Search results for: conditional proportional reversed hazard rate model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24111

Search results for: conditional proportional reversed hazard rate model

18771 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 282
18770 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 52
18769 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 362
18768 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications

Authors: Sung-Won Seo, Jang-Young Choi

Abstract:

The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.

Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method

Procedia PDF Downloads 305
18767 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 114
18766 Combination of the Hydrological Model and SDSM for Assessing Climate Change Impacts on Future Water Resources in the R’dom Watershed, Morocco

Authors: Abdennabi Alitane, Ali Essahlaoui, Ahmed M. Saqr, Sabine Sauvage, José-Miguel Sánchez-Pérez, Ann Van Griensven

Abstract:

Climate change effect of on water resources in semi-arid regions can be serious, it is essential to understand the effects of climate change on the water balance in order to develop sustainable adaptation strategies. This research project examined the impact of climate change on the components of the water balance in a R'Dom hydrological watershed in the Mediterranean region. The assessment of climate change impact on the future hydrology is done by using the SDSM (Statistical DownScaling Model) and SWAT+ (The Soil and Water Assessment Tool) hydrological model during the baseline period (2002–2013), the data was analyzed and compared to future climate projections . The future projections of the global circulation model canEMS2 under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios were statically downscaled for a period (2014–2100). Afterwards, the SWAT+ model is simulated for the period from 2000 to 2013, calibrated from 2002 to 2007, and validated from 2008 to 2013 using monthly streamflow data. The model results showed good performance with an NSE of 0.72 and R2 of 0.71 during the validation period. The future precipitation shows a decreasing tendency under all scenarios, with -6.59%, -2.86%, and -2.57% for RCPaveg 2.6, RCPaveg 4.5, and RCPaveg 8.5, respectively. On other hand, the average monthly streamflow of R’Dom river in the near future (2014–2043) will decrease by 44–48%, decrease by 36–48% in the Medium period (2044–2071) and decrease by 43–52% in the period (2072–2100) under the three RCP scenarios. Regarding the water balance components changes, the average annual of actual evapotranspiration is predicted to increase from 5% to 9% under the three RCP scenarios for the three future study periods. Projected average annual flows are expected to decrease by 37% to 90% under the three RCP scenarios over the three future periods. In general, the current scientific research context and the results obtained from the methodology applied will help to optimize future water planning in semi-arid regions in the face of climate change.

Keywords: climate change, water balance, R'Dom watershed, SDSM, SWAT+ model

Procedia PDF Downloads 9
18765 Stock Price Prediction with 'Earnings' Conference Call Sentiment

Authors: Sungzoon Cho, Hye Jin Lee, Sungwhan Jeon, Dongyoung Min, Sungwon Lyu

Abstract:

Major public corporations worldwide use conference calls to report their quarterly earnings. These 'earnings' conference calls allow for questions from stock analysts. We investigated if it is possible to identify sentiment from the call script and use it to predict stock price movement. We analyzed call scripts from six companies, two each from Korea, China and Indonesia during six years 2011Q1 – 2017Q2. Random forest with Frequency-based sentiment scores using Loughran MacDonald Dictionary did better than control model with only financial indicators. When the stock prices went up 20 days from earnings release, our model predicted correctly 77% of time. When the model predicted 'up,' actual stock prices went up 65% of time. This preliminary result encourages us to investigate advanced sentiment scoring methodologies such as topic modeling, auto-encoder, and word2vec variants.

Keywords: earnings call script, random forest, sentiment analysis, stock price prediction

Procedia PDF Downloads 296
18764 Study of Self-Assembled Photocatalyst by Metal-Terpyridine Interactions in Polymer Network

Authors: Dong-Cheol Jeong, Jookyung Lee, Yu Hyeon Ro, Changsik Song

Abstract:

The design and synthesis of photo-active polymeric systems are important in regard to solar energy harvesting and utilization. In this study, we synthesized photo-active polymer, thin films, and polymer gel via iterative self-assembly using reversible metal-terpyridine (M-tpy) interactions. The photocurrent generated in the polymeric thin films with Zn(II) was much higher than those of other films. Apparent diffusion rate constant (kapp) was measured for the electron hopping process via potential-step chronoamperometry. As a result, the kapp for the polymeric thin films with Zn(II) was almost two times larger than those with other metal ions. We found that the anodic photocurrents increased with the inclusion of the multi-walled carbon nanotube (MWNT) layer. Inclusion of MWNTs can provide efficient electron transfer pathways. In addition, polymer gel based on interactions between terpyridine and metal ions was shown the photocatalytic activity. Interestingly, in the Mg-terpyridine gel, the reaction rate of benzylamine to imine photo-oxidative coupling was faster than Fe-terpyridine gel because the Mg-terpyridine gel has two steps electron transfer pathway but Fe-terpyridine gel has three steps electron transfer pathway.

