Search results for: non-formal learning contexts
2681 Adolescents Psychological Well Being in Relation to Bullying/CB Victimization: The Mediating Effect of Resilience and Self-Concept
Authors: Dorit Olenik-Shemesh, Tali Heiman
Abstract:
Aggressive peer behaviors, particularly bullying and cyberbullying (CB) victimization during adolescence, are strongly and consistently linked to decreased levels of subjective well-being, potentially hindering a healthy and consistent developmental process. These negative effects might be expressed in emotional, physical, and behavioral difficulties. Adolescents victims of bullying/CB present more depressive moods, more loneliness, and more suicidal thoughts, while adolescents who had never been victims of bullying and CB acts present higher levels of well-being. These difficulties in their lives may be both a consequence of and a partial explanation for bullying/CB victimization. Interpersonal behavior styles and psychosocial factors may interact to create a vicious cycle in which adolescents place themselves at risk, which might explain the reduced well-being reported among victims. Yet, to the best of our knowledge, almost no study has examined the effect of two key variables in adolescents' lives, resilience and self-concept, in the relationship between bullying/CB victimization and low levels of psychological well-being among adolescents. Resilience is defined as the individual's capacity of maintaining stable functioning and make adjustments in the face of adversity; a capacity that promotes efficiently coping with environmental stressors and protects from psycho-social difficulties when facing various challenges. Self-concept relates to the way we perceive ourselves, influenced by many forces, including our interactions with the surroundings; a collection of beliefs about oneself. Accordingly, the current study has examined the possible mediating effect of these two main positive personal variables, resilience, and self-concept, through a mediation model analysis. 507 middle school students aged 11–16 (53% boys, 47% girls) completed questionnaires regarding bullying and CB behaviors, psychological well-being, resilience, and self-concept. A mediation model analysis was performed, whereas the hypothesized mediation model was accepted in full. More specifically, it was found that both self-concept and resilience mediated the relationship between bullying/CB victimization and a sense of well-being. High levels of both variables might buffer against a potential decrease in well-being associated with youth bullying/CB victimization. No gender differences were found, except a small stronger effect of resilience on well-being for boys. The study results suggest focusing on specific personal positive variables when developing youth intervention programs, creating an infrastructure for new programs that address increasing resilience and self-concept in schools and family-school contexts. Such revamped programs could diminish bullying/CB acts and the harmful negative implications for youth well-being. Future studies that will incorporate longitudinal data may further deepen the understanding of these examined relationships.Keywords: adolescents, well being, bullying/CB victimization, resilience, self-concept
Procedia PDF Downloads 72680 Cultures, Differences, and Education in EU: Right to Have Rights against Reality
Authors: Ana Campina, José Caramelo Gomes, Maria Emília Teixeira, Cristina Costa-Lobo
Abstract:
In the pursuit of educational equity within Human Rights and European Fundamental Laws, the reality presents serious problems based on the psychologic, social understanding. Take into account the miscellaneous cultures in the global context and the nowadays numbers of Human mobilities, there are serious problems affecting the societies. This justifies the diagnosed need of a renew pedagogical and social education strategy to achieve the integration positive context preventing violence and discrimination, especially in Education systems. Consequently, it is important to have in mind the respect, acceptance, and integration of special needs students in all study degrees, as it is law but a complex reality. Despite the UN and International Human Rights, European Fundamental Chart, and all EU Treats, as the 28th EU State Member’s fundamental laws forecast the right of Education, the respect, the action and promotion of different cultures and the Education for ‘Difference’ integration – cultures; ideologies, Special Needs Students/Citizens – there are different and severe problems. Firstly, there are questions/contexts/problems not denounced by the lack of investments, political, social or ‘powers’ pressures, so, consequently, the authorities don’t have the action as laws demand and the transgressors haven´t any juridical or judicial punishment. Secondly, and our most important point: Governments, authorities and even victims hide these violations/violence/problems what disable the effective protection and law enforcement. Finally, the official and non-official strategies to get around the duties, break away the laws, failing the victims protection and consequently enable the problems increase dramatically. With