Search results for: two phase flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8664

Search results for: two phase flow

3414 Physico-Chemical and Heavy Metals Analysis of Contaminated Ndawuse River in North Central of Nigeria

Authors: Abimbola Motunrayo Enitan, Ibironke Titilayo Enitan, John Odiyo

Abstract:

The study assessed quality of surface water across Ndawuse River Phase 1, District of the Federal Capital Territory (FCT), Abuja, Nigeria based on physico-chemical variables that are linked to agrochemical and eutrophication, as well as heavy metals concentrations. In total, sixteen surface water samples were obtained from five locations along the river. The results were compared with the standard limits set by both World Health Organization and Federal Environmental Protection Agency for drinking water. The results obtained indicated that BOD5, turbidity, 0.014-3.511 mg Fe/L and 0.078-0.14 mg Cr/L were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on these receiving water bodies primarily as their source of water. Therefore, there is a need for strict enforcement of environmental laws considering the physico-chemical analysis.

Keywords: Abuja, heavy metals, human exposure risk, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 270
3413 The Environmental Benefits of the Adoption of Emission Control for Locomotives in Brazil

Authors: Rui de Abrantes, André Luiz Silva Forcetto

Abstract:

Air pollution is a big problem in many cities around the world. Brazilian big cities also have this problem, where millions of people are exposed daily to pollutants levels above the recommended by WHO. Brazil has taken several actions to reduce air pollution, among others, controlling the atmospheric emissions from vehicles, non-road mobile machinery, and motorcycles, but on the other side, there are no emissions controls for locomotives, which are exposing the population to tons of pollutants annually. The rail network is not homogeneously distributed in the national territory; it is denser near the big cities, and this way, the population is more exposed to pollutants; apart from that, the government intends to increase the rail network as one of the strategies for greenhouse gas mitigation, complying with the international agreements against the climate changes. This paper initially presents the estimated emissions from locomotive fleets with no emission control and with emission control equivalent to US Tier 3 from 2028 and for the next 20 years. However, we realized that a program equivalent to phase Tier 3 would not be effective, so we proposed a program in two steps that will avoid the release of more than 2.4 million tons of CO and 531,000 tons of hydrocarbons, 3.7 million tons of nitrogen oxides, and 102,000 tons of particulate matter in 20 years.

Keywords: locomotives, emission control, air pollution, pollutants emission

Procedia PDF Downloads 51
3412 Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient

Authors: Jeong-Min Lee, Hyunwoo Song, Yonseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200°C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat.

Keywords: gas turbine blade, Thermal Barrier Coating (TBC), thermal gradient, Finite Element Analysis (FEA)

Procedia PDF Downloads 611
3411 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium

Authors: Binbin Chen, Dennis Y. C. Leung

Abstract:

Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.

Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge

Procedia PDF Downloads 284
3410 Adsorptive Desulfurization of Using Cu(I) – Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng, Itumeleng Kohitlhetse

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demand researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for the removal of organosulfur compounds (OSC) present in tire pyrolytic oil (TPO). The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion exchange between Na-Y zeolite with a Cu(NO₃)₂ aqueous solution of 0.5M for 48 hours followed by reduction of Cu²⁺ to Cu+. Fixed-bed breakthrough studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene, benzothiophenes (BT), and dibenzothiophenes (DBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of operating conditions such as adsorbent dosage and reaction time were studied to optimize the adsorptive desulfurization process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order DBT> BT> Thiophene. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 117
3409 Particle Size Characteristics of Aerosol Jets Produced by a Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 50
3408 Morpho-Dynamic Modelling of the Western 14 Km of the Togolese Coast

Authors: Sawsan Eissa, Omnia Kabbany

Abstract:

The coastline of Togo has been historically suffering from erosion for decades, which requires a solution to help control and reduce the erosion to allow for the development of the coastal area. A morpho-dynamic model using X-beach software was developed for the Western 14 Km of the Togolese coast. The model was coupled with the hydrodynamic module of DELFT 3D, flow, and the Wave module, SWAN. The data used as input included a recent bathymetric survey, a recent shoreline topographic survey, aerial photographs, ERA 5 water level and wave data, and recent test results of seabed samples. A number of scenarios were modeled: do nothing scenario, groynes, detached breakwaters system with different crest levels and alignments. The findings showed that groynes is not expected to be effective for protection against erosion, and that the best option is a system of detached breakwater, partially emerged-partially submerged couples with periodical maintenance.

