. The aim of this study is to determine the source of these building damages by conducting in situ tests. Therefore, pressuremeter test, which is one of the borehole loading test conducted to determine the properties of soils under the foundations and Standart Penetration Test (SPT). The results of these two field tests were then used to accurately obtain the consistency and firmness of soils. Pressuremeter Deformation Module (EM) and Net Limiting Pressure (PL) of soils were calculated after the pressuremeter tests. These values were then compared with the SPT (N30) and SPT (N60) results. An empirical equation was developed to obtain EM and PL values of such soils from SPT test results. These values were then used to calculate soil bearing capacity as well as the soil settlement. Finally, the relationship between the foundation settlement and the damage of these buildings were checked. It was found that calculated settlement values were almost the same as measured settlement values.Keywords: damaged building, pressuremeter, standard penetration test, low and high plasticity clay
Procedia PDF Downloads 3212917 Clique and Clan Analysis of Patient-Sharing Physician Collaborations
Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan
Abstract:
The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.Keywords: clique, clan, electronic health records, physician collaboration
Procedia PDF Downloads 1442916 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration
Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen
Abstract:
Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration
Procedia PDF Downloads 432915 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO
Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu
Abstract:
Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO
Procedia PDF Downloads 962914 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 1512913 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels
Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das
Abstract:
A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear
Procedia PDF Downloads 1332912 Performance of Constant Load Feed Machining for Robotic Drilling
Authors: Youji Miyake
Abstract:
In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling
Procedia PDF Downloads 2012911 Application of Italian Guidelines for Existing Bridge Management
Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando
Abstract:
The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring
Procedia PDF Downloads 622910 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC
Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi
Abstract:
Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model
Procedia PDF Downloads 3662909 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 3392908 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities
Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin
Abstract:
It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.Keywords: finger movement, neural activity, blind decoding, M1
Procedia PDF Downloads 3272907 Heavy Metals Concentration in Sediments Along the Ports, Samoa
Authors: T. Imo, F. Latū, S. Aloi, J. Leung-Wai, V. Vaurasi, P. Amosa, M. A. Sheikh
Abstract:
Contamination of heavy metals in coral reefs and coastal areas is a serious ecotoxicological and environmental problem due to direct runoff from anthropogenic wastes, commercial vessels, and discharge from industrial effluents. In Samoa, the information on the ecotoxicological impact of heavy metals on sediments is limited. This study presents baseline data on the concentration and distribution of heavy metals in sediments collected along the commercial and fishing ports in Samoa. Surface sediment samples were collected within the months of August-October 2013 from the 5 sites along the 2 ports. Sieved sample fractions were used for the evaluation of sediment physicochemical parameters namely pH, conductivity, organic matter, and bicarbonates of calcium. Heavy metal (Cu, Pb) analysis was achieved by flame atomic absorption spectrometry. Two heavy metals (Cu, Pb) were detected from each port with some concentration below the WHO permissible maximum concentration of environment quality standard. The results obtained from this study advocate for further studies regarding emerging threats of heavy metals on the vital marine resources which have significant importance to the livelihood of coastal societies, particularly Small Island States including Samoa.Keywords: coastal environment, heavy metals, pollution, sediments
Procedia PDF Downloads 3332906 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1182905 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method
Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt
Abstract:
Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS
Procedia PDF Downloads 1562904 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine
Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar
Abstract:
In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine
Procedia PDF Downloads 5362903 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms
Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,
Abstract:
Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model
Procedia PDF Downloads 2882902 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite
Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li
Abstract:
Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption
Procedia PDF Downloads 2882901 Modeling of Micro-Grid System Components Using MATLAB/Simulink
Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim
Abstract:
Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling
Procedia PDF Downloads 4392900 Challenges of Embedding Entrepreneurship in Modibbo Adama University of Technology Yola, Nigeria
Authors: Michael Ubale Cyril
Abstract:
Challenges of embedding entrepreneurship in tertiary institutions in Nigeria requires a consistent policy for equipping schools with necessary facilities like establishing incubating technology centre, the right calibres of human resources, appropriate pedagogical tools for teaching entrepreneurship education and exhibition grounds where products and services will be delivered and patronised by the customers. With the death of facilities in public schools in Nigeria, educators are clamouring for a way out. This study investigated the challenges of embedding entrepreneurship education in Modibbo Adama University of Technology Yola, Nigeria. The population for the study was 201 comprising 34 industrial entrepreneurs, 76 technical teachers and 91 final year undergraduates. The data was analysed using means of 3 groups, standard deviation, and analysis of variance. The study found out, that technical teachers have not been trained to teach entrepreneurship education, approaches to teaching methodology, were not varied and lack of infrastructural facilities like building was not a factor. It was recommended that technical teachers be retrained to teach entrepreneurship education, textbooks in entrepreneurship should be published with Nigerian outlook.Keywords: challenges, embedding, entrepreneurship pedagogical, technology incubating centres
Procedia PDF Downloads 3052899 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures
Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara
Abstract:
The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.Keywords: IoT, fog computing, task offloading, efficient crow search algorithm
Procedia PDF Downloads 612898 Transnational Educators in Japan, Russia, and America: Historical Trends in Global Education in the 1990’s and Early 2000’s
Authors: Peter J. Glinos
Abstract:
The Alternative Education Resource Organization (AERO), one of the largest international hubs for alternative educators led by Jerry Mintz, has had a major impact on the global alternative education movement. The organization’s publications, like the AERO-Gramme Newsletter and its successor, the Education Revolution Magazine, allowed members across the globe to discuss issues, share support, and submit writings on policies and reforms. Stored on AERO's online digital archive, this work uses these publications from 1989 to 2011 to investigate the network's entanglements with America, Canada, Russia, Ukraine, Israel, Palestine, Japan, India, and Guatemala. Inspired by Reinhart Koselleck, this historical analysis will trace AERO’s entanglements within the United States, Japan, and Russia, contextualizing each of these multiple temporalities within the history of each nation’s education system, the developments within AERO, and the global geo-political climate at the time of AERO’s expansion. To help remedy the lack of attention paid by global historians to the role state organizations play supporting global networks, as noted in What is Global History? by Sebastian Conrad, this work will focus on the relationship between AERO and state actors.Keywords: global history, history of education, neoliberalism, transnational history, alternative education
Procedia PDF Downloads 332897 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model
Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König
Abstract:
In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.Keywords: fire detection, label annotation, foundation models, object detection, segmentation
Procedia PDF Downloads 19