Search results for: high surface area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29364

Search results for: high surface area

24054 Automated Parking System

Authors: N. Arunraj, C. P. V. Paul, D. M. D. Jayawardena, W. N. D. Fernando

Abstract:

Traffic congestion with increased numbers of vehicles is already a serious issue for many countries. The absence of sufficient parking spaces adds to the issue. Motorists are forced to wait in long queues to park their vehicles. This adds to the inconvenience faced by a motorist, kept waiting for a slot allocation, manually done along with the parking payment calculation. In Sri Lanka, nowadays, parking systems use barcode technology to identify the vehicles at both the entrance and the exit points. Customer management is handled by the use of man power. A parking space is, generally permanently sub divided according to the vehicle type. Here, again, is an issue. Parking spaces are not utilized to the maximum. The current arrangement leaves room for unutilized parking spaces. Accordingly, there is a need to manage the parking space dynamically. As a vehicle enters the parking area, available space has to be assigned for the vehicle according to the vehicle type. The system, Automated Parking System (APS), provides an automated solution using RFID Technology to identify the vehicles. Simultaneously, an algorithm manages the space allocation dynamically. With this system, there is no permanent parking slot allocation for a vehicle type. A desktop application manages the customer. A Web application is used to manage the external users with their reservations. The system also has an android application to view the nearest parking area from the current location. APS is built using java and php. It uses LED panels to guide the user inside the parking area to find the allocated parking slot accurately. The system ensures efficient performance, saving precious time for a customer. Compared with the current parking systems, APS interacts with users and increases customer satisfaction as well.

Keywords: RFID, android, web based system, barcode, algorithm, LED panels

Procedia PDF Downloads 595
24053 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar

Abstract:

The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 325
24052 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 396
24051 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.

Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film

Procedia PDF Downloads 178
24050 Shoring System Selection for Deep Excavation

Authors: Faouzi Ahtchi-Ali, Marcus Vitiello

Abstract:

A study was conducted in the east region of the Middle East to assess the constructability of a shoring system for a 12-meter deep excavation. Several shoring systems were considered in this study including secant concrete piling, contiguous concrete piling, and sheet-piling. The excavation was carried out in a very dense sand with the groundwater level located at 3 meters below ground surface. The study included conducting a pilot test for each shoring system listed above. The secant concrete piling included overlapping concrete piles to a depth of 16 meters. Drilling method with full steel casing was utilized to install the concrete piles. The verticality of the piles was a concern for the overlap. The contiguous concrete piling required the installation of micro-piles to seal the gap between the concrete piles. This method revealed that the gap between the piles was not fully sealed as observed by the groundwater penetration to the excavation. The sheet-piling method required pre-drilling due to the high blow count of the penetrated layer of saturated sand. This study concluded that the sheet-piling method with pre-drilling was the most cost effective and recommended a method for the shoring system.

Keywords: excavation, shoring system, middle east, Drilling method

Procedia PDF Downloads 465
24049 Guidelines for Cooperation between Police and the Media with an Approach to Prevent Juvenile Delinquency

Authors: Akbar Salimi, Mehdi Moghimi

Abstract:

Goal: Today, the cooperative and systemic work is of importance and guarantees higher efficiency. This research was done with the aim of understanding the guidelines for co-op between police and the national media in order to reduce the juvenile delinquency. Method: This research is applied in terms of goal and of a compound type, which was done through a descriptive-analytical methodology. The data were collected through field surveys and documents. The statistical population included the professors of a higher education center in the area of education affairs, where as many as 36 people were randomly selected. The data collection procedure was by way of interview and researcher made questionnaire. Findings and results: Problems caused by the national media in the area of adolescents are categorized in three levels of production, broadcasting and consumption and elimination and reduction of the problems entail a set of estimations and predictions and also some education which the police forces has the capability to operationalize them. Thus, three hypotheses were defined and by conducting t and Friedman tests, all three hypotheses were confirmed and their rating was identified.

