Search results for: solution processed
1225 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 1611224 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach
Authors: Franziska Mais, Till Gramberg
Abstract:
The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 811223 Influence of Degassing on the Curing Behaviour and Void Occurrence Properties of Epoxy / Anhydride Resin System
Authors: Latha Krishnan, Andrew Cobley
Abstract:
Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). In addition, the amount of void, void geometry and void fraction were also investigated using an optical microscope and image J software (image analysis software). It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content.Keywords: anhydride epoxy, curing behaviour, degassing, void occurrence
Procedia PDF Downloads 2161222 Swift Rising Pattern of Emerging Construction Technology Trends in the Construction Management
Authors: Gayatri Mahajan
Abstract:
Modern Construction Technology (CT) includes a broad range of advanced techniques and practices that bound the recent developments in material technology, design methods, quantity surveying, facility management, services, structural analysis and design, and other management education. Adoption of recent digital transformation technology is the need of today to speed up the business and is also the basis of construction improvement. Incorporating and practicing the technologies such as cloud-based communication and collaboration solution, Mobile Apps and 5G,3D printing, BIM and Digital Twins, CAD / CAM, AR/ VR, Big Data, IoT, Wearables, Blockchain, Modular Construction, Offsite Manifesting, Prefabrication, Robotic, Drones and GPS controlled equipment expedite the progress in the Construction industry (CI). Resources used are journaled research articles, web/net surfing, books, thesis, reports/surveys, magazines, etc. The outline of the research organization for this study is framed at four distinct levels in context to conceptualization, resources, innovative and emerging trends in CI, and better methods for completion of the construction projects. The present study conducted during 2020-2022 reveals that implementing these technologies improves the level of standards, planning, security, well-being, sustainability, and economics too. Application uses, benefits, impact, advantages/disadvantages, limitations and challenges, and policies are dealt with to provide information to architects and builders for smooth completion of the project. Results explain that construction technology trends vary from 4 to 15 for CI, and eventually, it reaches 27 for Civil Engineering (CE). The perspective of the most recent innovations, trends, tools, challenges, and solutions is highly embraced in the field of construction. The incorporation of the above said technologies in the pandemic Covid -19 and post-pandemic might lead to a focus on finding out effective ways to adopt new-age technologies for CI.Keywords: BIM, drones, GPS, mobile apps, 5G, modular construction, robotics, 3D printing
Procedia PDF Downloads 1051221 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 5491220 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study
Authors: Sami Ayad, Mengshan Lee
Abstract:
The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis
Procedia PDF Downloads 921219 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer
Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh
Abstract:
Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering
Procedia PDF Downloads 1641218 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 4961217 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage
Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán
Abstract:
High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance
Procedia PDF Downloads 721216 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design
Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad
Abstract:
In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method
Procedia PDF Downloads 2421215 Psychosocial Effect of Body-Contouring Surgery on Patients after Weight Loss
Authors: Abdullah Kattan, Khalid Alzahrani, Saud Alsaleh, Loui Ezzat, Khalid Murad, Bader Alghamdi
Abstract:
Background and Significance: Patients are often bothered by the excess skin laxity and redundancy that they are left with after losing weight. Body-contouring surgery offers a solution to this problem; however, there is scarce literature on the psychological and social effects of these surgeries. This study was conducted to assess the psychosocial impact of body-contouring surgery on patients after weight loss. Methodology: In this cross-sectional study, a specifically designed questionnaire was administered to forty three patients whom have undergone body-contouring surgery. All included patients had lost no less than 20 Kg before body-contouring surgery, and were interviewed at least 6 months after surgery. The twenty-question interviewer based questionnaire was used to assess the psychosocial status of the patients before and after undergoing body-contouring surgery. The questionnaire assessed the quality of life (social life, job performance and sexual activity), presence of symptoms