Search results for: mechanism design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14835

Search results for: mechanism design

9555 Antibacterial Zwitterion Carboxylate and Sulfonate Copolymer Auxetic Hydrogels for Diabetic Wound Healing Application

Authors: Udayakumar Veerabagu, Franck Quero

Abstract:

Zwitterion carboxylate and sulfonate polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications.

Keywords: auxetic, zwitterion, carboxylate, sulfonate, polymer, wound healing

Procedia PDF Downloads 140
9554 On the Development of Medical Additive Manufacturing in Egypt

Authors: Khalid Abdelghany

Abstract:

Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.

Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants

Procedia PDF Downloads 300
9553 Transforming ESL Teaching and Learning with ICT

Authors: Helena Sit

Abstract:

Developing skills in using ICT in the language classroom has been discussed at all educational levels. Digital tools and learning management systems enable teachers to transform their instructional activities while giving learners the opportunity to engage with virtual communities. In the field of English as a second language (ESL) teaching and learning, the use of technology-enhanced learning and diverse pedagogical practices continues to grow. Whilst technology and multimodal learning is a way of the future for education, second language teachers now face the predicament as to whether implementing these newer ways of learning is, in fact, beneficial or disadvantageous to learners. Research has shown that integrating multimodality and technology can improve students’ engagement and participation in their English language learning. However, students can experience anxiety or misunderstanding when engaging with E-learning or digital-mediated learning. This paper aims to explore how ESL teaching and learning are transformed via the use of educational technology and what impact it has had on student teachers. Case study is employed in this research. The study reviews the growing presence of technology and multimodality in university language classrooms, discusses their impact on teachers’ pedagogical practices, and proposes scaffolding strategies to help design effective English language courses in the Australian education context. The study sheds light on how pedagogical integration today may offer a way forward for language teachers of tomorrow and provides implications to implement an evidence-informed approach that blends knowledge from research, practice and people experiencing the practice in the digital era.

Keywords: educational technology, ICT in higher education, curriculum design and innovation, teacher education, multiliteracies pedagogy

Procedia PDF Downloads 63
9552 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 124
9551 Relationship between Feeding Type and the Occurrence of Aflatoxin M1 in Milk of High Yielding Dairy Cows

Authors: G. S. Sumanasekara, W. M. P. B. Weerasingheg

Abstract:

The major problem associated with concentrate feeds used for feeding cattle is declining quality by contamination with Aflatoxins. Objective: The aim of the study was to detect levels of Aflatoxin M1(AFM1) in cow milk , AFM1 levels present in milk related to different feed types and to identify the relationship between feed type and Aflatoxin M1 in milk. Design: cross sectional study design. Milk samples from each farm assessed for presence of AFM1 using High Performance Liquid Chromatographic method. Setting: Ten dairy farms located in Nuwara-Eliya district were randomly selected.AFM1 analysis was done using High Performance Liquid Chromatography(HPLC). Results: The results indicated that AFM1 was present in 50% of samples. Coconut poonac shown the most significant relationship among individual feeds having a correlation of 0.65 and P value of 0.042 . Among feed combinations, coconut poonac and beer pulp combination showed the highest correlation of 0.77 and P value of 0.05. Grasses had shown a very poor relationship with the AFM1 occurrence in milk (r=0.053, P=0.885). Relationship between overall concentrate feeds in the study and AFM1 in milk, it was clear that they had a significant relationship having correlation of 0.65 and P value of 0.042. Majority of samples lied between 0-10 ng L-1 of AFM1 and one sample exceeded above 30 ng L-1. Two samples had AFM1 concentrations between 22-32 ng L-1. One sample lied between 32-42ng L-1, did not exceed the EU recommended level of 50 ng L-1. The presence of AFM1 in milk under various management and feeding conditions is yet to be investigated in Sri Lanka.

