Search results for: cloud properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9629

Search results for: cloud properties

4289 Plastic Deformation of Mg-Gd Solid Solutions between 4K and 298K

Authors: Anna Kula, Raja K. Mishra, Marek Niewczas

Abstract:

Deformation behavior of Mg-Gd solid solutions have been studied by a combination of measurements of mechanical response, texture and dislocation substructure. Increase in Gd content strongly influences the work-hardening behavior and flow characteristics in tension and compression. Adiabatic instabilities have been observed in all alloys at 4K under both tension and compression. The frequency and the amplitude of adiabatic stress oscillations increase with Gd content. Profuse mechanical twinning has been observed under compression, resulting in a texture dominated by basal component parallel to the compression axis. Under tension, twining is less active and the texture evolution is affected mostly by slip. Increasing Gd concentration leads to the reduction of the tension and compression asymmetry due to weakening of the texture and stabilizing more homogenous twinning and slip, involving basal and non-basal slip systems.

Keywords: Mg-Gd alloys, mechanical properties, work hardening, twinning

Procedia PDF Downloads 539
4288 Experimental Simulation of Soil Boundary Condition for Dynamic Studies

Authors: Omar S. Qaftan, T. T. Sabbagh

Abstract:

This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.

Keywords: soil, seismic, earthquake, interaction

Procedia PDF Downloads 298
4287 Crisis In/Out, Emergent, and Adaptive Urban Organisms

Authors: Alessandra Swiny, Michalis Georgiou, Yiorgos Hadjichristou

Abstract:

This paper focuses on the questions raised through the work of Unit 5: ‘In/Out of crisis, emergent and adaptive’; an architectural research-based studio at the University of Nicosia. It focusses on sustainable architectural and urban explorations tackling with the ever growing crises in its various types, phases and locations. ‘Great crisis situations’ are seen as ‘great chances’ that trigger investigations for further development and evolution of the built environment in an ultimate sustainable approach. The crisis is taken as an opportunity to rethink the urban and architectural directions as new forces for inventions leading to emergent and adaptive built environments. The Unit 5’s identity and environment facilitates the students to respond optimistically, alternatively and creatively towards the global current crisis. Mark Wigley’s notion that “crises are ultimately productive” and “They force invention” intrigued and defined the premises of the Unit. ‘Weather and nature are coauthors of the built environment’ Jonathan Hill states in his ‘weather architecture’ discourse. The weather is constantly changing and new environments, the subnatures are created which derived from the human activities David Gissen explains. The above set of premises triggered innovative responses by the Unit’s students. They thoroughly investigated the various kinds of crisis and their causes in relation to their various types of Terrains. The tools used for the research and investigation were chosen in contradictive pairs to generate further crisis situations: The re-used/salvaged competed with the new, the handmade rivalling with the fabrication, the analogue juxtaposed with digital. Students were asked to delve into state of art technologies in order to propose sustainable emergent and adaptive architectures and Urbanities, having though always in mind that the human and the social aspects of the community should be the core of the investigation. The resulting unprecedented spatial conditions and atmospheres of the emergent new ways of living are deemed to be the ultimate aim of the investigation. Students explored a variety of sites and crisis conditions such as: The vague terrain of the Green Line in Nicosia, the lost footprints of the sinking Venice, the endangered Australian coral reefs, the earthquake torn town of Crevalcore, and the decaying concrete urbanscape of Athens. Among other projects, ‘the plume project’ proposes a cloud-like, floating and almost dream-like living environment with unprecedented spatial conditions to the inhabitants of the coal mine of Centralia, USA, not just to enable them to survive but even to prosper in this unbearable environment due to the process of the captured plumes of smoke and heat. Existing water wells inspire inversed vertical structures creating a new living underground network, protecting the nomads from catastrophic sand storms in the Araoune of Mali. “Inverted utopia: Lost things in the sand”, weaves a series of tea-houses and a library holding lost artifacts and transcripts into a complex underground labyrinth by the utilization of the sand solidification technology. Within this methodology, crisis is seen as a mechanism for allowing an emergence of new and fascinating ultimate sustainable future cultures and cities.