of depression and overall satisfaction. Data was analyzed as paired variables in SPSS using McNemar’s test. Results: Among the 43 participants, 19 (44.2%) have undergone mammoplasty, 12 (27.9%) have undergone abdominoplasty and the remainder of the patients have undergone other various procedures including brachioplasty, thigh lifts and nick liposuction. The mean age of patients was 34 +/- 10, the sample included 24 (55.8%) females and 19 (44.2%) males. The patients’ quality of life significantly improved in the following areas; social life (P<0.001), job performance (P<0.002) and sexual activity (P<0.001). Moreover, 17 (39.5%) patients suffered symptoms of depression before body-contouring surgery; however, only 1 (2.3%) patient suffered symptoms of depression after surgery. Overall satisfaction rate was found to be 62.8%; with mammoplasty being the highest satisfaction rate procedure (66.6 %). Conclusion: Body-contouring surgery after weight loss has shown to improve the psychological and social aspects in patients. These findings have been found to be consistent with the majority of relevant published studies, further increasing reliability of our study.Keywords: abdominoplasty, body-contouring, mammoplasty, psychosocial
Procedia PDF Downloads 2851214 Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption
Authors: Anna Bohers, Emília Hroncová, Juraj Ladomerský
Abstract:
Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.Keywords: hazardous waste, oil sludge, remediation, thermal desorption
Procedia PDF Downloads 2001213 Women's Vulnerability to Cross-Border Criminality in Saki/Iseyin Area of Oyo State in Nigeria: Insight and Experiences
Authors: Samuel Kehinde Okunade, Daniel Sunday Tolorunshagba
Abstract:
Globally women are classified to be part of the vulnerable group in any environment. In a conflict-ridden environment, women being vulnerable often suffer the consequences as it relates to security and access to basic social services such as medical care. This is the situation in border communities in Nigeria where cross-border crimes are on the rife, thus, putting women at a disadvantaged position and, eventually, victims of such inimical activities. Border communities in the Saki/Iseyin area of Oyo state are a case in point where the lives of inhabitants are daily threatened most, especially women. In light of the above, this article examined the security situation of the Saki/Iseyin area of Oyo State with a view to ascertaining its status in terms of safety of lives and property. This paper also explored the experiences of women in the border communities within the area as it relates to their safety, the safety of their children, access to good health facilities in their immediate environment, and above all, how they have been able to cope or manage the situation. The qualitative research model was adopted utilizing a phenomenological case study approach. A Focused Group Discussion was conducted with 10 pregnant women and 10 mothers in Okerete and Abugudu communities while a Key Informant Interview was conducted with the women leaders in both communities of the Saki/Iseyin border area of Oyo State. The findings of the study revealed the poor state of basic infrastructure. So bad to a point that inhabitants of these communities no longer see themselves as Nigerians because they have been neglected by the government for too long. The only solution is for the government to embark on developmental projects within these communities so that they can live a good life just as those in the cities do. More importantly, this will increase the loyalty of these communities to the Nigeria state by defending and resisting all forms of cross-border criminal activities that go on along the porous borders.Keywords: security, women, Saki/Iseyin border area, cross-border criminalities, basic infrastructure
Procedia PDF Downloads 1291212 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 2771211 Mathematical Modeling and Analysis of COVID-19 Pandemic
Authors: Thomas Wetere
Abstract:
Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.Keywords: modeling, COVID-19, MCMC, stability
Procedia PDF Downloads 1131210 Downscaling Grace Gravity Models Using Spectral Combination Techniques for Terrestrial Water Storage and Groundwater Storage Estimation
Authors: Farzam Fatolazadeh, Kalifa Goita, Mehdi Eshagh, Shusen Wang
Abstract:
The Gravity Recovery and Climate Experiment (GRACE) is a satellite mission with twin satellites for the precise determination of spatial and temporal variations in the Earth’s gravity field. The products of this mission are monthly global gravity models containing the spherical harmonic coefficients and their errors. These GRACE models can be used for estimating terrestrial water storage (TWS) variations across the globe at large scales, thereby offering an opportunity for surface and groundwater storage (GWS) assessments. Yet, the ability of GRACE to monitor changes at smaller scales is too limited for local water management authorities. This is largely due to the low spatial and temporal resolutions of its models (~200,000 km2 and one month, respectively). High-resolution GRACE data products would substantially enrich the