Search results for: edge detection algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7211

Search results for: edge detection algorithm

1961 Radio-Guided Surgery with β− Radiation: Test on Ex-Vivo Specimens

Authors: E. Solfaroli Camillocci, C. Mancini-Terracciano, V. Bocci, A. Carollo, M. Colandrea, F. Collamati, M. Cremonesi, M. E. Ferrari, P. Ferroli, F. Ghielmetti, C. M. Grana, M. Marafini, S. Morganti, M. Patane, G. Pedroli, B. Pollo, L. Recchia, A. Russomando, M. Schiariti, M. Toppi, G. Traini, R. Faccini

Abstract:

A Radio-Guided Surgery technique exploiting β− emitting radio-tracers has been suggested to overcome the impact of the large penetration of γ radiation. The detection of electrons in low radiation background provides a clearer delineation of the margins of lesioned tissues. As a start, the clinical cases were selected between the tumors known to express receptors to a β− emitting radio-tracer: 90Y-labelled DOTATOC. The results of tests on ex-vivo specimens of meningioma brain tumor and abdominal neuroendocrine tumors are presented. Voluntary patients were enrolled according to the standard uptake value (SUV > 2 g/ml) and the expected tumor-to-non-tumor ratios (TNR∼10) estimated from PET images after administration of 68Ga-DOTATOC. All these tests validated this technique yielding a significant signal on the bulk tumor and a negligible background from the nearby healthy tissue. Even injecting as low as 1.4 MBq/kg of radiotracer, tumor remnants of 0.1 ml would be detectable. The negligible medical staff exposure was confirmed and among the biological wastes only urine had a significant activity.

Keywords: ex-vivo test, meningioma, neuroendocrine tumor, radio-guided surgery

Procedia PDF Downloads 295
1960 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
1959 Analytical Derivative: Importance on Environment and Water Analysis/Cycle

Authors: Adesoji Sodeinde

Abstract:

Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].

Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis

Procedia PDF Downloads 338
1958 Clustering Performance Analysis using New Correlation-Based Cluster Validity Indices

Authors: Nathakhun Wiroonsri

Abstract:

There are various cluster validity measures used for evaluating clustering results. One of the main objectives of using these measures is to seek the optimal unknown number of clusters. Some measures work well for clusters with different densities, sizes and shapes. Yet, one of the weaknesses that those validity measures share is that they sometimes provide only one clear optimal number of clusters. That number is actually unknown and there might be more than one potential sub-optimal option that a user may wish to choose based on different applications. We develop two new cluster validity indices based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points are located in. Our proposed indices constantly yield several peaks at different numbers of clusters which overcome the weakness previously stated. Furthermore, the introduced correlation can also be used for evaluating the quality of a selected clustering result. Several experiments in different scenarios, including the well-known iris data set and a real-world marketing application, have been conducted to compare the proposed validity indices with several well-known ones.

Keywords: clustering algorithm, cluster validity measure, correlation, data partitions, iris data set, marketing, pattern recognition

Procedia PDF Downloads 103
1957 Despiking of Turbulent Flow Data in Gravel Bed Stream

Authors: Ratul Das

Abstract:

The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.

Keywords: acoustic doppler velocimeter, gravel-bed, spike removal, reynolds shear stress, near-bed turbulence, velocity power spectra

Procedia PDF Downloads 299
1956 Voice and Head Controlled Intelligent Wheelchair

Authors: Dechrit Maneetham

Abstract:

The aim of this paper was to design a void and head controlled electric power wheelchair (EPW). A novel activate the control system for quadriplegics with voice, head and neck mobility. Head movement has been used as a control interface for people with motor impairments in a range of applications. Acquiring measurements from the module is simplified through a synchronous a motor. Axis measures the two directions namely x and y. At the same time, patients can control the motorized wheelchair using voice signals (forward, backward, turn left, turn right, and stop) given by it self. The model of a dc motor is considered as a speed control by selection of a PID parameters using genetic algorithm. An experimental set-up constructed, which consists of micro controller as controller, a DC motor driven EPW and feedback elements. This paper is tuning methods of parameter for a pulse width modulation (PWM) control system. A speed controller has been designed successfully for closed loop of the dc motor so that the motor runs very closed to the reference speed and angle. Intelligent wheelchair can be used to ensure the person’s voice and head are attending the direction of travel asserted by a conventional, direction and speed control.