Keywords: aflatoxin M1, aspergillus, cattle feed, concentrates, cow milk, high perforamance liquid chromatography

Procedia PDF Downloads 282
9550 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 138
9549 A Study on the Effect of Mg and Ag Additions and Age Hardening Treatment on the Properties of As-Cast Al-Cu-Mg-Ag Alloys

Authors: Ahmed. S. Alasmari, M. S. Soliman, Magdy M. El-Rayes

Abstract:

This study focuses on the effect of the addition of magnesium (Mg) and silver (Ag) on the mechanical properties of aluminum based alloys. The alloying elements will be added at different levels using the factorial design of experiments of 22; the two factors are Mg and Ag at two levels of concentration. The superior mechanical properties of the produced Al-Cu-Mg-Ag alloys after aging will be resulted from a unique type of precipitation named as Ω-phase. The formed precipitate enhanced the tensile strength and thermal stability. This paper further investigated the microstructure and mechanical properties of as cast Al–Cu–Mg–Ag alloys after being complete homogenized treatment at 520 °C for 8 hours followed by isothermally age hardening process at 190 °C for different periods of time. The homogenization at 520 °C for 8 hours was selected based on homogenization study at various temperatures and times. The alloys’ microstructures were studied by using optical microscopy (OM). In addition to that, the fracture surface investigation was performed using a scanning electronic microscope (SEM). Studying the microstructure of aged Al-Cu-Mg-Ag alloys reveal that the grains are equiaxed with an average grain size of about 50 µm. A detailed fractography study for fractured surface of the aged alloys exhibited a mixed fracture whereby the random fracture suggested crack propagation along the grain boundaries while the dimples indicated that the fracture was ductile. The present result has shown that alloy 5 has the highest hardness values and the best mechanical behaviors.

Keywords: precipitation hardening, aluminum alloys, aging, design of experiments, analysis of variance, heat treatments

Procedia PDF Downloads 145
9548 Integration of Sustainable Development into the Bachelor of Electrical and Electronics Engineering Degree Program in UNITEN

Authors: Nagaletchumi Balasubramaniam, A. Mohd Isa

Abstract:

Engineers have a leading role in planning, designing, building and ensuring a sustainable future. Universiti Tenaga Nasional (UNITEN) acknowledges this role by assigning sustainable development as one of the expected traits that a UNITEN student should have upon graduation, formalized as the Programme Outcomes 7 (PO7): Students graduating from the Bachelor of Electrical and Electronics (BEEE) program will have the ability to demonstrate knowledge of the impact of professional engineering solutions in environmental contexts and the need for sustainable development. This paper explores how PO7 is integrated within the BEEE (Hons) program in UNITEN under the framework of Outcome Base Education (OBE). Five technical core courses were specifically assigned by UNITEN to reflect attainment of PO7. Under UNITEN’s definition, the attainment criterion of a PO is set as 70/40. This means that 70% of the students taking the course achieve at least 40% of the full marks. The paper first gives an overview of the overall OBE system as applied in UNITEN, particularly describing the key and supporting courses approach adopted for each PO. Then, the paper reviews the mechanism in which PO7 is taught and assessed in the five assigned courses. Data on PO7 attainment from four of the five courses are collected and analyzed for two student cohorts to investigate the interrelationship between the courses assigned to PO7. It was found that the five courses have different mechanisms for assessing PO7, and that generally PO7 is attained for the assigned courses. This reflects positively on the UNITEN method for integrating sustainable development within the engineering undergraduate programme.

Keywords: direct assessment, engineering education, outcome base education, programme outcome, sustainable development

Procedia PDF Downloads 228
9547 Theoretical and Experimental Investigation of Heat Pipes for Solar Collector Applications

Authors: Alireza Ghadiri, Soheila Memarzadeh, Arash Ghadiri

Abstract:

Heat pipes are efficient heat transfer devices for solar hot water heating systems. However, the effective downward transfer of solar energy in an integrated heat pipe system provides increased design and implementation options. There is a lack of literature about flat plate wicked assisted heat pipe solar collector, especially with the presence of finned water-cooled condenser wicked heat pipes for solar energy applications. In this paper, the consequence of incorporating fins arrays into the condenser region of screen mesh heat pipe solar collector is investigated. An experimental model and a transient theoretical model are conducted to compare the performances of the solar heating system at a different period of the year. A good agreement is shown between the model and the experiment. Two working fluids are investigated (water and methanol) and results reveal that water slightly outperforms methanol with a collector instantaneous efficiency of nearly 60%. That modest improvement is achieved by adding fins to the condenser region of the heat pipes. Results show that the collector efficiency increase as the number of fins increases (upon certain number) and reveal that the mesh number is an important factor which affect the overall collector efficiency. An optimal heat pipe mesh number of 100 meshes/in. With two layers appears to be favorable in such collectors for their design and operating conditions.