Keywords: adaptive built environments, crisis as opportunity, emergent urbanities, forces for inventions

Procedia PDF Downloads 430
4286 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution

Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim

Abstract:

We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.

Keywords: chemical reduction, electrochemical, graphene, green synthesis

Procedia PDF Downloads 337
4285 Characterization and Properties of Novel Flame Retardants Based on s-Triazine

Authors: Sameh M. Osman, El-Refaie Kenawy, Zeid A. Al-Othman, Mohamed H. El-Newehy, El-Saied A. Aly, Sherine N. Khattab, Ayman El-Faham

Abstract:

Recently, there has been a huge interest in using cyanuric chloride in a wide range of functional group transformations, as Cyanuric chloride has temperature-dependent differential reactivity for displacement of chlorides with various nucleophiles In the present work, some copolymers based on s-triazine Unit were prepared by microwave-assisted synthesis. For comparison study, the copolymers were synthesized by the conventional method. Synthesized Copolymers were characterized by MP, IR, TGA, DSC and GPC. The result indicated that copolymers are thermally stable and in good in composition and yield. Further studies that involve the test for selected removal of transition elements such as Cu (II), Zn (II) and Mn (II). Moreover, the effects of the polymeric triazine derivatives containing different functional groups which expected to have a good thermal stability and char formation ability on thermal degradation and flame retardancy.

Keywords: flame retardants, heavy metals, microwave-assisted synthesis, s-triazine

Procedia PDF Downloads 362
4284 Thermodynamics of the Local Hadley Circulation Over Central Africa

Authors: Landry Tchambou Tchouongsi, Appolinaire Derbetini Vondou

Abstract:

This study describes the local Hadley circulation (HC) during the December-February (DJF) and June-August (JJA) seasons, respectively, in Central Africa (CA) from the divergent component of the mean meridional wind and also from a new method called the variation of the ψ vector. Historical data from the ERA5 reanalysis for the period 1983 to 2013 were used. The results show that the maximum of the upward branch of the local Hadley circulation in the DJF and JJA seasons is located under the Congo Basin (CB). However, seasonal and horizontal variations in the mean temperature gradient and thermodynamic properties are largely associated with the distribution of convection and large-scale upward motion. Thus, temperatures beneath the CB show a slight variation between the DJF and JJA seasons. Moreover, energy transport of the moist static energy (MSE) adequately captures the mean flow component of the HC over the tropics. By the way, the divergence under the CB is enhanced by the presence of the low pressure of western Cameroon and the contribution of the warm and dry air currents coming from the Sahara.

Keywords: Circulation, reanalysis, thermodynamic, local Hadley.

Procedia PDF Downloads 89
4283 Thiourea Modified Cadmium Sulfide Film for Solar Cell Application

Authors: Rupali Mane

Abstract:

Cadmium sulfide (Cds) thin films were chemically deposited at room temperature, from aqueous ammonia solution using CdCl₂ (Cadmium chloride) as a Cd²⁺ and CS(NH₂)₂ (Thiourea) as S² ion sources. ‘as-deposited’ films were uniform, well adherent to the glass substrate, secularly reflective and yellowish in color. The ‘as-deposited ’Cds layers grew with nano-crystalline in nature and exhibit cubic structure, with blue-shift in optical band gap. The films were annealed in air atmosphere for two hours at different temperatures and further characterized for compositional, structural, morphological and optical properties. The XRD and SEM studies clearly revealed the systematic changes in morphological and structural form of Cds films with an improvement in the crystal quality. The annealed films showed ‘red-shift’ in the optical spectra after thermal treatment. The Thiourea modified CdS film could be good to provide solar cell application.