Keywords: management, media, TV, adolscents, delinquency

Procedia PDF Downloads 248
24048 Shear Strengthening of Reinforced Concrete Deep Beam Using Fiber Reinforced Polymer Strips

Authors: Ruqaya H. Aljabery

Abstract:

Reinforced Concrete (RC) deep beams are one of the main critical structural elements in terms of safety since significant loads are carried in a short span. The shear capacity of these sections cannot be predicted accurately by the current design codes like ACI and EC2; thus, they must be investigated. In this research, non-linear behavior of RC deep beams strengthened in shear with Fiber Reinforced Polymer (FRP) strips, and the efficiency of FRP in terms of enhancing the shear capacity in RC deep beams are examined using Finite Element Analysis (FEA), which is conducted using the software ABAQUS. The effect of several parameters on the shear capacity of the RC deep beam are studied in this paper as well including the effect of the cross-sectional area of the FRP strip and the shear reinforcement area to the spacing ratio (As/S), and it was found that FRP enhances the shear capacity significantly and can be a substitution of steel stirrups resulting in a more economical design.

Keywords: Abaqus, concrete, deep beam, finite element analysis, FRP, shear strengthening, strut-and-tie

Procedia PDF Downloads 147
24047 Experimental Study for Examination of Nature of Diffusion Process during Wine Microoxygenation

Authors: Ilirjan Malollari, Redi Buzo, Lorina Lici

Abstract:

This study was done for the characterization of polyphenols changes of anthocyanins, flavonoids, the color intensity and total polyphenols index, maturity and oxidation index during the process of micro-oxygenation of wine that comes from a specific geographic area in the southeastern region of the country. Also, through mathematical modeling of the oxygen distribution within solution of wort for wine fermentation, was shown the strong impact of carbon dioxide present in the liquor. Analytical results show periodic increases of color intensity and tonality, reduction level of free anthocyanins and flavonoids free because of polycondensation reactions between tannins and anthocyanins, increased total polyphenols index and decrease the ratio between the flavonoids and anthocyanins offering a red stabilize wine proved by sensory degustation tasting for color intensity, tonality, body, tannic perception, taste and remained back taste which comes by specific area associated with environmental indications. Micro-oxygenation of wine is a wine-making technique, which consists in the addition of small and controlled amounts of oxygen in the different stages of wine production but more efficiently after end of alcoholic fermentation. The objectives of the process include improved mouth feel (body and texture), color enhanced stability, increased oxidative stability, and decreased vegetative aroma during polyphenols changes process. A very important factor is polyphenolics organic grape composition strongly associated with the environment geographical specifics area in which it is grown the grape.

Keywords: micro oxygenation, polyphenols, environment, wine stability, diffusion modeling

Procedia PDF Downloads 205
24046 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 170
24045 Green Space and Their Possibilities of Enhancing Urban Life in Dhaka City, Bangladesh

Authors: Ummeh Saika, Toshio Kikuchi

Abstract:

Population growth and urbanization is a global phenomenon. As the rapid progress of technology, many cities in the international community are facing serious problems of urbanization. There is no doubt that the urbanization will proceed to have significant impact on the ecology, economy and society at local, regional, and global levels. The inhabitants of Dhaka city suffer from lack of proper urban facilities. The green spaces are needed for different functional and leisure activities of the urban dwellers. Again growing densification, a number of green space are transferred into open space in the Dhaka city. As a result greenery of the city's decreases gradually. Moreover, the existing green space is frequently threatened by encroachment. The role of green space, both at community and city level, is important to improve the natural environment and social ties for future generations. Therefore, it seems that the green space needs to be more effective for public interaction. The main objective of this study is to address the effectiveness of urban green space (Urban Park) of Dhaka City. Two approaches are selected to fulfill the study. Firstly, analyze the long-term spatial changes of urban green space using GIS and secondly, investigate the relationship of urban park network with physical and social environment. The case study site covers eight urban parks of Dhaka metropolitan area of Bangladesh. Two aspects (Physical and Social) are applied for this study. For physical aspect, satellite images and aerial photos of different years are used to find out the changes of urban parks. And for social aspect, methods are used as questionnaire survey, interview, observation, photographs, sketch and previous information of parks to analyze about the social environment of parks. After calculation of all data by descriptive statistics, result is shown by maps using GIS. According to physical size, parks of Dhaka city are classified into four types: Small, Medium, Large and Extra Large parks. The observed result showed that the physical and social environment of urban parks varies with their size. In small size parks physical environment is moderate by newly tree plantation and area expansion. However, in medium size parks physical environment are poor, example- tree decrease, exposed soil increase. On the other hand, physical environment of large size and extra large size parks are in good condition, because of plenty of vegetation and well management. Again based on social environment, in small size parks people mainly come from surroundings area and mainly used as waiting place. In medium-size parks, people come to attend various occasion from different places. In large size and extra large size parks, people come from every part of the city area for tourism purpose. Urban parks are important source of green space. Its influence both physical and social environment of urban area. Nowadays green space area gradually decreases and transfer into open space. The consequence of this research reveals that changes of urban parks influence both physical and social environment and also impact on urban life.