Keywords: heat pipe, solar collector, capillary limit, mesh number

Procedia PDF Downloads 426
9546 Fabrication of Fe3O4core-meso SiO2/TiO2 Double Shell for Dye Pollution Remediation

Authors: Mohamed Habila, Ahmed Mohamed El-Toni, Mohamed Sheikh Moshab, Abdulrhman Al-Awadi, Zeid AL Othman

Abstract:

Water pollution with dyes is a critical environmental issue because off the huge amount of dyes disbarred annually, which cause severe damage for the ecosystem and human life. The main raison for this severs pollution is the rapid industrial development which led to more production of harmful pollutants. on the other hand, the core shell based magnetic materials have showed amazing character for controlling the material synthesis with the targeted structure to enhance the adsorptive removal of pollutants. Herein, the Fe3O4core-meso SiO2/TiO2 double shell have been prepared for methylene blue dye adsorption. the preparation procedure is controlled to prepare the magnetic core with further coating layers from silica and titania. The prepared Fe3O4core-meso SiO2/TiO2 double shell showed adsorption capacity for methylene blue removal about 50 mg/g at pH 6 after 80 min contact time form 50 ppm methylene blue solution. The adsorption process of methylene blue onto Fe3O4core-meso SiO2/TiO2 double shell was well fitted with the pseudo-second-order kinetic model and freundlish isotherm, indicating a quick and multilayer adsorption mechanism.

Keywords: magnetic core, silica shell, titania shell, water treatment, methylene blue, solvo-thermal process, adsorption

Procedia PDF Downloads 111
9545 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 234
9544 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles

Authors: Zhao Bo

Abstract:

The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.

Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading

Procedia PDF Downloads 224
9543 The Mechanism of Parabacteroides goldsteinii on Immune Modulation and Anti-Obsogenicity

Authors: Yu-Ling Tsai, Chih-Jung Chang, Chia-Chen Lu, Eric Wu, Chuan-Sheng Lin, Tzu-Lung Lin, Hsin-Chih Lai

Abstract:

It is urgent that novel anti-obesity measures that are safe, effective and widely available are developed for counteracting the rapidly growing obesity epidemics. In the present study, we show that a probiotic bacterium Parabacteroides goldsteinii screened through culture under the high molecular weight polysaccharides prepared from two iconic medicinal fungi, the Ganoderma lucidum and the Hirsutella sinensis, reduced body weight by ca. 20% in high-fat diet (HFD)-fed mice. The bacterium also decreased intestinal permeability, metabolic endotoxemia, inflammation and insulin resistance. Notably, oral administration of live, but not high temperature-killed, P. goldsteinii to HFD fed mice considerably reduces weight gain and obesity-associated metabolic disorders. A three months feeding of the mice with P. goldsteinii did not show any aberrant side effects, indicating the safety of this bacterium. Transcriptome analysis indicated that P. goldsteinii enhances immunity in resting dendritic cells, but reduces inflammation in lipopolysaccharide (LPS)-induced dendritic cells. On top, Naïve T-cells were skewed towards regulatory T-cells after encountering with dendritic cells (DCs) pretreated with P. goldsteinii. These results indicated P. goldsteinii showed anti-inflammatory effects and can work as a potential probiotic ameliorating obesogenicity and related metabolic syndromes.

Keywords: Parabacteroides goldsteinii, gut microbiome, obesity, immune modulation

Procedia PDF Downloads 158
9542 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals

Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge

Abstract:

It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.