Keywords: cadmium sulfide, thin films, nano-crystalline, XRD

Procedia PDF Downloads 343
4282 Microstructure of AlCrFeNiMn High Entropy Alloy and Its Corrosion Behavior in Supercritical CO₂ Environment

Authors: Yang Wanhuan, Zou Jichun, LI Shen, Zhong Weihua, Yang Wen

Abstract:

High entropy alloys (HEAs) have aroused significant concern in high-temperature supercritical carbon dioxide (S-CO2) environments due to their unique microstructures and outstanding properties. However, the anti-corrosion ability and mechanism of these HEAs in the S-CO₂ remain unclear. Herein, we developed a new AlCrFeNiMn (AM)-HEA with double phases by vacuum arc melting furnace. The corrosion behavior of AM-HEA in the S-CO₂ at 500 ℃ under 25 MPa for 400 hours was deciphered by multiple characterization techniques. The results show that the discrepancy of corrosion between the matrix and boundary was accounted for by their microstructure and components. The role and mechanism of Mn contents for their oxide scales in boundary zones were emphasized. More importantly, the nano-precipitated second phase and numerous boundaries for the outstanding anti-corrosion ability of the matrix were proposed.

Keywords: high entropy alloy, microstructure, corrosion, supercritical carbon oxide, AlCrFeNiMn

Procedia PDF Downloads 146
4281 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors

Authors: Khaled Alshammari

Abstract:

Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.

Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy

Procedia PDF Downloads 57
4280 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 128
4279 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 167
4278 Biological Activities of Species in the Genus Tulbaghia: A Review

Authors: S. Takaidza, M. Pillay, F. Mtunzi

Abstract:

Since time immemorial, plants have been used by several communities to treat a large number of diseases. Numerous studies on the pharmacology of medicinal plants have been done. Medicinal plants constitute a potential source for the production of new medicines and may complement conventional antimicrobials and probably decrease health costs. Phytochemical compounds in plants are known to be biologically active aiding, for example, as antioxidants and antimicrobials. The overwhelming challenge of drug resistance has resulted in an increasing trend towards using medicinal plants to treat various diseases, especially in developing countries. Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from current literature that T. violacea is the most promising species. The other species of Tulbaghia still require further studies to ascertain their medicinal potential.

Keywords: biological activities, antimicrobial, antioxidant, phytochemicals, tulbaghia

Procedia PDF Downloads 386
4277 Self-Compacting White Concrete Mix Design Using the Particle Matrix Model

Authors: Samindi Samarakoon, Ørjan Sletbakk Vie, Remi Kleiven Fjelldal

Abstract:

White concrete facade elements are widely used in construction industry. It is challenging to achieve the desired workability in casting of white concrete elements. Particle Matrix model was used for proportioning the self-compacting white concrete (SCWC) to control segregation and bleeding and to improve workability. The paper presents how to reach the target slump flow while controlling bleeding and segregation in SCWC. The amount of aggregates, binders and mixing water, as well as type and dosage of superplasticizer (SP) to be used are the major factors influencing the properties of SCWC. Slump flow and compressive strength tests were carried out to examine the performance of SCWC, and the results indicate that the particle matrix model could produce successfully SCWC controlling segregation and bleeding.

Keywords: white concrete, particle matrix model, mix design, construction industry

Procedia PDF Downloads 270
4276 Discarding or Correcting Outlier Scores vs. Excluding Outlier Jurors to Reduce Manipulation in Classical Music Competitions.

Authors: Krzysztof Kontek, Kevin Kenner

Abstract:

This paper, written by an economist and pianist, aims to compare and analyze different methods of reducing manipulation in classical music competitions by focusing on outlier scores and outlier jurors. We first examine existing methods in competition practice and statistical literature for discarding or correcting jurors' scores that deviate significantly from the mean or median of all scores. We then introduce a method that involves eliminating all scores of outlier jurors, i.e., those jurors whose ratings significantly differ from those of other jurors. The properties of these standard and proposed methods are discussed in hypothetical voting scenarios, where one or more jurors assign scores that deviate considerably from the scores awarded by other jurors. Finally, we present examples of applying various methods to real-world data from piano competitions, demonstrating the potential effectiveness and implications of each approach in reducing manipulation within these events.