this research, we observed that there are international Organizations/regions and States acting without respect to the Education right despite their democratic ideology and the generated external ‘image’ of law-abiding and Human Rights defenders. Nevertheless, it is urgent to develop a consistent Human Rights Education program aiming to protect, promote and implement the Right to be different and be respected by the law, the governments, institutions official and non-official, adapted to the needs in each society. The background of this research is the International and European laws, in accordance with the state’s legal systems. The approaches and the differences of the Education for Human and Fundamental Rights execution in the different EU countries, studying the pedagogy and social inclusion programs/strategies, with particular analysis of the Special Needs students. The results aim to construct a European Education profiling, with the governments and EU interventions need, as well as the panorama of the Special Needs Students effective integration achieving a renewed strategy to promote the respect of the Differences and an Inclusive School life.Keywords: international human rights, culture, differences, European education profiling
Procedia PDF Downloads 1902679 People Management, Knowledge Sharing and Intermediary Variables
Authors: Nizar Mansour, Chiha Gaha, Emna Gara
Abstract:
The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia
Procedia PDF Downloads 3322678 A Case Study on Experiences of Clinical Preceptors in the Undergraduate Nursing Program
Authors: Jacqueline M. Dias, Amina A Khowaja
Abstract:
Clinical education is one of the most important components of a nursing curriculum as it develops the students’ cognitive, psychomotor and affective skills. Clinical teaching ensures the integration of knowledge into practice. As the numbers of students increase in the field of nursing coupled with the faculty shortage, clinical preceptors are the best choice to ensure student learning in the clinical settings. The clinical preceptor role has been introduced in the undergraduate nursing programme. In Pakistan, this role emerged due to a faculty shortage. Initially, two clinical preceptors were hired. This study will explore clinical preceptors views and experiences of precepting Bachelor of Science in Nursing (BScN) students in an undergraduate program. A case study design was used. As case studies explore a single unit of study such as a person or very small number of subjects; the two clinical preceptors were fundamental to the study and served as a single case. Qualitative data were obtained through an iterative process using in depth interviews and written accounts from reflective journals that were kept by the clinical preceptors. The findings revealed that the clinical preceptors were dedicated to their roles and responsibilities. Another, key finding was that clinical preceptors’ prior knowledge and clinical experience were valuable assets to perform their role effectively. The clinical preceptors found their new role innovative and challenging; it was stressful at the same time. Findings also revealed that in the clinical agencies there were unclear expectations and role ambiguity. Furthermore, clinical preceptors had difficulty integrating theory into practice in the clinical area and they had difficulty in giving feedback to the students. Although this study is localized to one university, generalizations can be drawn from the results. The key findings indicate that the role of a clinical preceptor is demanding and stressful. Clinical preceptors need preparation prior to precepting students on clinicals. Also, institutional support is fundamental for their acceptance. This paper focuses on the views and experiences of clinical preceptors undertaking a newly established role and resonates with the literature. The following recommendations are drawn to strengthen the role of the clinical preceptors: A structured program for clinical preceptors is needed along with mentorship. Clinical preceptors should be provided with formal training in teaching and learning with emphasis on clinical teaching and giving feedback to students. Additionally, for improving integration of theory into practice, clinical modules should be provided ahead of the clinical. In spite of all the challenges, ten more clinical preceptors have been hired as the faculty shortage continues to persist.Keywords: baccalaureate nursing education, clinical education, clinical preceptors, nursing curriculum
Procedia PDF Downloads 1742677 Topic-Specific Differences and Lexical Variations in the Use of Violence Metaphors: A Cognitive Linguistic Study of YouTube Breast Cancer Discourse in New Zealand and Pakistan
Authors: Sara Malik, Andreea. S. Calude, Joseph Ulatowski
Abstract:
This paper explores how speakers from New Zealand and Pakistan with breast cancer use violence metaphors to communicate the intensity of their experiences during various stages of illness. With the theoretical foundation in Conceptual Metaphor Theory and the use of Metaphor Identification Procedure for metaphor analysis, this study investigates how speakers with breast cancer use violence metaphors in different cultural contexts. it collected a corpus of forty-six personal narratives from New Zealand and thirty-six from Pakistan, posted between 2011 and 2023 on YouTube by breast cancer organisations, such as ‘NZ Breast Cancer Foundation’ and ‘Pink Ribbon Pakistan’. The data was transcribed using the Whisper AI tool and then curated to include only patients’ discourse, further organised into eight narrative topics: testing phase, treatment phase, remission phase, family support, campaigns and awareness efforts, government support and funding, general information and religious discourse. In this talk, it discuss two aspects of the use of violence metaphors, a) differences in the use of violence metaphors across various narrative topics, and b) lexical variations in the choice of such metaphors. The findings suggest that violence metaphors were used differently across various stages of illness experience. For instance, during the ‘testing phase,’ violence metaphors were employed to convey a sense of punishment as reflected in statements like, ‘Feeling like it was a death sentence, an immediate death sentence’ (NZ Example) and ‘Jese hi aap ko na breast cancer ka pata chalta hai logon ko yeh hona shuru ho jata hai ke oh bas ab to moat ka parwana mil gaya hai’ (Because as soon as you find out you have breast cancer people start to feel that you have received a death warrant) (PK Example). On the other hand, violence metaphor during the ‘treatment phase’ highlighted negative experiences related to chemotherapy as seen in statements like ‘The first lot of chemo I had was disastrous’ (NZ Example) and ‘...chemotherapy ke to, it's the worst of all, it's like a healing poison’ (chemotherapy, it's the worst of all, it's like a healing poison) (PK Example). Second, lexical variations revealed how ‘sunburn’ (a common phenomenon in the NZ) was used as a metaphor to describe the effects of radiotherapy, whereas in the discourse from Pakistan, a more general term, 'burn,' was used instead. In this talk, we will explore the possible reasons behind the different word choices made by speakers from both countries to describe the same process. This study contributes to understanding the use of violence metaphors across various narrative topics of the illness experience and explains how and why speakers from two different countries use lexical variations to describe the same process.Keywords: metaphors, breast cancer discourse, cognitive linguistics, lexical variations, New zealand english, pakistani urdu
Procedia PDF Downloads 312676 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1342675 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1252674 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3352673 CDIO-Based Teaching Reform for Software Project Management Course
Authors: Liping Li, Wenan Tan, Na Wang
Abstract:
With the rapid development of information technology, project management has gained more and more attention recently. Based on CDIO, this paper proposes some teaching reform ideas for software project management curriculum. We first change from Teacher-centered classroom to Student-centered and adopt project-driven, scenario animation show, teaching rhythms, case study and team work practice to improve students' learning enthusiasm. Results showed these attempts have been well received and very effective; as well, students prefer to learn with this curriculum more than before the reform.Keywords: CDIO, teaching reform, engineering education, project-driven, scenario animation simulation
Procedia PDF Downloads 4292672 Applied Linguistics: Language, Corpora, and Technology
Authors: M. Imran
Abstract:
This research explores the intersections of applied linguistics, corpus linguistics, translation, and technology, aiming to present innovative cross-disciplinary tools and frameworks. It highlights significant contributions to language, corpora, and technology within applied linguistics, which deepen our understanding of these domains and provide practical resources for scholars, educators, and translators. By showcasing these advancements, the study seeks to enhance collaboration and application in language-related fields. The significance of applied linguistics is emphasized by some of the research that has been emphasized, which presents pedagogical perspectives that could enhance instruction and the learning results of student’s at all academic levels as well as translation trainees. Researchers provided useful data from language studies with classroom applications from an instructional standpoint.Keywords: linguistics, language, corpora, technology
Procedia PDF Downloads 132671 Student Absenteeism as a Challenge for Inclusion: A Comparative Study of Primary Schools in an Urban City in India
Authors: Deepa Idnani
Abstract:
Attendance is an important factor in school success among children. Studies show that better attendance is related to higher academic achievement for students of all backgrounds, but particularly for children with lower socio-economic status. Beginning from the early years, students who attend school regularly score higher on tests than their peers who are frequently absent. The present study in different types of School In Delhi tries to highlight the impact of student absenteeism and the challenges it poses for the students. The study relies on Lewin ‘Model of Exclusion’ and tries to focus on the analysis of children with special needs and the inclusion and exclusion of students in the school.Keywords: student absenteeism, pedagogy, learning, right to education act, exclusion