Keywords: blockchain, deep learning, NLP, monitoring system

Procedia PDF Downloads 126
9541 Effect of Far Infrared and Endothelial Cell Growth Supplement on Human Umbilical Vascular Endothelial Cells

Authors: Ming-Tzu Tsai, Jui-Ting Hsu, Chia-Chieh Lin, Feng-Tsai Chiang, Cheng-Chin Huang

Abstract:

Far infrared (FIR), an invisible and short electromagnetic waves ranges from 6-14 μm also defines as the “growth ray.” Although the mechanism of FIR is still unknown, most data have suggested that FIR could accelerate the skin microcirculation by elevating the blood flow and nitric-oxide (NO) synthesis. In this present work, the effect of FIR irradiation and endothelial cell growth supplement (ECGS) on human umbilical vascular endothelial cells (HUVECs) was evaluated. To understand whether the cell viability and NO production of HUVECs affected by NO, cells with/without ECGS were treated in the presence or absence of L-NAME, an eNOS inhibitor. For FIR exposure, FIR-emitted ceramic powders consisted of a variety of well-mixed metal oxides were developed. The results showed that L-NAME did had a strong effect on the inhibition of NO production, especially in the ECGS-treated group. However, the cell viability of each group was rarely affected in the presence of L-NAME. Cells with the incubation of ECGS showed much higher cell viability compared to the control. Moreover, NO production of HUVECs exposed to FIR irradiation was significantly inhibited in the presence of L-NAME. It suggested that NO could play a role modulating the downstream signals of HUVECs during FIR exposure.

Keywords: far-infrared irradiation (FIR), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), endothelial cell growth supplement (ECGS)

Procedia PDF Downloads 414
9540 Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide

Authors: D. J. Kalita

Abstract:

Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour.

Keywords: cancer, cationic peptide, host defense peptides, Breast cancer genes

Procedia PDF Downloads 74
9539 Evaluation of Nurse Immunisation Short Course Transitioning to Fully Online

Authors: Joanne Joyce-McCoach

Abstract:

Short courses are an integral part of the higher education sector, providing a pathway into tertiary qualifications. Recently, the Australian government has implemented a range of initiatives to support the development of short courses and micro-credentials designed to upskill the labor market and meet the needs of the healthcare workforce. While short courses have been an ongoing component of Australian nursing continuing professional development, there is an immediate need for more education opportunities as a response to the workforce shortages. However, despite the support for short courses, there are identified challenges for learners undertaking these courses online. As a result of restrictions to face-to-face classes and limited access to health services caused by the pandemic, education providers have had to transition to an online delivery requiring the redesign of skills acquisition. This paper will outline the transition of an immunisation short course to a fully online format, including the redesign of classes, content and assessment. Concurrently the enrolments for the immunisation short course substantially increased in direct response to the demand for nurse immunisers. In addition to providing a description of the curriculum changes implemented, an analysis of learners’ feedback on their experience of the new format will be discussed. Furthermore, it will explore the principles identified in the transition process for improving the short course design and learning activities. Finally, it will propose recommendations to integrate into the delivery of online short courses and to meet the learners' needs.

Keywords: nurse, immunisation, short course, micro-credential, continuing professional development, online design

Procedia PDF Downloads 59
9538 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas

Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang

Abstract:

An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.

Keywords: axial capacity, cyclic loading, pile ageing, shallow gas

Procedia PDF Downloads 327
9537 Physician and Theologian: An Analysis of Ibn Rabban’s Approach on Sīra Nabawiyya

Authors: Ahmad Sanusi Azmi, Amiruddin Mohd Sobali, Zulhilmi Mohamed Nor, Mohd Yusuf Ismail, Amran Abdul Halim

Abstract:

The non-Muslim communities’ reactions to the denials of the prophethood of Muḥammad in the ninth century created an impact on the development of Islamic prophetology. Vigorous refutations from non-Muslim community, specifically the Jews, Christians and Brahmins urged Muslims to develop a solid mechanism in defense of the status of their beloved prophet. One of the works that has been recognized as an apparatus to defend the Prophet Muḥammad veracity is al-Dīn wa al-Dawla composed by Ibn Rabban, a physician of the Caliph’s court. This study analyses the novelty of his approaches in exploring Sīra Nabawiyya and defending the prophethood of Muḥammad. The study employed a descriptive, comparative and critical approach where it analyses and extracts the author original approach in explaining the legitimacy of Muḥammad’s prophethood and enlightening the Prophet’s biography. The study in its finding argues that most of Ibn Rabban arguments in this work are actually developed from the foundations of Biblical scripture. His style of interpreting Biblical passages indicates a possible dependence on Ibn al-Layth’s letter. However, the way in which he presents Qur’ānic references seems not to be in accordance with Ibn al-Layth’s perspective. This is where the novelty of his approach is distinguished. As a result, the study also affirms that Ibn Rabban imposes his own standards of selection and interpretation of Qur’ānic verses when he applies it as reference to the Prophet life.