Keywords: physical environment, social environment, urban life, urban parks

Procedia PDF Downloads 421
24044 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 452
24043 Improving the Flow Capacity (CV) of the Valves

Authors: Pradeep A. G, Gorantla Giridhar, Vijay Turaga, Vinod Srinivasa

Abstract:

The major problem in the flow control valve is of lower Cv, which will reduce the overall efficiency of the flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. The traditional method of prototyping and testing takes a lot of time. That is where CFD comes into the picture with very quick and accurate validation along with visualization, which is not possible with the traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish the correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves, like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. The combination of optimized wetted surface and introduction of parabolic plug improved the Flow capacity (Cv) of the valve significantly.

Keywords: flow control valves, flow capacity (Cv), CFD simulations, design validation

Procedia PDF Downloads 157
24042 Noise Barrier Technique as a Way to Improve the Sonic Urban Environment along Existing Roadways Assessment: El-Gish Road Street, Alexandria, Egypt

Authors: Nihal Atif Salim

Abstract:

To improve the quality of life in cities, a variety of interventions are used. Noise is a substantial and important sort of pollution that has a negative impact on the urban environment and human health. According to the complaint survey, it ranks second among environmental contamination complaints (conducted by EEAA in 2019). The most significant source of noise in the city is traffic noise. In order to improve the sound urban environment, many physical techniques are applied. In the local area, noise barriers are considered as one of the most appropriate physical techniques along existing traffic routes. Alexandria is Egypt's second-largest city after Cairo. It is located along the Mediterranean Sea, and El- Gish Road is one of the city's main arteries. It impacts the waterfront promenade that extends along with the city by a high level of traffic noise. The purpose of this paper is to clarify the design considerations for the most appropriate noise barrier type along with the promenade, with the goal of improving the Quality of Life (QOL) and the sonic urban environment specifically. The proposed methodology focuses on how noise affects human perception and the environment. Then it delves into the various physical noise control approaches. After that, the paper discusses sustainable design decisions making. Finally, look into the importance of incorporating sustainability into design decisions making. Three stages will be followed in the case study. The first stage involves doing a site inspection and using specific sound measurement equipment (a noise level meter) to measure the noise level along the promenade at many sites, and the findings will be shown on a noise map. The second step is to inquire about the site's user experience. The third step is to investigate the various types of noise barriers and their effects on QOL along existing routes in order to select the most appropriate type. The goal of this research is to evaluate the suitable design of noise barriers that fulfill environmental and social perceptions while maintaining a balanced approach to the noise issue in order to improve QOL along existing roadways in the local area.

Keywords: noise pollution, sonic urban environment, traffic noise, noise barrier, acoustic sustainability, noise reduction techniques

Procedia PDF Downloads 133
24041 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method

Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García

Abstract:

In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.

Keywords: ZnO QDs, sol gel, functionalization

Procedia PDF Downloads 431
24040 Diversity and Taxonomy: Malaysian Marine Algae Genus Halimeda (Halimedaceae, Chlorophyta)