Procedia PDF Downloads 2972670 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management
Authors: Ezgi Şendil
Abstract:
Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.Keywords: disaster, NLP, postdisaster management, sentiment analysis
Procedia PDF Downloads 752669 Digital Value Co-Creation: The Case of Worthy a Virtual Collaborative Museum across Europe
Authors: Camilla Marini, Deborah Agostino
Abstract:
Cultural institutions provide more than service-based offers; indeed, they are experience-based contexts. A cultural experience is a special event that encompasses a wide range of values which, for visitors, are primarily cultural rather than economic and financial. Cultural institutions have always been characterized by inclusivity and participatory practices, but the upcoming of digital technologies has put forward their interest in collaborative practices and the relationship with their audience. Indeed, digital technologies highly affected the cultural experience as it was conceived. Especially, museums, as traditional and authoritative cultural institutions, have been highly challenged by digital technologies. They shifted by a collection-oriented toward a visitor-centered approach, and digital technologies generated a highly interactive ecosystem in which visitors have an active role, shaping their own cultural experience. Most of the studies that investigate value co-creation in museums adopt a single perspective which is separately one of the museums or one of the users, but the analysis of the convergence/divergence of these perspectives is still emphasized. Additionally, many contributions focus on digital value co-creation as an outcome rather than as a process. The study aims to provide a joint perspective on digital value co-creation which include both museum and visitors. Also, it deepens the contribution of digital technologies in the value co-creation process, addressing the following research questions: (i) what are the convergence/divergence drivers on digital value co-creation and (ii) how digital technologies can be means of value co-creation? The study adopts an action research methodology that is based on the case of WORTHY, an educational project which involves cultural institutions and schools all around Europe, creating a virtual collaborative museum. It represents a valuable case for the aim of the study since it has digital technologies at its core, and the interaction through digital technologies is fundamental, all along with the experience. Action research has been identified as the most appropriate methodology for researchers to have direct contact with the field. Data have been collected through primary and secondary sources. Cultural mediators such as museums, teachers and students’ families have been interviewed, while a focus group has been designed to interact with students, investigating all the aspects of the cultural experience. Secondary sources encompassed project reports and website contents in order to deepen the perspective of cultural institutions. Preliminary findings highlight the dimensions of digital value co-creation in cultural institutions from a museum-visitor integrated perspective and the contribution of digital technologies in the value co-creation process. The study outlines a two-folded contribution that encompasses both an academic and a practitioner level. Indeed, it contributes to fulfilling the gap in cultural management literature about the convergence/divergence of service provider-user perspectives but it also provides cultural professionals with guidelines on how to evaluate the digital value co-creation process.Keywords: co-creation, digital technologies, museum, value
Procedia PDF Downloads 1472668 Real-Time Working Environment Risk Analysis with Smart Textiles
Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane
Abstract:
Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.Keywords: ergonomics, mobile technologies, risk assessment, smart textiles
Procedia PDF Downloads 1172667 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 832666 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones
Authors: Kazuhisa Takagi
Abstract:
This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.Keywords: dynamic mathematical object, javascript, google drive, transfer jet
Procedia PDF Downloads 2602665 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly
Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni
Abstract:
The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype
Procedia PDF Downloads 1342664 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation
Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong
Abstract:
Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation
Procedia PDF Downloads 1902663 Towards Creative Movie Title Generation Using Deep Neural Models
Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie
Abstract:
Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.Keywords: creativity, deep machine learning, natural language generation, movies
Procedia PDF Downloads 3262662 Gesture-Controlled Interface Using Computer Vision and Python
Authors: Vedant Vardhan Rathour, Anant Agrawal
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks
Procedia PDF Downloads 122661 Leveraging Play to Foster Healthy Social-emotional Development in Young Children in Poverty
Authors: Smita Mathur
Abstract:
Play is an innate, player-centric, joyful, fundamental activity of early childhood development that significantly contributes to social, emotional, and academic learning. Leveraging the power of play can enhance these domains by creating engaging, interactive, and developmentally appropriate learning experiences for young children. This research aimed to systematically examine young children’s play behaviors with a focus on four primary objectives: (1) the frequency and duration of on-task behaviors, (2) social interactions and emotional expressions during play, (3) the correlation between academic skills and play, and (4) identifying best practices for integrating play-based curricula. To achieve these objectives, a mixed-method study was conducted among young preschool-aged children in low socio-economic populations in the United States. The children were identified using purposive sampling. The children were observed during structured play in classrooms and unstructured play during outdoor playtime and in their home environments. The study sampled 97 preschool-aged children. A total of 3970 minutes of observations were coded to address the research questions. Thirty-seven percent of children lived in linguistically isolated families, and 76% lived in basic budget poverty. Children lived in overcrowded housing situations (67%), and most families had mixed citizenship status (66%). The observational study was conducted using the observation protocol during the Oxford Study Project. On-task behaviors were measured by tracking the frequency and duration of activities where children maintained focus and engagement. In examining social interactions and emotional expressions, the study recorded social interactions, emotional responses, and teacher involvement during play. The study aimed to identify best practices for integrating play-based curricula into early childhood education. By analyzing the effectiveness of different play-based strategies and their impact on on-task behaviors, social-emotional development, and academic skills, the research sought to provide actionable recommendations for educators and caregivers. The findings from study 1. Highlight play behaviors that increase on-task behaviors and academic, & social skills in young children. 2. Offers insights into teacher preparation and designing play-based curriculum 3. Research critiques observation as a data collection technique.Keywords: play, early childhood education, social-emotional development, academic development
Procedia PDF Downloads 272660 Predicting Personality and Psychological Distress Using Natural Language Processing
Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi
Abstract:
Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality
Procedia PDF Downloads 792659 Developing Cultural Competence as Part of Nursing Studies: Language, Customs and Health Issues
Authors: Mohammad Khatib, Salam Hadid
Abstract:
Introduction: Developing nurses' cultural competence begins in their basic training and requires them to participate in an array of activities which raise their awareness and stimulate their interest, desire and curiosity about different cultures, by creating opportunities for intercultural meetings promoting the concept of 'culture' and its components, including recognition of cultural diversity and the legitimacy of the other. Importantly, professionals need to acquire specific cultural knowledge and thorough understanding of the values, norms, customs, beliefs and symbols of different cultures. Similarly, they need to be given opportunities to practice the verbal and non-verbal communication skills of other cultures according to their cultural codes. Such a system is being implemented as part of nursing studies at Zefat Academic College in two study frameworks; firstly, a course integrating nursing theory and practice in multicultural nursing; secondly, a course in learning the languages spoken in Israel focusing on medical and nursing terminology. Methods: Students participating in the 'Transcultural Nursing' course come from a variety of backgrounds: Jews, or Arabs, religious, or secular; Muslim, Christian, new immigrants, Ethiopians or from other cultural affiliations. They are required to present and discuss cultural practices that affect health. In addition, as part of the language course, students learn and teach their friends 5 spoken languages (Arabic, Russian, Amharian, Yidish, and Sign language) focusing on therapeutic interaction and communication using the vocabulary and concepts necessary for the therapeutic encounter. An evaluation of the process and the results was done using a structured questionnaire which includes series of questions relating to the contributions of the courses to their cultural knowledge, awareness and skills. 