Keywords: hydrodynamics, morphology, Togo, Delft3D, SWAN, XBeach, coastal erosion, detached breakwaters

Procedia PDF Downloads 72
3407 Synthesis of Green Fuel Additive from Waste Bio-Glycerol

Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai

Abstract:

Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-acetone, bio-glycerol, acetylation, solketal

Procedia PDF Downloads 265
3406 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal

Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis

Abstract:

Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.

Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma

Procedia PDF Downloads 139
3405 Characterization and Degradation Analysis of Tapioca Starch Based Biofilms

Authors: R. R. Ali, W. A. W. A. Rahman, R. M. Kasmani, H. Hasbullah, N. Ibrahim, A. N. Sadikin, U. A. Asli

Abstract:

In this study, tapioca starch which acts as natural polymer was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.

Keywords: biopolymers, degradable polymers, starch based polyethylene, injection moulding

Procedia PDF Downloads 289
3404 Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes

Authors: Suchi Barua, Narottam Das, Sven Nordholm, Mohammad Razaghi

Abstract:

This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA.

Keywords: finite-difference beam propagation method, pulse shape, pulse propagation, semiconductor optical amplifier

Procedia PDF Downloads 610
3403 Microstructure Characterization on Silicon Carbide Formation from Natural Wood

Authors: Noor Leha Abdul Rahman, Koay Mei Hyie, Anizah Kalam, Husna Elias, Teng Wang Dung

Abstract:

Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur.

Keywords: density, SEM, silicon carbide, XRD

Procedia PDF Downloads 425
3402 The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand

Authors: Suttipong Phosuksirikul, Rawichar Chaipojjana, Arunsri Leejeerajumnean

Abstract:

The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand.

Keywords: fermented milk, volatile compounds, preference, PCA

Procedia PDF Downloads 367
3401 The Roots of Amazonia’s Droughts and Floods: Complex Interactions of Pacific and Atlantic Sea-Surface Temperatures

Authors: Rosimeire Araújo Silva, Philip Martin Fearnside

Abstract:

Extreme droughts and floods in the Amazon have serious consequences for natural ecosystems and the human population in the region. The frequency of these events has increased in recent years, and projections of climate change predict greater frequency and intensity of these events. Understanding the links between these extreme events and different patterns of sea surface temperature in the Atlantic and Pacific Oceans is essential, both to improve the modeling of climate change and its consequences and to support efforts of adaptation in the region. The relationship between sea temperatures and events in the Amazon is much more complex than is usually assumed in climatic models. Warming and cooling of different parts of the oceans, as well as the interaction between simultaneous temperature changes in different parts of each ocean and between the two oceans, have specific consequences for the Amazon, with effects on precipitation that vary in different parts of the region. Simplistic generalities, such as the association between El Niño events and droughts in the Amazon, do not capture this complexity. We investigated the variability of Sea Surface Temperature (SST) in the Tropical Pacific Ocean during the period 1950-2022, using Empirical Orthogonal Functions (FOE), spectral analysis coherence and wavelet phase. The two were identified as the main modes of variability, which explain about 53,9% and 13,3%, respectively, of the total variance of the data. The spectral and coherence analysis and wavelets phase showed that the first selected mode represents the warming in the central part of the Pacific Ocean (the “Central El Niño”), while the second mode represents warming in the eastern part of the Pacific (the “Eastern El Niño The effects of the 1982-1983 and 1976-1977 El Niño events in the Amazon, although both events were characterized by an increase in sea surface temperatures in the Equatorial Pacific, the impact on rainfall in the Amazon was distinct. In the rainy season, from December to March, the sub-basins of the Japurá, Jutaí, Jatapu, Tapajós, Trombetas and Xingu rivers were the regions that showed the greatest reductions in rainfall associated with El Niño Central (1982-1983), while the sub-basins of the Javari, Purus, Negro and Madeira rivers had the most pronounced reductions in the year of Eastern El Niño (1976-1977). In the transition to the dry season, in April, the greatest reductions were associated with the Eastern El Niño year for the majority of the study region, with the exception only of the sub-basins of the Madeira, Trombetas and Xingu rivers, which had their associated reductions to Central El Niño. In the dry season from July to September, the sub-basins of the Japurá Jutaí Jatapu Javari Trombetas and Madeira rivers were the rivers that showed the greatest reductions in rainfall associated with El Niño Central, while the sub-basins of the Tapajós Purus Negro and Xingu rivers had the most pronounced reductions. In the Eastern El Niño year this season. In this way, it is possible to conclude that the Central (Eastern) El Niño controlled the reductions in soil moisture in the dry (rainy) season for all sub-basins shown in this study. Extreme drought events associated with these meteorological phenomena can lead to a significant increase in the occurrence of forest fires. These fires have a devastating impact on Amazonian vegetation, resulting in the irreparable loss of biodiversity and the release of large amounts of carbon stored in the forest, contributing to the increase in the greenhouse effect and global climate change.