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

The study of genus Halimeda in Malaysia is in the early stage due to less specific study on its taxonomy. Most of the previous research tend to choose other genus such as Caulerpa and Gracilaria because of the potential of being utilized. The identification of Halimeda is complex by the high morphological variation within individual species due to different types of habitat and the changes in composition of seawater. The study was completed to study the diversity and distribution of Halimeda in Malaysia and to identify the morphological and anatomical differences between Halimeda species. The methods which have been used for this study are collection of Halimeda and seawater, preservation of specimen, identification of the specimen including the preparation of the temporary slide and decalcification of the calcium layer by using diluted hydrochloric acid. The specimen were processed in laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. Environmental parameters were tested by using YSI multiparameter probe and the recorded data were temperature, salinity, pH and dissolved oxygen. The nutrient content of seawater such as nitrate and phosphate were analysed by using Hach kit model DR 2000. In the present study, out of 330 herbarium specimen, ten species were identified as Halimeda cuneata, H. discoidea, H. macroloba, H. macrophysa, H. opuntia, H. simulans, H. stuposa, H. taenicola, H. tuna and H. velasquezii. Of these, five species were new record to Malaysia. They are Halimeda cuneata, H. macrophysa, H. stuposa, H. taenicola and H. velasquezii. H. opuntia was found as the most abundance species with wide distribution in Malaysia coastal area. Meanwhile, from the study of their distribution, two localities in which Pulau Balak Balak, Kudat and Pulau Langkawi, Kedah, were noted having high number of Halimeda species. As a conclusion, this study has successfully identified ten species of Halimeda of Malaysia with full description of morphological characteristics that may assist further researcher to differentiate and identify Halimeda.

Keywords: Distribution, diversity, Halimeda, morphological, taxonomy

Procedia PDF Downloads 340
24039 Geophysical and Laboratory Evaluation of Aquifer Position, Aquifer Protective Capacity and Groundwater Quality in Selected Dumpsites in Calabar Municipal Local Government Area, South Eastern Nigeria

Authors: Egor Atan Obeten, Abong Augustine Agwul, Bissong A. Samson

Abstract:

The position of the aquifer, its protective capability, and the quality of the groundwater beneath the dumpsite were all investigated. The techniques employed were laboratory, tritium tagging, electrical resistivity tomography (ERT), and vertical electrical sounding (VES). With a maximum electrode spacing of 500 meters, fifteen VES stations were used, and IPI2win software was used to analyze the data collected. The resistivity map of the dumpsite was determined by deploying six ERT stations for the 2 D survey. To ascertain the degree of soil infiltration beneath the dumpsite, the tritium tagging method was used. Using a conventional laboratory procedure, groundwater samples were taken from neighboring boreholes and examined. The findings showed that there were three to five geoelectric layers, with the aquifer position being inferred to be between 24.2 and 75.1 meters deep in the third, fourth, and fifth levels. Siemens with values in the range of 0.0235 to 0.1908 for the load protection capacity were deemed to be, at most, weakly and badly protected. The obtained porosity values ranged from 44.45 to 89.75. Strong calculated values for transmissivity and porosity indicate a permeable aquifer system with considerable storativity. The area has an infiltration value between 8 and 22 percent, according to the results of the tritium tagging technique, which was used to evaluate the level of infiltration from the dumpsite. Groundwater samples that have been analyzed reveal levels of NO2, DO, Pb2+, magnesium, and cadmium that are higher than what the NSDWQ has approved. Overall analysis of the results from the above-described methodologies shows that the study area's aquifer system is porous and that contaminants will circulate through it quickly if they are contaminated.

Keywords: aquifer, transmissivity, dumpsite, groundwater

Procedia PDF Downloads 40
24038 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 178
24037 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment

Authors: Habib Abida, Noura Dahri

Abstract:

Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.

Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia

Procedia PDF Downloads 104
24036 Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education

Authors: Mohammed A. M. Ibrahim

Abstract:

This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.

Keywords: networking wire and wireless technology, wireless network security, distributed computing, algorithm, encryption and decryption

Procedia PDF Downloads 331
24035 Fruiting Body Specific Sc4 Hydrophobin Gene Plays a Role in Schizophyllum Commune Hyphal Attachment to Structured Glass Surfaces

Authors: Evans Iyamu

Abstract:

Genes encoding hydrophobins play distinct roles at different stages of the life cycle of fungi, and they foster hyphal attachment to surfaces. The hydrophobin Sc4 is known to provide a hydrophobic membrane lining of the gas channels within Schizophyllum commune fruiting bodies. Here, we cultivated non-fruiting, monokaryotic S. commune 12-43 on glass surfaces that could be verified by micrography. Differential gene expression profiling of nine hydrophobin genes and the hydrophobin-like sc15 gene by quantitative PCR showed significant up-regulation of sc4 when S. commune was attached to glass surfaces, also confirmed with RNA-Seq data analysis. Another silicate, namely quartz sand, was investigated, and induction of sc4 was seen as well. The up-regulation of the hydrophobin gene sc4 may indicate involvement in S. commune hyphal attachment to glass as well as quartz surfaces. We propose that the covering of hyphae by Sc4 allows for direct interaction with the hydrophobic surfaces of silicates and that differential functions of specific hydrophobin genes depend on the surface interface involved. This study could help with the clarification of the biological functions of hydrophobins in natural surroundings, including hydrophobic surface attachment. Therefore, the analysis of growth on glass serves as a basis for understanding S. commune interaction with glass surfaces while providing the possibility to visualize the interaction microscopically.

Keywords: hydrophobin, structured glass surfaces, differential gene expression, quartz sand

Procedia PDF Downloads 113
24034 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power

Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina

Abstract:

Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.

Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics

Procedia PDF Downloads 218
24033 Optimization of Poly-β-Hydroxybutyrate Recovery from Bacillus Subtilis Using Solvent Extraction Process by Response Surface Methodology

Authors: Jayprakash Yadav, Nivedita Patra

Abstract:

Polyhydroxybutyrate (PHB) is an interesting material in the field of medical science, pharmaceutical industries, and tissue engineering because of its properties such as biodegradability, biocompatibility, hydrophobicity, and elasticity. PHB is naturally accumulated by several microbes in their cytoplasm during the metabolic process as energy reserve material. PHB can be extracted from cell biomass using halogenated hydrocarbons, chemicals, and enzymes. In this study, a cheaper and non-toxic solvent, acetone, was used for the extraction process. The different parameters like acetone percentage, and solvent pH, process temperature, and incubation periods were optimized using the Response Surface Methodology (RSM). RSM was performed and the determination coefficient (R2) value was found to be 0.8833 from the quadratic regression model with no significant lack of fit. The designed RSM model results indicated that the fitness of the response variable was significant (P-value < 0.0006) and satisfactory to denote the relationship between the responses in terms of PHB recovery and purity with respect to the values of independent variables. Optimum conditions for the maximum PHB recovery and purity were found to be solvent pH 7, extraction temperature - 43 °C, incubation time - 70 minutes, and percentage acetone – 30 % from this study. The maximum predicted PHB recovery was found to be 0.845 g/g biomass dry cell weight and the purity was found to be 97.23 % using the optimized conditions.

Keywords: acetone, PHB, RSM, halogenated hydrocarbons, extraction, bacillus subtilis.

Procedia PDF Downloads 435
24032 Protective Effect of Vitamin D on Cardiac Apoptosis in Obese Rats

Authors: Kadeejah Alsolami, Zainab Alrefay, Husaam Awad

Abstract:

Obesity and vitamin D deficiency have both been related to cardiovascular disease. The present work aimed to investigate the possible protective effect of vitamin D on cardiac apoptosis in a rat model of dietary-induced obesity. Methods: 30 male Wistar rats included in this study. They were allocated into 4 groups: Control (n=5), animal were fed standard diet for 3 months: Control + vitamin D (VD) (n=5),animals were fed a standard diet with 400IU VD/kg for 3 months: hypercaloric diets group (n=10), animals were fed a high fat diet for 3 months: hypercaloric diet with VD group (n=10), animals were fed a high fat diet with 400IU VD/kg for 3 months. At the beginning of the experiment, the weight and length were measured to assess body mass index (BMI) and repeated every 45 days. Food intake and body weight were monitored throughout the study period. Then rats were sacrificed and heart tissues collected for Quantitative Real-time polymerase chain reaction (qRT-PCR). qRT-PCR used to detect different genetic markers of apoptosis (anti-apoptotic gene (BCL2), a pro-apoptotic gene(BAX), pro-apoptotic genes (FAS, FAS-L), tumour necrosis factor (TNF), mitogen-activated protein kinases (MAPK). Results: FAS and FAS-L gene expression were significantly upregulated in rats fed with high fat diet. And FAS-L gene expression was significantly upregulated in all groups on comparison with control. Whereas Bax gene expression was significantly downregulated in rats fed with high-fat diet supplied with vitamin D. TNF was significantly upregulated in rats fed with high-fat diet treated with vitamin D. MAPK was significantly upregulated in rats fed with high fat diet group, and in rats fed with high-fat diet supplied with vitamin D. Conclusion: The cardiac apoptotic pathways were more activated in rats fed with high-fat than lean rats. And vitamin D protect the heart from the cardiac mitochondrial-dependent apoptotic pathway.