155 students completed the questionnaire. Results: A preliminary assessment of this educational system points an increase in cultural awareness and knowledge among the students as well as in their willingness to recognize the other's difference. A positive atmosphere of multiculturalism is reflected in students' mutual interest and respect was created. Students showed a deep understanding of cultural issues relating to health and care (consanguinity and genetics, food customs; cultural events, reincarnation, traditional treatments etc.). Most of the students were willing to recommend the courses to others and suggest some changes relating learning methods (more simulations, role playing and activities).Keywords: cultural competence, nursing education, culture, language
Procedia PDF Downloads 2772658 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR
Authors: Ivana Scidà, Francesco Alotto, Anna Osello
Abstract:
Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality
Procedia PDF Downloads 1312657 Neuro-Epigenetic Changes on Diabetes Induced-Synaptic Fidelity in Brain
Authors: Valencia Fernandes, Dharmendra Kumar Khatri, Shashi Bala Singh
Abstract:
Background and Aim: Epigenetics are the inaudible signatures of several pathological processes in the brain. This study understands the influence of DNA methylation, a major epigenetic modification, in the prefrontal cortex and hippocampus of the diabetic brain and its notable effect on the cellular chaperones and synaptic proteins. Method: Chronic high fat diet and STZ-induced diabetic mice were studied for cognitive dysfunction, and global DNA methylation, as well as DNA methyltransferase (DNMT) activity, were assessed. Further, the cellular chaperones and synaptic proteins were examined using DNMT inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC)-via intracerebroventricular injection. Moreover, % methylation of these synaptic proteins were also studied so as to correlate its epigenetic involvement. Computationally, its interaction with the DNMT enzyme were also studied using bioinformatic tools. Histological studies for morphological alterations and neuronal degeneration were also studied. Neurogenesis, a characteristic marker for new learning and memory formation, was also assessed via the BrdU staining. Finally, the most important behavioral studies, including the Morris water maze, Y maze, passive avoidance, and Novel object recognition test, were performed to study its cognitive functions. Results: Altered global DNA methylation and increased levels of DNMTs within the nucleus were confirmed in the cortex and hippocampus of the diseased mice, suggesting hypermethylation at a genetic level. Treatment with AzadC, a global DNA demethylating agent, ameliorated the protein and gene expression of the cellular chaperones and synaptic fidelity. Furthermore, the methylation analysis profile showed hypermethylation of the hsf1 protein, a master regulator for chaperones and thus, confirmed the epigenetic involvement in the diseased brain. Morphological improvements and decreased neurodegeneration, along with enhanced neurogenesis in the treatment group, suggest that epigenetic modulations do participate in learning and memory. This is supported by the improved behavioral test battery seen in the treatment group. Conclusion: DNA methylation could possibly accord in dysregulating the memory-associated proteins at chronic stages in type 2 diabetes. This could suggest a substantial contribution to the underlying pathophysiology of several metabolic syndromes like insulin resistance, obesity and also participate in transitioning this damage centrally, such as cognitive dysfunction.Keywords: epigenetics, cognition, chaperones, DNA methylation
Procedia PDF Downloads 2042656 Peers' Alterity in Inverted Inclusion: A Case Study
Authors: Johanna Sagner, María José Sandoval
Abstract:
At the early stages of adolescence, young people, regardless of a disability or not, start to establish closer friendship ties. Unlike previous developmental phases, these ties are rather reciprocal, more committed, and require more time. Friendship ties during adolescence allow the development of social and personal skills, specifically the skills to start constructing identity. In an inclusive context that incorporates young people with a disability, friendship among peers also takes place. Nonetheless, the relation is shaped, among others, by the alterity construction about the other with disability. Research about peers’ relation between young people with and without disability in an inclusive context has shown that the relation tends to become a helper-helpee relation, where those with a disability are seen as people in need. Prejudices about the others’ condition or distancing from the other because of his/hers disability are common. In this sense, the helper-helpee relation, as a non-reciprocal and protective relation, will not promote friendship between classmates, but a rather asymmetric alterity. Our research is an explorative case study that wants to know how the relation between peers is shaped within a