Keywords: terpyridine, photocatalyst, self-assebly, metal-ligand

Procedia PDF Downloads 313
18763 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient

Procedia PDF Downloads 386
18762 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 74
18761 Designing an Effective Accountability Model for Islamic Azad University Using the Qualitative Approach of Grounded Theory

Authors: Davoud Maleki, Neda Zamani

Abstract:

The present study aims at exploring the effective accountability model of Islamic Azad University using a qualitative approach of grounded theory. The data of this study were obtained from semi-structured interviews with 25 professors and scholars in Islamic Azad University of Tehran who were selected by theoretical sampling method. In the data analysis, the stepwise method and Strauss and Corbin analytical methods (1992) were used. After identification of the main component (balanced response to stakeholders’ needs) and using it to bring the categories together, expressions and ideas representing the relationships between the main and subcomponents, and finally, the revealed components were categorized into six dimensions of the paradigm model, with the relationships among them, including causal conditions (7 components), main component (balanced response to stakeholders’ needs), strategies (5 components), environmental conditions (5 components), intervention features (4 components), and consequences (3 components). Research findings show an exploratory model for describing the relationships between causal conditions, main components, accountability strategies, environmental conditions, university environmental features, and that consequences.

Keywords: accountability, effectiveness, Islamic Azad University, grounded theory

Procedia PDF Downloads 90
18760 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 200
18759 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness

Authors: Marzieh Karimihaghighi, Carlos Castillo

Abstract:

This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.

Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism

Procedia PDF Downloads 156
18758 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 146
18757 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 367
18756 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 229
18755 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial

Procedia PDF Downloads 150
18754 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods

Authors: J. Tamosaitiene

Abstract:

The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.

Keywords: risk, system, model, construction

Procedia PDF Downloads 171
18753 Job Characteristics, Emotion Regulation and University Teachers' Well-Being: A Job Demands-Resources Analysis

Authors: Jiying Han

Abstract:

Teaching is widely known to be an emotional endeavor, and teachers’ ability to regulate their emotions is important for their well-being and the effectiveness of their classroom management. Considering that teachers’ emotion regulation is an underexplored issue in the field of educational research, some studies have attempted to explore the role of emotion regulation in teachers’ work and to explore the links between teachers’ emotion regulation, job characteristics, and well-being, based on the Job Demands-Resources (JD-R) model. However, those studies targeted primary or secondary teachers. So far, very little is known about the relationships between university teachers’ emotion regulation and its antecedents and effects on teacher well-being. Based on the job demands-resources model and emotion regulation theory, this study examined the relationships between job characteristics of university teaching (i.e., emotional job demands and teaching support), emotion regulation strategies (i.e., reappraisal and suppression), and university teachers’ well-being. Data collected from a questionnaire survey of 643 university teachers in China were analysed. The results indicated that (1) both emotional job demands and teaching support had desirable effects on university teachers’ well-being; (2) both emotional job demands and teaching support facilitated university teachers’ use of reappraisal strategies; and (3) reappraisal was beneficial to university teachers’ well-being, whereas suppression was harmful. These findings support the applicability of the job demands-resources model to the contexts of higher education and highlight the mediating role of emotion regulation.

Keywords: emotional job demands, teaching support, emotion regulation strategies, the job demands-resources model

Procedia PDF Downloads 162
18752 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: attention, fire detection, smoke detection, spatio-temporal

Procedia PDF Downloads 209
18751 Using Virtual Reality Exergaming to Improve Health of College Students

Authors: Juanita Wallace, Mark Jackson, Bethany Jurs

Abstract:

Introduction: Exergames, VR games used as a form of exercise, are being used to reduce sedentary lifestyles in a vast number of populations. However, there is a distinct lack of research comparing the physiological response during VR exergaming to that of traditional exercises. The purpose of this study was to create a foundationary investigation establishing changes in physiological responses resulting from VR exergaming in a college aged population. Methods: In this IRB approved study, college aged students were recruited to play a virtual reality exergame (Beat Saber) on the Oculus Quest 2 (Facebook, 2021) in either a control group (CG) or training group (TG). Both groups consisted of subjects who were not habitual users of virtual reality. The CG played VR one time per week for three weeks and the TG played 150 min/week three weeks. Each group played the same nine Beat Saber songs, in a randomized order, during 30 minute sessions. Song difficulty was increased during play based on song performance. Subjects completed a pre- and posttests at which the following was collected: • Beat Saber Game Metrics: song level played, song score, number of beats completed per song and accuracy (beats completed/total beats) • Physiological Data: heart rate (max and avg.), active calories • Demographics Results: A total of 20 subjects completed the study; nine in the CG (3 males, 6 females) and 11 (5 males, 6 females) in the TG. • Beat Saber Song Metrics: The TG improved performance from a normal/hard difficulty to hard/expert. The CG stayed at the normal/hard difficulty. At the pretest there was no difference in game accuracy between groups. However, at the posttest the CG had a higher accuracy. • Physiological Data (Table 1): Average heart rates were similar between the TG and CG at both the pre- and posttest. However, the TG expended more total calories. Discussion: Due to the lack of peer reviewed literature on c exergaming using Beat Saber, the results of this study cannot be directly compared. However, the results of this study can be compared with the previously established trends for traditional exercise. In traditional exercise, an increase in training volume equates to increased efficiency at the activity. The TG should naturally increase in difficulty at a faster rate than the CG because they played 150 hours per week. Heart rate and caloric responses also increase during traditional exercise as load increases (i.e. speed or resistance). The TG reported an increase in total calories due to a higher difficulty of play. The song accuracy decreases in the TG can be explained by the increased difficulty of play. Conclusion: VR exergaming is comparable to traditional exercise for loads within the 50-70% of maximum heart rate. The ability to use VR for health could motivate individuals who do not engage in traditional exercise. In addition, individuals in health professions can and should promote VR exergaming as a viable way to increase physical activity and improve health in their clients/patients.

Keywords: virtual reality, exergaming, health, heart rate, wellness

Procedia PDF Downloads 192
18750 A Comparative Study to Evaluate Changes in Intraocular Pressure with Thiopentone Sodium and Etomidate in Patients Undergoing Surgery for Traumatic Brain Injury

Authors: Vasudha Govil, Prashant Kumar, Ishwar Singh, Kiranpreet Kaur

Abstract:

Traumatic brain injury leads to elevated intracranial pressure. Intraocular pressure (IOP) may also be affected by intracranial pressure. Increased venous pressure in the cavernous sinus is transmitted to the episcleral veins, resulting in an increase in IOP. All drugs used in anesthesia induction can change IOP. Irritation of the gag reflex after usage of the endotracheal tube can also increase IOP; therefore, the administration of anesthetic drugs, which make the lowest change in IOP, is important, while cardiovascular depression must also be avoided. Thiopentone decreases IOP by 40%, whereas etomidate decreases IOP by 30-60% for up to 5 minutes. Hundred patients (age 18-55 years) who underwent emergency craniotomy for TBI are selected for the study. Patients are randomly assigned to two groups of 50 patients each accord¬ing to the drugs used for induction: group T was given thiopentone sodium (5mg kg-1) and group E was given etomi¬date (0.3mg kg-1). Preanaesthesia intraocular pressure (IOP) was measured using Schiotz tonometer. Induction of anesthesia was achieved with etomidate (0.3mg kg-1) or thiopentone (5mg kg-1) along with fentanyl (2 mcg kg-1). Intravenous rocuronium (0.9mg kg-1) was given to facilitate intubation. Intraocular pressure was measured after 1 minute of induction agent administration and 5 minutes after intubation. Maintainance of anesthesia was done with isoflurane in 50% nitrous oxide with fresh gas flow of 5 litres. At the end of the surgery, the residual neuromuscular block was reversed and the patient was shifted to ward/ICU. Patients in both groups were comparable in terms of demographic profile. There was no significant difference between the groups for the hemody¬namic and respiratory variables prior to thiopentone or etomidate administration. Intraocular pressure in thiopentone group in left eye and right eye before induction was 14.97±3.94 mmHg and 14.72±3.75 mmHg respectively and for etomidate group was 15.28±3.69 mmHg and 15.54±4.46 mmHg respectively. After induction IOP decreased significantly in both the eyes (p<0.001) in both the groups. After 5 min of intubation IOP was significantly less than the baseline in both the eyes but it was more than the IOP after induction with the drug. It was found that there was no statistically significant difference in IOP between the two groups at any point of time. Both the drugs caused a significant decrease in IOP after induction and after 5 minutes of endotracheal intubation. The mechanism of decrease in IOP by intravenous induction agents is debatable. Systemic hypotension after the induction of anaesthesia has been shown to cause a decrease in intra-ocular pressure. A decrease in the tone of the extra-ocular muscles can also result in a decrease in intra-ocular pressure. We observed that it is appropriate to use etomidate as an induction agent when elevation of intra-ocular pressure is undesirable owing to the cardiovascular stability it confers in the patients.