Keywords: voting systems, manipulation, outlier scores, outlier jurors

Procedia PDF Downloads 84
4275 Aspects Concerning the Use of Recycled Concrete Aggregates

Authors: Ion Robu, Claudiu Mazilu, Radu Deju

Abstract:

Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. In European Union member states from Southeast Europe, it is estimated that the construction industry will grow by 4.2% thereafter complicating aggregate supply management. In addition, a significant additional problem that can be associated to the aggregates industry is wasting potential resources through waste dumping of inert waste, especially waste from construction and demolition activities. In 2012, in Romania, less than 10% of construction and demolition waste (including concrete) are valorized, while the European Union requires that by 2020 this proportion should be at least 70% (Directive 2008/98/EC on waste, transposed into Romanian legislation by Law 211/2011). Depending on the efficiency of waste processing and the quality of recycled aggregate concrete (RCA) obtained, poor quality aggregate can be used as foundation material for roads and at the high quality for new concrete on construction. To obtain good quality concrete using recycled aggregate is necessary to meet the minimum requirements defined by the rules for the manufacture of concrete with natural aggregate. Properties of recycled aggregate (density, granulosity, granule shape, water absorption, weight loss to Los Angeles test, attached mortar content etc.) are the basis for concrete quality; also establishing appropriate proportions between components and the concrete production methods are extremely important for its quality. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates. To achieve recycled aggregates several batches of concrete class C16/20, C25/30 and C35/45 were made, the compositions calculation being made according NE012/2007 CP012/2007. Tests for producing recycled aggregate was carried out using concrete samples of the established three classes after 28 days of storage under the above conditions. Cubes with 150mm side were crushed in a first stage with a jaw crusher Liebherr type set at 50 mm nominally. The resulting material was separated by sieving on granulometric sorts and 10-50 sort was used for preliminary tests of crushing in the second stage with a jaw crusher BB 200 Retsch model, respectively a hammer crusher Buffalo Shuttle WA-12-H model. It was highlighted the influence of the type of crusher used to obtain recycled aggregates on granulometry and granule shape and the influence of the attached mortar on the density, water absorption, behavior to the Los Angeles test etc. The proportion of attached mortar was determined and correlated with provenance concrete class of the recycled aggregates and their granulometric sort. The aim to characterize the recycled aggregates is their valorification in new concrete used in construction. In this regard have been made a series of concrete in which the recycled aggregate content was varied from 0 to 100%. The new concrete were characterized by point of view of the change in the density and compressive strength with the proportion of recycled aggregates. It has been shown that an increase in recycled aggregate content not necessarily mean a reduction in compressive strength, quality of the aggregate having a decisive role.

Keywords: recycled concrete aggregate, characteristics, recycled aggregate concrete, properties

Procedia PDF Downloads 216
4274 Mesoporous Tussah Silk Fibroin Microspheres for Drug Delivery

Authors: Weitao Zhou, Qing Wang, Jianxin He, Shizhong Cui

Abstract:

Mesoporous Tussah silk fibroin (TSF) spheres were fabricated via the self-assembly of TSF molecules in aqueous solutions. The results showed that TSF particles were approximately three-dimensional spheres with the diameter ranging from 500nm to 6μm without adherence. More importantly, the surface morphology is mesoporous structure with nano-pores of 20nm - 200nm in size. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) studies demonstrated that mesoporous TSF spheres mainly contained beta-sheet conformation (44.1 %) as well as slight amounts of random coil (13.2 %). Drug release test was performed with 5-fluorouracil (5-Fu) as a model drug and the result indicated the mesoporous TSF microspheres had a good capacity of sustained drug release. It is expected that these stable and high-crystallinity mesoporous TSF sphere produced without organic solvents, which have significantly improved drug release properties, is a very promising material for controlled gene medicines delivery.

Keywords: Tussah silk fibroin, porous materials, microsphere, drug release

Procedia PDF Downloads 459
4273 Fabrication and Characterization of Gelatin Nanofibers Dissolved in Concentrated Acetic Acid

Authors: Kooshina Koosha, Sima Habibi, Azam Talebian

Abstract:

Electrospinning is a simple, versatile and widely accepted technique to produce ultra-fine fibers ranging from nanometer to micron. Recently there has been great interest in developing this technique to produce nanofibers with novel properties and functionalities. The electrospinning field is extremely broad, and consequently there have been many useful reviews discussing various aspects from detailed fiber formation mechanism to the formation of nanofibers and to discussion on a wide range of applications. On the other hand, the focus of this study is quite narrow, highlighting electrospinning parameters. This work will briefly cover the solution and processing parameters (for instance; concentration, solvent type, voltage, flow rate, distance between the collector and the tip of the needle) impacting the morphological characteristics of nanofibers, such as diameter. In this paper, a comprehensive work would be presented on the research of producing nanofibers from natural polymer entitled Gelatin.