Keywords: sea surface temperature, variability, climate, Amazon

Procedia PDF Downloads 67
3400 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-glycerol, catalyst, green additive, biomass

Procedia PDF Downloads 243
3399 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure

Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard

Abstract:

In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.

Keywords: cavity, natural convection, Nusselt number, wavy wall

Procedia PDF Downloads 473
3398 Fluid Inclusions Analysis of Fluorite from the Hammam Jedidi District, North-Eastern Tunisia

Authors: Miladi Yasmine, Bouhlel Salah, Garnit Hechmi

Abstract:

Hydrothermal vein-type deposits of the Hammam Jedidi F-Ba(Pb-Zn-Cu) are hosted in Lower Jurassic, Cretaceous and Tertiary series, and located near a very important structural lineament (NE-SW) corresponding to the Hammam Jedidi Fault in the Tunisian Dorsale. The circulation of the ore forming fluid is triggered by a regional tectonic compressive phase which occurred during the miocène time. Mineralization occurs as stratabound and vein-type orebodies adjacent to the Triassic salt diapirs and within fault in Jurassic limestone. Fluid inclusions data show that two distinct fluids were involved in the mineralisation deposition: a warmer saline fluid (180°C, 20 wt % NaCl equivalent) and cooler less saline fluid (126°C, 5wt%NaCl equivalent). The contrasting salinities and halogen ratios suggest that this two fluid derived from one of the brine originated after the dissolution of halite as suggested by its high salinity. The other end member, as indicated by the low Cl/Br ratios, acquired its low salinity by dilution of Br enriched evaporated seawater. These results are compatible with Mississippi-Valley- type mineralization.

Keywords: Jebel Oust, fluid inclusions, North Eastern Tunisia, mineralization

Procedia PDF Downloads 347
3397 Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints

Authors: Bintao Wu, Xiangfang Xu, Yugang Miao,Duanfeng Han

Abstract:

Joining of 1 mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti、TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking.

Keywords: bypass-current MIG welding-brazed, Al alloy, Ti alloy, joint characteristics, mechanical properties

Procedia PDF Downloads 264
3396 The Importance of Affinity Groups for Organizations and Employees

Authors: Helio Arthur Reis Irigaray, Fabricio Stocker

Abstract:

This study aims to discover the extent to which affinity groups effectively act to combat inequalities, promote diversity, and contribute to the inclusion of non-hegemonic groups in the work environment. To this end, we have built empirical research, in which we interviewed 36 leaders and members of the collectives of non-hegemonic groups, namely women, blacks, and LGBTQ. With the proper authorization of the participants, their interviews were transcribed and submitted for critical analysis of the discourse. The field revealed that collectives are the result of the articulation of non-hegemonic groups, which create and participate in legitimate and institutional spaces to promote diversity. We also identified that diversity actions have happened as a market trend and reproduced mimetically. As the largest companies implement these actions, they become benchmarking and thus create a flow that is reproduced by other companies. However, there is no effective change in the structures that could promote inclusion and belonging. We state that a diverse group of employees are not enough to claim that the organization is diverse and inclusive. There remains much more to discuss and delve into deeply, including gender, diversity, and intersectionality.

Keywords: diversity, inclusion, collectives, affinity groups, employee resource groups

Procedia PDF Downloads 92
3395 Architectural Strategies for Designing Durable Steel Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle.