information that is needed by local-scale decision-makers while offering the data for the regions that lack adequate in situ monitoring networks, including northern parts of Canada. Such products could eventually be obtained through downscaling. In this study, we extended the spectral combination theory to simultaneously downscale spatiotemporally the 3o spatial coarse resolution of GRACE to 0.25o degrees resolution and monthly coarse resolution to daily resolution. This method combines the monthly gravity field solution of GRACE and daily hydrological model products in the form of both low and high-frequency signals to produce high spatiotemporal resolution TWSA and GWSA products. The main contribution and originality of this study are to comprehensively and simultaneously consider GRACE and hydrological variables and their uncertainties to form the estimator in the spectral domain. Therefore, it is predicted that we reach downscale products with an acceptable accuracy.Keywords: GRACE satellite, groundwater storage, spectral combination, terrestrial water storage
Procedia PDF Downloads 831209 A Team-Based Learning Game Guided by a Social Robot
Authors: Gila Kurtz, Dan Kohen Vacs
Abstract:
Social robots (SR) is an emerging field striving to deploy computers capable of resembling human shapes and mimicking human movements, gestures, and behaviors. The evolving capability of SR to interact with human offers groundbreaking ways for learning and training opportunities. Studies show that SR can offer instructional experiences for fostering creativity, entertainment, enjoyment, and curiosity. These added values are essential for empowering instructional opportunities as gamified learning experiences. We present our project focused on deploying an activity to be experienced in an escape room aimed at team-based learning scaffolded by an SR, NAO. An escape room is a well-known approach for gamified activities focused on a simulated scenario experienced by team-based participants. Usually, the simulation takes place in a physical environment where participants must complete a series of challenges in a limited amount of time. During this experience, players learn something about the assigned topic of the room. In the current learning simulation, students must "save the nation" by locating sensitive information stolen and stored in a vault of four locks. Team members have to look for hints and solve riddles mediated by NAO. Each solution provides a unique code for opening one of the four locks. NAO is also used to provide ongoing feedback on the team's performance. We captured the proceeding of our activity and used it to conduct an evaluation study among ten experts in related areas. The experts were interviewed on their overall assessment of the learning activity and their perception of the added value related to the robot. The results were very encouraging on the feasibility that NAO can serve as a motivational tutor in adults' collaborative game-based learning. We believe that this study marks the first step toward a template for developing innovative team-based training using escape rooms supported by a humanoid robot.Keywords: social robot, NAO, learning, team based activity, escape room
Procedia PDF Downloads 681208 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy
Authors: John Dorrell, Matthew Ambrosia, Abilash
Abstract:
This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.Keywords: bitcoin, mining, economics, energy
Procedia PDF Downloads 331207 Development of PPy-M Composites Materials for Sensor Application
Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad
Abstract:
The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole
Procedia PDF Downloads 2661206 Climate Change Results in Increased Accessibility of Offshore Wind Farms for Installation and Maintenance
Authors: Victoria Bessonova, Robert Dorrell, Nina Dethlefs, Evdokia Tapoglou, Katharine York
Abstract:
As the global pursuit of renewable energy intensifies, offshore wind farms have emerged as a promising solution to combat climate change. The global offshore wind installed capacity is projected to increase 56-fold by 2055. However, the impacts of climate change, particularly changes in wave climate, are not widely understood. Offshore wind installation and maintenance activities often require specific weather windows, characterized by calm seas and low wave heights, to ensure safe and efficient operations. However, climate change-induced alterations in wave characteristics can reduce the availability of suitable weather windows, leading to delays and disruptions in project timelines. it applied the operational limits of installation and maintenance vessels to past and future climate wave projections. This revealed changes in the annual and monthly accessibility of offshore wind farms at key global development locations. When accessibility is only defined by significant wave height, spatial patterns in the annual accessibility roughly follow changes in significant wave height, with increased availability where significant wave height is decreasing. This resulted in a 1-6% increase in Europe and North America and a similar decrease in South America, Australia and Asia. Monthly changes suggest unchanged or slightly decreased (1-2%) accessibility in summer months and increased (2-6%) in winter. Further assessment includes assessing the sensitivity of accessibility to operational limits defined by wave height combined with wave period and wave height combined with wind speed. Results of this assessment will be included in the presentation. These findings will help stakeholders inform climate change adaptations in installation and maintenance planning practices.Keywords: climate change, offshore wind, offshore wind installation, operations and maintenance, wave climate, wind farm accessibility