Keywords: Sīra Nabawiyya, Ibn Rabban, al-Dīn wa al-Dawla, Christian, Dalāil Nubuwwa

Procedia PDF Downloads 319
9536 Earthquake Hazards in Manipur: Casual Factors and Remedial Measures

Authors: Kangujam Monika, Kiranbala Devi Thokchom, Soibam Sandhyarani Devi

Abstract:

Earthquake is a major natural hazard in India. Manipur, located in the North-Eastern Region of India, is one of the most affected location in the region prone to earthquakes since it lies in an area where Indian and Eurasian tectonic plates meet and is in seismic Zone V which is the most severe intensity zone, according to IS Code. Some recent earthquakes recorded in Manipur are M 6.7 epicenter at Tamenglong (January 4, 2016), M 5.2 epicenter at Churachandpur (February 24, 2017) and most recent M 4.4 epicenter at Thoubal (June 19, 2017). In these recent earthquakes, some houses and buildings were damaged, landslides were also occurred. A field study was carried out. An overview of the various causal factors involved in triggering of earthquake in Manipur has been discussed. It is found that improper planning, poor design, negligence, structural irregularities, poor quality materials, construction of foundation without proper site soil investigation and non-implementation of remedial measures, etc., are possibly the main causal factors for damage in Manipur during earthquake. The study also suggests, though the proper design of structure and foundation along with soil investigation, ground improvement methods, use of modern techniques of construction, counseling with engineer, mass awareness, etc., might be effective solution to control the hazard in many locations. An overview on the analysis pertaining to earthquake in Manipur together with on-going detailed site specific geotechnical investigation were presented.

Keywords: Manipur, earthquake, hazard, structure, soil

Procedia PDF Downloads 198
9535 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow

Procedia PDF Downloads 328
9534 Mineral Chemistry of Barium and Titanium-Bearing Biotite in Alkaline Trachyte from Upper Benue Valley (Northern Cameroon)

Authors: Fadimatou Ngounouno Yamgouota, Isaac Bertrand Gbambié Mbowoub, Ismaila Ngounounob

Abstract:

Barium and titanium bearing biotite from alkaline trachyte of Upper Benue valley, Northern Cameroon is studied. The iron enrichment index of mica (average I.E.=0.40) is intermediate between annite and phlogopite. The biotite phenocrysts contain up to 6.2 wt. % BaO and 9.8 wt. % TiO2. The BaO content of electron-microprobe mica is positively correlated with the Al2O3, TiO2, and FeO contents, and negatively correlated with the SiO2, K2O, and MgO contents. Ba and Ti rich micas are generally found in in SiO2 deficient rocks, whereas Ba and Ti bearing mica in this study occur in silica-saturated rocks. Most of the phenocrysts analysed have deficiencies in their octahedral and interlayer sites. Deficiencies in the octahedral sites may arise from the Ti vacancy and partly the Ti tschermakite substitution. On the other hand, deficiencies in the interlayer-site are due to the replacement of K by Ba. The substitution mechanism in the Upper Benue valley mica is characterized by Ba + 2Ti + 3Al =(K + Na + Ca) + 3(Mg + Fe + Mn) + 3Si, with an excellent correlation coefficient. Biotite compositions from the Upper Benue valley area fall between the quartz-fayalite-magnetite (QFM) and nickel-nickel-oxide (NNO) oxygen fugacity buffers. All these show that Upper Benue valley mica with high Ba and Ti contents may be formed from magmas rich in these elements.

Keywords: Benue valley, trachyte, biotite, mineral chemistry, enrichment

Procedia PDF Downloads 289
9533 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory

Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol

Abstract:

This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.

Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory

Procedia PDF Downloads 284
9532 Haptic Robotic Glove for Tele-Exploration of Explosive Devices

Authors: Gizem Derya Demir, Ilayda Yankilic, Daglar Karamuftuoglu, Dante Dorantes

Abstract:

ABSTRACT HAPTIC ROBOTIC GLOVE FOR TELE-EXPLORATION OF EXPLOSIVE DEVICES Gizem Derya Demir, İlayda Yankılıç, Dağlar Karamüftüoğlu, Dante J. Dorantes-González Department of Mechanical Engineering, MEF University Ayazağa Cad. No.4, 34396 Maslak, Sarıyer, İstanbul, Turkey Nowadays, terror attacks are, unfortunately, a more common threat around the world. Therefore, safety measures have become much more essential. An alternative to providing safety and saving human lives is done by robots, such as disassembling and liquidation of bombs. In this article, remote exploration and manipulation of potential explosive devices from a safe-distance are addressed by designing a novel, simple and ergonomic haptic robotic glove. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the haptic robotic glove and finger design. Angle controls of servo motors were made using ARDUINO® IDE codes on a Makeblock® MegaPi control card. Simple grasping dexterity solutions for the fingers were obtained using one linear soft and one angle sensors for each finger, and six servo motors are used in total to remotely control a slave multi-tooled robotic hand. This project is still undergoing and presents current results. Future research steps are also presented.

Keywords: Dexterity, Exoskeleton, Haptics , Position Control, Robotic Hand , Teleoperation

Procedia PDF Downloads 158
9531 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 132
9530 Model Based Improvement of Ultrasound Assisted Transport of Cohesive Dry Powders

Authors: Paul Dunst, Ing. Tobias Hemsel, Ing. Habil. Walter Sextro

Abstract:

The use of fine powders with high cohesive and adhesive properties leads to challenges during transport, mixing and dosing in industrial processes, which have not been satisfactorily solved so far. Due to the increased contact forces at the transporting parts (e. g. pipe-wall and transport screws), conventional transport systems and also vibratory conveyors reach their limits. Often, flowability increasing additives that need to be removed again in later process steps are the only option to achieve wanted transport results. A rather new ultrasound-assisted powder transport system showed to overcome some of the issues by manipulating the effective friction between powder and transport pipe. Within this contribution, the transport mechanism will be introduced shortly, together with preliminary transport results. As the tangential force of the transport pipe and the powder is the main influencing factor within the transport process, a test stand for measuring tangential forces of a powder-wall contact in the presence of an ultrasonic vibration orthogonal to the contact plane was built. Measurements for a sample powder show that the effective tangential force can already be significantly reduced at very low ultrasonic amplitude. As a result of the measurements, an empirical model for the relationship of tangential force, contact parameters and ultrasonic excitation is presented. This model was used to adjust the driving parameters of the powder transport system, resulting in better performance.

Keywords: powder transport, ultrasound, friction, friction manipulation, vibratory conveyor

Procedia PDF Downloads 140
9529 Using Demonstration Method of Teaching Sewing to Improve the Skills of Form 3 Fashion Designing Students: A Case of Baworo Integrated Community Center for Employable Skills (Bicces)

Authors: Aboagye Boye Gilbert

Abstract:

Teaching and learning (Education), not only in Ghana but the whole world is regarded as the (Stepping stone) vehicle to accelerate the country’s economy, development and social growth. Basically the ingredients for human development and the country in general is Vocational and Technical education and this has been stressed in Ghana’s education system since Pre-independence. To this effect, this research seeks to determine using demonstration method of Teachings sewing to improve the skills of form 3 Fashion Designing students of Baworo Integrated Community Centre for Employable Skills. In this research, reviewed literature on opinions of other researchers and what other people have done and said on related articles or topics, analyzed the research design used, translate the data gathered in the study. The study was design to gather information from the school on how they use Teaching methods to teach sewing. The targeted respondent contacted to give assistance Consist of students from BICCES, fashion teachers and tailored garment makers. The sample size consisted of 5 teachers, 20 students and 5 tailors were selected to answer questionnaire items that were used to gather the data for the study. The study revealed that most teachers and students agreed to the fact that demonstration, teaching and learning materials had a positive attitude towards the students in learning sewing. The study recommends that there should be more mechanisms in place to serve as a guide.

Keywords: VOTEC, BECE, BICCES, SHS

Procedia PDF Downloads 56
9528 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial

Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew

Abstract:

Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.

Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration

Procedia PDF Downloads 259
9527 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance

Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu

Abstract:

The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.

Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity

Procedia PDF Downloads 55
9526 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 118