Keywords: electrospinning, solution parameters, process parameters, natural fiber

Procedia PDF Downloads 274
4272 New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization

Authors: Nagi Greesh

Abstract:

This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives.

Keywords: polymer-wax, paraffin wax, miniemulsion, core/shell, nanocomposites

Procedia PDF Downloads 91
4271 Heavy Liquid Metal Coolant – the Key Safety Element in the Complex of New Nuclear Energy Technologies

Authors: A. Orlov, V. Rachkov

Abstract:

The future of Nuclear Energetics is seen in fast reactors with inherent safety working in the closed nuclear fuel cycle. The concept of inherent safety, which lies in deterministic elimination of the most severe accidents due to inherent properties of the reactor rather than through building up engineered barriers, is a cornerstone of success in ensuring safety and economic efficiency of future Nuclear Energetics. The focus of this paper is one of the key elements of inherent safety - the lead coolant of a nuclear reactor. Advantages of lead coolant for reactor application, influence on safety are reviewed. BREST-OD-300 fast reactor, currently being developed in Russia withing the “Proryv” Project utilizes lead coolant and a special set of measures and devices, called technology of lead coolant that ensures safe operation in a wide range of temperatures. Here these technological elements are reviewed, and current progress in their development is discussed.

Keywords: BREST-OD-300. , fast reactor, inherent safety, lead coolant

Procedia PDF Downloads 153
4270 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance

Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi

Abstract:

Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.

Keywords: chemical modification, industrial application, value addition, vegetable fibre

Procedia PDF Downloads 332
4269 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 144
4268 The Effect of Pulling and Rotation Speed on the Jet Grout Columns

Authors: İbrahim Hakkı Erkan, Özcan Tan

Abstract:

The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.

Keywords: jet grout, sandy soils, soil improvement, soilcreate

Procedia PDF Downloads 251
4267 Ecological Relationships Between Material, Colonizing Organisms, and Resulting Performances

Authors: Chris Thurlbourne

Abstract:

Due to the continual demand for material to build, and a limit of good environmental material credentials of 'normal' building materials, there is a need to look at new and reconditioned material types - both biogenic and non-biogenic - and a field of research that accompanies this. This research development focuses on biogenic and non-biogenic material engineering and the impact of our environment on new and reconditioned material types. In our building industry and all the industries involved in constructing our built environment, building material types can be broadly categorized into two types, biogenic and non-biogenic material properties. Both play significant roles in shaping our built environment. Regardless of their properties, all material types originate from our earth, whereas many are modified through processing to provide resistance to 'forces of nature', be it rain, wind, sun, gravity, or whatever the local environmental conditions throw at us. Modifications are succumbed to offer benefits in endurance, resistance, malleability in handling (building with), and ergonomic values - in all types of building material. We assume control of all building materials through rigorous quality control specifications and regulations to ensure materials perform under specific constraints. Yet materials confront an external environment that is not controlled with live forces undetermined, and of which materials naturally act and react through weathering, patination and discoloring, promoting natural chemical reactions such as rusting. The purpose of the paper is to present recent research that explores the after-life of specific new and reconditioned biogenic and non-biogenic material types and how the understanding of materials' natural processes of transformation when exposed to the external climate, can inform initial design decisions. With qualities to receive in a transient and contingent manner, ecological relationships between material, the colonizing organisms and resulting performances invite opportunities for new design explorations for the benefit of both the needs of human society and the needs of our natural environment. The research follows designing for the benefit of both and engaging in both biogenic and non-biogenic material engineering whilst embracing the continual demand for colonization - human and environment, and the aptitude of a material to be colonized by one or several groups of living organisms without necessarily undergoing any severe deterioration, but embracing weathering, patination and discoloring, and at the same time establishing new habitat. The research follows iterative prototyping processes where knowledge has been accumulated via explorations of specific material performances, from laboratory to construction mock-ups focusing on the architectural qualities embedded in control of production techniques and facilitating longer-term patinas of material surfaces to extend the aesthetic beyond common judgments. Experiments are therefore focused on how the inherent material qualities drive a design brief toward specific investigations to explore aesthetics induced through production, patinas and colonization obtained over time while exposed and interactions with external climate conditions.