Procedia PDF Downloads 831205 Drivers and Barriers of Asphalt Rubber in Sweden
Authors: Raheb Mirzanamadi, João Patrício
Abstract:
Asphalt rubber (AR) was initially developed in Sweden in the 1960s by replacing crumb rubber (CR) as aggregates in asphalt pavement. The AR produced by this method had better mechanical properties than conventional asphalt pavement but was very expensive. Since then, different technologies and methods have been developed to use CR in asphalt pavements, including blending CR with bitumen at a high temperature in the mixture, called the wet method, and blending CR with bitumen in the refinery, called the terminal blending method. In 2006, the wet method was imported from the USA to Sweden to evaluate the potential of using AR on Swedish roads. 154 km AR roads were constructed by the wet method in Sweden. The evaluation showed that the AR had, in most cases, better mechanical performance than conventional asphalt pavements. However, the terrible smoke and smell led the Swedish Transport Administration (STA) to stop using AR in Sweden. Today, there are few focuses on AR, despite its good mechanical properties and environmental aspects. Hence, there is a need to study the drives and barriers of using AR mixture in Sweden. The aims of this paper are: (i) to study drivers and barriers of using AR pavements in Sweden and (ii) to discover knowledge gaps for further research in this area. The study was done using a literature review and completed by interviews with experts, including three researchers from Swedish National Road and Transport Research Institute (VTI) and two experts from STA. The results showed that AR can be an alternative not only for conventional asphalt pavement but also for polymer modified asphalt (PMA) due to the same mechanical properties but the lower cost for production. New technologies such as terminal blending and using warm mix asphalt (WMA) methods can lead to reducing the energy and temperature during production processes. From this study, it is found that there is not enough experience and knowledge about AR in Sweden, and more research is needed, including the lifespan of AR, mechanical properties of AR using new technologies, and the impact of AR on spreading and leaching substances into nature. More studies can lead to standardization of using AR in Sweden, a potential solution for the use of end-of-life tyres, with better mechanical properties and lower costs, in comparison with conventional asphalt pavements and PMA.Keywords: asphalt rubber, crumb rubber, terminal blending method, wet method
Procedia PDF Downloads 811204 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability
Authors: Daya Rani
Abstract:
Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes
Procedia PDF Downloads 221203 Pediatric Emergency Dental Visits at King Abdulaziz University Dental Hospital during the COVID-19 Lockdown: A Retrospective Study
Authors: Sara Alhabli, Eman Elashiry, Osama Felemban, Abdullah Almushayt, Faisal Dardeer, Ahmed Mohammad, Fajr Orri, Nada Bamashmous
Abstract:
Background: In December of 2019, the coronavirus (SARS-CoV-2) first appeared and quickly spread to become a worldwide pandemic. This study aimed to evaluate the prevalence and types of pediatric dental emergencies during the COVID-19 lockdown in Jeddah, Saudi Arabia, at the University Dental Hospital (UDH) of King Abdulaziz University (KAU) and identified the management provided for these dental emergency visits. Materials and Methods: Data collection was done retrospectively from electronic dental records for children aged 0-18 that attended the UDH emergency clinic during the period from March 1st, 2020, to September 30th, 2020. An electronic form formulated specifically for this study was used to collect the required data from electronic patient records, including demographic data, emergency classification, management, and referrals. Results: A total of 3146 patients were seen at the emergency clinics during this period, of which 661 were children (21%). Types of emergency conditions included 0.8% emergency cases, 34% urgent, and 65.2% non-urgent conditions. Severe dental pain (73.1%) and abscesses (20%) were the most common urgent dental conditions. Most non-urgent conditions presented for initial or periodic visits, recalls, or routine radiographs (74%). Treatments rarely involved restorations, with 8% among urgent conditions and 5.4% among non-urgent conditions. Antibiotics were only prescribed to 6.9% of urgent conditions. Conclusions: The largest group of children presenting at the emergency dental clinics were found to be children with non-urgent conditions. Tele dentistry can be a solution to avoid large numbers of non-urgent patients presenting to emergency clinics. Additionally, dental care for non-urgent conditions during the pandemic should focus more on procedures with less aerosol generation.Keywords: COVID-19 pandemic, dental emergencies, oral health, pediatric dentistry, children