Keywords: etomidate, intraocular pressure, thiopentone, traumatic

Procedia PDF Downloads 132
18749 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India

Authors: Sujata Upgupta, Prasoon Kumar Singh

Abstract:

The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.

Keywords: forest, coal mining, indicators, vulnerability

Procedia PDF Downloads 391
18748 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 259
18747 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model

Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura

Abstract:

This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.

Keywords: Malawi rainfall, forecast model, predictors, SST

Procedia PDF Downloads 395
18746 Transdisciplinarity Research Approach and Transit-Oriented Development Model for Urban Development Integration in South African Cities

Authors: Thendo Mafame

Abstract:

There is a need for academic research to focus on solving or contributing to solving real-world societal problems. Transdisciplinary research (TDR) provides a way to produce functional and applicable research findings, which can be used to advance developmental causes. This TDR study explores ways in which South Africa’s spatial divide, entrenched through decades of discriminatory planning policies, can be restructured to bring about equitable access to places of employment, business, leisure, and service for previously marginalised South Africans. It does by exploring the potential of the transit-orientated development (TOD) model to restructure and revitalise urban spaces in a collaborative model. The study focuses, through a case study, on the Du Toit station precinct in the town of Stellenbosch, on the peri-urban edge of the city of Cape Town, South Africa. The TOD model is increasingly viewed as an effective strategy for creating sustainable urban redevelopment initiatives, and it has been deployed successfully in other parts of the world. The model, which emphasises development density, diversity of land-use and infrastructure and transformative design, is customisable to a variety of country contexts. This study made use of case study approach with mixed methods to collect and analyse data. Various research methods used include the above-mentioned focus group discussions and interviews, as well as observation, transect walks This research contributes to the professional development of TDR studies that are focused on urbanisation issues.

Keywords: case study, integrated urban development, land-use, stakeholder collaboration, transit-oriented development, transdisciplinary research

Procedia PDF Downloads 133
18745 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits

Authors: Sandeep Das

Abstract:

Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysis

Keywords: ANSYS, functionally graded material, lead-acid battery, terminal post

Procedia PDF Downloads 143
18744 MAOD Is Estimated by Sum of Contributions

Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren

Abstract:

Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.

Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill

Procedia PDF Downloads 143
18743 A Translation Criticism of the Persian Translation of “A**Hole No More” Written by Xavier Crement

Authors: Mehrnoosh Pirhayati

Abstract:

Translation can be affected by different meta-textual factors of target context such as ideology, politics, and culture. So, the rule of fidelity, or being faithful to the source text, can be ignored by the translator. On the other hand, critical discourse analysis, derived from applied linguistics, is entered into the field of translation studies and used by scholars for revealing hidden deviations and possible roots of manipulations. This study focused on the famous Persian translation of the bestseller book, “A**hole No More,” written by XavierCrement 1990, performed by Mahmud Farjami to comparatively and critically analyze it with its corresponding English original book. The researcher applied Pirhayati’s model and framework of translation criticism at the textual and semiotic levels for this qualitative study. It should be noted that Kress and Van Leeuwen’s semiotic model, along with Machin’s model of typographical analysis, was also used at the semiotic level. The results of the comparisons and analyses indicate thatthis Persian translation of the book is affected by the factors of ideology and economics and reveal that the Islamic attitude causes the translator to employ some strategies such as substitution and deletion. Those who may benefit from this research are translation trainers, students of translation studies, critics, and scholars.

Keywords: farjami (2013), Ideology, manipulation, pirhayati's (2013) model of translation criticism, Xavier crement (1990)

Procedia PDF Downloads 218
18742 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing

Procedia PDF Downloads 270