Keywords: durability, bending stress, erosion in steel structure, life cycle

Procedia PDF Downloads 565
3394 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: absorption chiller, control system, solar cooling, solar energy

Procedia PDF Downloads 276
3393 Analytical Solution of Specific Energy Equation in Exponential Channels

Authors: Abdulrahman Abdulrahman

Abstract:

The specific energy equation has many applications in practical channels, such as exponential channels. In this paper, the governing equation of alternate depth ratio for exponential channels, in general, was investigated towards obtaining analytical solution for the alternate depth ratio in three exponential channel shapes, viz., rectangular, triangular, and parabolic channels. The alternate depth ratio for rectangular channels is quadratic; hence it is very simple to solve. While for parabolic and triangular channels, the alternate depth ratio is cubic and quartic equations, respectively, analytical solution for these equations may be achieved easily for a given Froud number. Different examples are solved to prove the efficiency of the proposed solution. Such analytical solution can be easily used in natural rivers and most of practical channels.

Keywords: alternate depth, analytical solution, specific energy, parabolic channel, rectangular channel, triangular channel, open channel flow

Procedia PDF Downloads 200
3392 Development of Low Noise Savonius Wind Turbines

Authors: Sanghyeon Kim, Cheolung Cheong

Abstract:

Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.

Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine

Procedia PDF Downloads 463
3391 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis

Authors: Iannick Gagnon, Alain April

Abstract:

The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.

Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis

Procedia PDF Downloads 156
3390 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: cache system, formal verification, novel model, system on chip (SoC)

Procedia PDF Downloads 501
3389 Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films

Authors: Eden G. Mariquit, Winarto Kurniawan, Masahiro Miyauchi, Hirofumi Hinode

Abstract:

This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light.

Keywords: photocatalysis, surface hydrophilicity, TiO2 thin films, surfactant

Procedia PDF Downloads 422
3388 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process

Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim

Abstract:

Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.

Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia

Procedia PDF Downloads 478
3387 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media

Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah

Abstract:

A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.

Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk

Procedia PDF Downloads 333
3386 Robot-Assisted Learning for Communication-Care in Autism Intervention

Authors: Syamimi Shamsuddin, Hanafiah Yussof, Fazah Akhtar Hanapiah, Salina Mohamed, Nur Farah Farhan Jamil, Farhana Wan Yunus

Abstract:

Robot-based intervention for children with autism is an evolving research niche in human-robot interaction (HRI). Recent studies in this area mostly covered the role of robots in the clinical and experimental setting. Our previous work had shown that interaction with a robot pose no adverse effects on the children. Also, the presence of the robot, together with specific modules of interaction was associated with less autistic behavior. Extending this impact on school-going children, interactions that are in-tune with special education lessons are needed. This methodological paper focuses on how a robot can be incorporated in a current learning environment for autistic children. Six interaction scenarios had been designed based on the existing syllabus to teach communication skills, using the Applied Behavior Analysis (ABA) technique as the framework. Development of the robotic experience in class also covers the required set-up involving participation from teachers. The actual research conduct involving autistic children, teachers and robot shall take place in the next phase.

Keywords: autism spectrum disorder, ASD, humanoid robot, communication skills, robot-assisted learning

Procedia PDF Downloads 369
3385 Optimizing Road Transportation Network Considering the Durability Factors

Authors: Yapegue Bayogo, Ahmadou Halassi Dicko, Brahima Songore

Abstract:

In developing countries, the road transportation system occupies an important place because of its flexibility and the low prices of infrastructure and rolling stock. While road transport is necessary for economic development, the movement of people and their goods, it is urgent to use transportation systems that minimize carbon emissions in order to ensure sustainable development. One of the main objectives of OEDC and the Word Bank is to ensure sustainable economic’ development. This paper aims to develop a road transport network taking into account environmental impacts. The methodology adopted consists of formulating a model optimizing the flow of goods and then collecting information relating to the transport of products. Our model was tested with data on product transport in CMDT areas in the Republic of Mali. The results of our study indicate that emissions from the transport sector can be significantly reduced by minimizing the traffic volume. According to our study, optimizing the transportation network, we benefit from a significant amount of tons of CO₂.

Keywords: road transport, transport sustainability, pollution, flexibility, optimized network

Procedia PDF Downloads 153