Procedia PDF Downloads 971202 Method to Assessing Aspect of Sustainable Development-Walkability
Authors: Amna Ali Nasser Al-Saadi, Riken Homma, Kazuhisa Iki
Abstract:
Need to generate objective communication between researchers, Practitioners and policy makers are top concern of sustainability. Despite the fact that many places have successes in achieving some aspects of sustainable urban development, there are no scientific facts to convince policy makers in the rest of the world to apply their guides and manuals. This is because each of them was developed to fulfill the need of specific city. The question is, how to learn the lesson from each case study? And how distinguish between the potential criteria and negative one? And how quantify their effects in the future development? Walkability has been found as a solution to achieve healthy life style as well as social, environmental and economic sustainability. Moreover, it is complicated as every aspect of sustainable development. This research is stand on quantitative- comparative methodology in order to assess pedestrian oriented development. Three Analyzed Areas (AAs) were selected. One site is located in Oman in which hypotheses as motorized oriented development, while two sites are in Japan where the development is pedestrian friendly. The study used Multi-Criteria Evaluation Method (MCEM). Initially, MCEM stands on Analytic Hierarchy Process (AHP). The later was structured into main goal (walkability), objectives (functions and layout) and attributes (the urban form criteria). Secondly, the GIS were used to evaluate the attributes in multi-criteria maps. Since each criterion has different scale of measurement, all results were standardized by z-score and used to measure the co-relations among cr iteria. Different scenario was generated from each AA. After that, MCEM (AHP- OWA) based on GIS measured the walkability score and determined the priority of criteria development in the non-walker friendly environment. As results, the comparison criteria for z-score presented a measurable distinguished orientation of development. This result has been used to prove that Oman is motorized environment while Japan is walkable. Also, it defined the powerful criteria and week criteria regardless to the AA. This result has been used to generalize the priority for walkable development.Keywords: walkability, sustainable development, multi- criteria evaluation method, gis
Procedia PDF Downloads 4531201 HCl-Based Hydrometallurgical Recycling Route for Metal Recovery from Li-Ion Battery Wastes
Authors: Claudia Schier, Arvid Biallas, Bernd Friedrich
Abstract:
The demand for Li-ion-batteries owing to their benefits, such as; fast charging time, high energy density, low weight, large temperature range, and a long service life performance is increasing compared to other battery systems. These characteristics are substantial not only for battery-operated portable devices but also in the growing field of electromobility where high-performance energy storage systems in the form of batteries are highly requested. Due to the sharp rising production, there is a tremendous interest to recycle spent Li-Ion batteries in a closed-loop manner owed to the high content of valuable metals such as cobalt, manganese, and lithium as well as regarding the increasing demand for those scarce applied metals. Currently, there are just a few industrial processes using hydrometallurgical methods to recover valuable metals from Li-ion-battery waste. In this study, the extraction of valuable metals from spent Li-ion-batteries is investigated by pretreated and subsequently leached battery wastes using different precipitation methods in a comparative manner. For the extraction of lithium, cobalt, and other valuable metals, pelletized battery wastes with an initial Li content of 2.24 wt. % and cobalt of 22 wt. % is used. Hydrochloric acid with 4 mol/L is applied with 1:50 solid to liquid (s/l) ratio to generate pregnant leach solution for subsequent precipitation steps. In order to obtain pure precipitates, two different pathways (pathway 1 and pathway 2) are investigated, which differ from each other with regard to the precipitation steps carried out. While lithium carbonate recovery is the final process step in pathway 1, pathway 2 requires a preliminary removal of lithium from the process. The aim is to evaluate both processes in terms of purity and yield of the products obtained. ICP-OES is used to determine the chemical content of leach liquor as well as of the solid residue.Keywords: hydrochloric acid, hydrometallurgy, Li-ion-batteries, metal recovery
Procedia PDF Downloads 1711200 Integrated Mass Rapid Transit System for Smart City Project in Western India
Authors: Debasis Sarkar, Jatan Talati
Abstract:
This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.Keywords: mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system
Procedia PDF Downloads 2711199 Digital Rehabilitation for Navigation Impairment
Authors: Milan N. A. Van Der Kuil, Anne M. A. Visser-Meily, Andrea W. M. Evers, Ineke J. M. Van Der Ham
Abstract:
Navigation ability is essential for autonomy and mobility in daily life. In patients with acquired brain injury, navigation impairment is frequently impaired; however, in this study, we tested the effectiveness of a serious gaming training protocol as a tool for cognitive rehabilitation to reduce navigation impairment. In total, 38 patients with acquired brain injury and subjective navigation complaints completed the experiment, with a partially blind, randomized control trial design. An objective navigation test was used to construct a strengths and weaknesses profile for each patient. Subsequently, patients received personalized compensation training that matched their strengths and weaknesses by addressing an egocentric or allocentric strategy or a strategy aimed at minimizing the use of landmarks. Participants in the experimental condition received psychoeducation and a home-based rehabilitation game with a series of exercises (e.g., map reading, place finding, and turn memorization). The exercises were developed to stimulate the adoption of more beneficial strategies, according to the compensatory approach. Self-reported navigation ability (wayfinding questionnaire), participation level, and objective navigation performance were measured before and after 1 and 4 weeks after completing the six-week training program. Results indicate that the experimental group significantly improved in subjective navigation ability both 1 and 4 weeks after completion of the training, in comparison to the score before training and the scores of the control group. Similarly, goal attainment showed a significant increase after the first and fourth week after training. Objective navigation performance was not affected by the training. This navigation training protocol provides an effective solution to address navigation impairment after acquired brain injury, with clear improvements in subjective performance and goal attainment of the participants. The outcomes of the training should be re-examined after implementation in a clinical setting.Keywords: spatial navigation, cognitive rehabilitation, serious gaming, acquired brain injury
Procedia PDF Downloads 1761198 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 2301197 Effect of Al Addition on Microstructure and Properties of NbTiZrCrAl Refractory High Entropy Alloys
Authors: Xiping Guo, Fanglin Ge, Ping Guan
Abstract:
Refractory high entropy alloys are alternative materials expected to be employed at high temperatures. The comprehensive changes of microstructure and properties of NbTiZrCrAl refractory high entropy alloys are systematically studied by adjusting Al content. Five kinds of button alloy ingots with different contents of Al in NbTiZrCrAlX (X=0, 0.2, 0.5, 0.75, 1.0) were prepared by vacuum non-consumable arc melting technology. The microstructure analysis results show that the five alloys are composed of BCC solid solution phase rich in Nb and Ti and Laves phase rich in Cr, Zr, and Al. The addition of Al changes the structure from hypoeutectic to hypereutectic, increases the proportion of Laves phase, and changes the structure from cubic C15 to hexagonal C14. The hardness and fracture toughness of the five alloys were tested at room temperature, and the compressive mechanical properties were tested at 1000℃. The results showed that the addition of Al increased the proportion of Laves phase and decreased the proportion of the BCC phase, thus increasing the hardness and decreasing the fracture toughness at room temperature. However, at 1000℃, the strength of 0.5Al and 0.75Al alloys whose composition is close to the eutectic point is the best, which indicates that the eutectic structure is of great significance for the improvement of high temperature strength of NbTiZrCrAl refractory high entropy alloys. The five alloys were oxidized for 1 h and 20 h in static air at 1000℃. The results show that only the oxide film of 0Al alloy falls off after oxidizing for 1 h at 1000℃. After 20h, the oxide film of all the alloys fell off, but the oxide film of alloys containing Al was more dense and complete. By producing protective oxide Al₂O₃, inhibiting the preferential oxidation of Zr, promoting the preferential oxidation of Ti, and combination of Cr₂O₃ and Nb₂O₅ to form CrNbO₄, Al significantly improves the high temperature oxidation resistance of NbTiZrCrAl refractory high entropy alloys.Keywords: NbTiZrCrAl, refractory high entropy alloy, al content, microstructural evolution, room temperature mechanical properties, high temperature compressive strength, oxidation resistance
Procedia PDF Downloads 841196 Palestine Smart Tourism Augmented Reality Mobile Application
Authors: Murad Al-Rajab, Sherin Hazboun, Azhar Al-Hamamreh, Nirmeen Odeh, Siham Halaseh
Abstract:
Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.Keywords: smartphones, tourism, tourists guide, augmented reality, Palestine
Procedia PDF Downloads 171