Keywords: biogenic and non-biogenic, natural processes of transformation, colonization, patina

Procedia PDF Downloads 87
4266 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)

Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa

Abstract:

The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.

Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect

Procedia PDF Downloads 320
4265 Influence of Different Asymmetric Rolling Processes on Shear Strain

Authors: Alexander Pesin, Denis Pustovoytov, Mikhail Sverdlik

Abstract:

Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling.

Keywords: asymmetric rolling, equivalent strain, FEM, multiroll gauge, profile, severe plastic deformation, shear strain, sheet

Procedia PDF Downloads 265
4264 Nanofluid based on Zinc Oxide/Ferric Oxide Nanocomposite as Additive for Geothermal Drilling Fluids

Authors: Anwaar O. Ali, Mahmoud Fathy Mubarak, Mahmoud Ibrahim Abdou, Hector Cano Esteban, Amany A. Aboulrous

Abstract:

Corrosion resistance and lubrication are crucial characteristics required for geothermal drilling fluids. In this study, a ZnO/Fe₂O₃ nanocomposite was fabricated and incorporated into the structure of Cetyltrimethylammonium bromide (CTAB). Several physicochemical techniques were utilized to analyze and describe the synthesized nanomaterials. The surface morphology of the composite was assessed through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX). The corrosion inhibition capabilities of these materials were explored across various corrosive environments. The weight loss and electrochemical methods were utilized to determine the corrosion inhibition activity of the prepared nanomaterials. The results demonstrate a high level of protection achieved by the composite. Additionally, the lubricant coefficient and extreme pressure properties were evaluated.

Keywords: nanofluid, corrosion, geothermal drilling fluids, ZnO/Fe2O3

Procedia PDF Downloads 70
4263 Horse Chestnut Starch: A Noble Inedible Feedstock Source for Producing Thermoplastic Starch (TPS)

Authors: J. Castaño, S. Rodriguez, C. M. L. Franco

Abstract:

Starch isolated from non-edible A. hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35µm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317°C. Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing.

Keywords: Aesculus hippocastanum L., amylopectin structure, thermoplastic starch, non-edible source

Procedia PDF Downloads 376
4262 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder

Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park

Abstract:

Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.

Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling

Procedia PDF Downloads 464
4261 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 124
4260 Extraction of Osmolytes from the Halotolerant Fungus Aspergillus oryzae

Authors: H. Nacef, L. Larous

Abstract:

Salin soils occupy about 7% of land area; they are characterized by unsuitable physical conditions for the growth of living organisms. However, researches showed that some microorganisms especially fungi are able to grow and adapt to such extreme conditions; it is due to their ability to develop different physiological mechanisms in their adaptation. The aim of this study is to identify qualitatively the osmolytes that the biotechnological important fungus A. oryzae accumulated and/or produced in its adaptation, which they were detected by Thin-layer chromatography technique (TLC) using several systems, from different media (Wheat brane, MNM medium and MM medium). The results showed that The moderately halotolerant fungus A. oryzae, accumulates mixture of molecules, containing polyols and sugars , some amino acids in addition to some molecules which were not defined. Wheat bran was the best medium for the extraction of these molecules, where the proportion was 85.71%, followed by MNM medium 64.28%, then the minimum medium MM 14.28%. Properties of osmolytes are becoming increasingly useful in molecular biology, agriculture pharmaceutical, medicinal, and biotechnological interests.

Keywords: salinity, aspergillus oryzae, halo tolerance, osmolytes, compatible solutes

Procedia PDF Downloads 415