different inclusive program, were also the integrated group has special educational needs. Therefore, we analyze from a qualitative and quantitative approach the data of an inverted inclusive program. This is a unique case of a special public school for visual disability in Germany that includes young people from a mainstream school who had learning difficulties. For the research, we analyze data from interviews, focal interviews and open-ended questions with an interpretative phenomenological analysis approach. The questionnaires include a five point Likert scale, for which we calculate the acceptance rate. The findings show that the alterity relation between pupils is less asymmetrical and represents a rather horizontal alterity. The helper-helpee relation is marked by exchange, since both groups have special educational needs and therefore, those with visual disability and those with learning difficulties help each other indistinctly. Friendship is more present among classmates. The horizontal alterity peers’ relation is influenced by a sort of tie, where none of the groups need more or less help than other groups. Both groups identify that they themselves and the other have special needs. The axiological axe of alterity is not of superiority or inferiority, recognizing each other’s differences and otherness. Another influential factor relates with the amount of time they spend together, since the program does not have a resource room or a teacher who teaches parallel lessons. Two probable causes for that rather equal peer relation might be the constellation of fewer pupils per classroom and the differentiated lessons taught by teachers with a special educational formation.Keywords: alterity, disability, inverted inclusion, peers’ relation
Procedia PDF Downloads 3142655 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 732654 The Challenge of Assessing Social AI Threats
Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi
Abstract:
The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.Keywords: social threats, artificial Intelligence, mitigation, social experiment
Procedia PDF Downloads 652653 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 732652 Students with Severe Learning Disabilities in Mainstream Classes: A Study of Comprehensions amongst School Staff and Parents Built on Observations and Interviews in a Phenomenological Framework
Authors: Inger Eriksson, Lisbeth Ohlsson, Jeremias Rosenqvist
Abstract:
Ingress: Focus in the study is directed towards phenomena and concepts of segregation, integration, and inclusion of students attending a special school form in Sweden, namely compulsory school for pupils with learning disabilities (in Swedish 'särskola') as an alternative to mainstream compulsory school. Aim: The aim of the study is to examine the school situation for students attending särskola from a historical perspective focussing the 1980s, 1990s and the 21st century, from an integration perspective, and from a perspective of power. Procedure: Five sub-studies are reported, where integration and inclusion are looked into by observation studies and interviews with school leaders, teachers, special and remedial teachers, psychologists, coordinators, and parents in the special schools/särskola. In brief, the study about special school students attending mainstream classes from 1998 takes its point of departure in the idea that all knowledge development takes place in a social context. A special interest is taken in the school’s role for integration generally, and the role of special education particularly and on whose conditions the integration is taking place – the special school students' or the other students,' or may be equally, in the class. Pedagogical and social conditions for so called individually integrated special school students in elementary school classes were studied in eleven classes. Results: The findings are interpreted in a power perspective supported by Foucault and relationally by Vygotsky. The main part of the data consists of extensive descriptions of the eleven cases, here called integration situations. Conclusions: In summary, this study suggests that the possibilities for a special school student to get into the class community and fellowship and thereby be integrated with the class are to a high degree dependant on to what extent the student can take part in the pedagogical processes. The pedagogical situation for the special school student is affected not only by the class teacher and the support and measures undertaken but also by the other students in the class as they, in turn, are affected by how the special school student is acting. This mutual impact, which constitutes the integration process in itself, might result in a true integration if the special school student attains the status of being accepted on his/her own terms not only being cared for or cherished by some classmates. A special school student who is not accepted even on the terms of the class will often experience severe problems in the contacts with classmates and the school situation might thus be a mere placement.Keywords: integration/inclusion, mainstream school, power, special school students
Procedia PDF Downloads 248