Keywords: apoptosis, heart, obesity, Vitamin D

Procedia PDF Downloads 208
24031 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 66
24030 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings

Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.

Keywords: corrosion, polyaniline-silica particles, zinc, protective ability

Procedia PDF Downloads 166
24029 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)

Authors: Abdullah Ay, Şehnaz Şener

Abstract:

It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.

Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli

Procedia PDF Downloads 18
24028 CFD Modeling and Optimization of Gas Cyclone Separator for Performance Improvement

Authors: N. Beit Saeid

Abstract:

Cyclones are used in the field of air industrial gases pollution and control the pollution with centrifugal forces that is generated with spatial geometry of the cyclone. Their simple design, low capital and maintenance costs and adaptability to a wide range of operating conditions have made cyclones one of the most widely used industrial dust collectors. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Optimized geometry of outlet diffuser of the cyclones potentially could reduce exit pressure losses without affecting collection efficiency. Three rectangular outlets and a radial outlet with a variable opening had been analyzed on two cyclones. Pressure drop was investigated for inlet velocities from about 10 to 20 m s−1. The radial outlet reduced cyclone pressure drop by between 8.7 and 11.9 percent when its exit area was equal to the flow area of the cyclone vortex finder or gas exit. A simple payback based on avoided energy costs was estimated to be between 3600 and 5000 h, not including installation cost.

Keywords: cyclone, CFD, optimization, genetic algorithm

Procedia PDF Downloads 376
24027 The Impact of Environmental Factors on the Water Quality of the Lakes in Bistrița Basin, Romania

Authors: Mihaela Alina Stanciu, Daniel Toma

Abstract:

With a touristic and economic potential among the highest in our country, Neamț County has a large number of impressive storage lakes (Izvoru Muntelui – Bicaz, Bâtca Doamnei, Vaduri, Pângărați), with high hydrographic capacities, but also a diversity of biotopes and habitats. Being an area with frequent exceedances of environmental quality indicators, we analyzed in this work their impact on the water quality parameters in three of the most visited lakes of Neamț County: Bâtca Doamnei, Vaduri, and Pângărați. An additional reason is the risk of the water eutrophication process in these lakes, representing one of the first six most important pollution problems worldwide. During the research carried out over a period of four years (2020 – 2024), we identified the major sources of water pollution for the mentioned reservoirs. We analyzed the type of impact produced by each source separately, and we proposed preventiong and control measures detailed according to their action on water quality parameters.

Keywords: ecosystem, environment, eutrophication, lakes, nutrients, pollution, water quality

Procedia PDF Downloads 24
24026 Low-Density Polyethylene Film Biodegradation Potential by Fungal Species From Thailand

Authors: Patcharee Pripdeevech, Sarunpron Khruengsai

Abstract:

Thirty fungi were tested for their degradation ability on low-density polyethylene (LDPE) plastic film. Biodegradation of all fungi was screened in mineral salt medium broth containing LDPE film as the sole carbon source for 30 days. Diaporthe italiana, Thyrostroma jaczewskii, Colletotrichum fructicola, and Stagonosporopsis citrulli were able to colonize and cover the surface of LDPE film in media. The degradation test result was compared to those obtained from Aspergillus niger. LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, 28.78%, and 10.85%, respectively. The tensile strength of degraded LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control also reduced significantly by 1.56 MPa, 1.78 MPa, 0.43 MPa, 1.86 MPa, 3.34 MPa, and 9.98 MPa, respectively. Analysis of LDPE films by Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. These fungi have the ability to break down and consume the LDPE film, especially C. fructicola. These findings showed the potential of fungi in Thailand that play an important role in LDPE film degradation.

Keywords: plastic biodegradation, LDPE film, fungi, Fourier transform infrared, scanning electron microscopy

Procedia PDF Downloads 124
24025 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits

Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang

Abstract:

Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.

Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)

Procedia PDF Downloads 322