Keywords: wheelchair, quadriplegia, rehabilitation , medical devices, speed control

Procedia PDF Downloads 540
1955 Non-Local Simultaneous Sparse Unmixing for Hyperspectral Data

Authors: Fanqiang Kong, Chending Bian

Abstract:

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed pixels of a hyperspectral image can be expressed in the form of linear combination of only a few pure spectral signatures (end members) in an available spectral library. However, the sparse unmixing problem still remains a great challenge at finding the optimal subset of endmembers for the observed data from a large standard spectral library, without considering the spatial information. Under such circumstances, a sparse unmixing algorithm termed as non-local simultaneous sparse unmixing (NLSSU) is presented. In NLSSU, the non-local simultaneous sparse representation method for endmember selection of sparse unmixing, is used to finding the optimal subset of endmembers for the similar image patch set in the hyperspectral image. And then, the non-local means method, as a regularizer for abundance estimation of sparse unmixing, is used to exploit the abundance image non-local self-similarity. Experimental results on both simulated and real data demonstrate that NLSSU outperforms the other algorithms, with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, simultaneous sparse representation, sparse regression, non-local means

Procedia PDF Downloads 246
1954 Optimization of Multiplier Extraction Digital Filter On FPGA

Authors: Shiksha Jain, Ramesh Mishra

Abstract:

One of the most widely used complex signals processing operation is filtering. The most important FIR digital filter are widely used in DSP for filtering to alter the spectrum according to some given specifications. Power consumption and Area complexity in the algorithm of Finite Impulse Response (FIR) filter is mainly caused by multipliers. So we present a multiplier less technique (DA technique). In this technique, precomputed value of inner product is stored in LUT. Which are further added and shifted with number of iterations equal to the precision of input sample. But the exponential growth of LUT with the order of FIR filter, in this basic structure, makes it prohibitive for many applications. The significant area and power reduction over traditional Distributed Arithmetic (DA) structure is presented in this paper, by the use of slicing of LUT to the desired length. An architecture of 16 tap FIR filter is presented, with different length of slice of LUT. The result of FIR Filter implementation on Xilinx ISE synthesis tool (XST) vertex-4 FPGA Tool by using proposed method shows the increase of the maximum frequency, the decrease of the resources as usage saving in area with more number of slices and the reduction dynamic power.

Keywords: multiplier less technique, linear phase symmetric FIR filter, FPGA tool, look up table

Procedia PDF Downloads 390
1953 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach

Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha

Abstract:

Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.

Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy

Procedia PDF Downloads 110
1952 Application of Additive Manufacturing for Production of Optimum Topologies

Authors: Mahdi Mottahedi, Peter Zahn, Armin Lechler, Alexander Verl

Abstract:

Optimal topology of components leads to the maximum stiffness with the minimum material use. For the generation of these topologies, normally algorithms are employed, which tackle manufacturing limitations, at the cost of the optimal result. The global optimum result with penalty factor one, however, cannot be fabricated with conventional methods. In this article, an additive manufacturing method is introduced, in order to enable the production of global topology optimization results. For a benchmark, topology optimization with higher and lower penalty factors are performed. Different algorithms are employed in order to interpret the results of topology optimization with lower factors in many microstructure layers. These layers are then joined to form the final geometry. The algorithms’ benefits are then compared experimentally and numerically for the best interpretation. The findings demonstrate that by implementation of the selected algorithm, the stiffness of the components produced with this method is higher than what could have been produced by conventional techniques.

Keywords: topology optimization, additive manufacturing, 3D-printer, laminated object manufacturing

Procedia PDF Downloads 339
1951 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics

Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy

Abstract:

Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.

Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance

Procedia PDF Downloads 151
1950 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman

Abstract:

A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 355
1949 Advances in Fiber Optic Technology for High-Speed Data Transmission

Authors: Salim Yusif

Abstract:

Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.

Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors

Procedia PDF Downloads 61
1948 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications

Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes

Abstract:

Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.

Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM

Procedia PDF Downloads 72
1947 Printed Electronics for Enhanced Monitoring of Organ-on-Chip Culture Media Parameters

Authors: Alejandra Ben-Aissa, Martina Moreno, Luciano Sappia, Paul Lacharmoise, Ana Moya

Abstract:

Organ-on-Chip (OoC) stands out as a highly promising approach for drug testing, presenting a cost-effective and ethically superior alternative to conventional in vivo experiments. These cutting-edge devices emerge from the integration of tissue engineering and microfluidic technology, faithfully replicating the physiological conditions of targeted organs. Consequently, they offer a more precise understanding of drug responses without the ethical concerns associated with animal testing. When addressing the limitations of OoC due to conventional and time-consuming techniques, Lab-On-Chip (LoC) emerge as a disruptive technology capable of providing real-time monitoring without compromising sample integrity. This work develops LoC platforms that can be integrated within OoC platforms to monitor essential culture media parameters, including glucose, oxygen, and pH, facilitating the straightforward exchange of sensing units within a dynamic and controlled environment without disrupting cultures. This approach preserves the experimental setup, minimizes the impact on cells, and enables efficient, prolonged measurement. The LoC system is fabricated following the patented methodology protected by EU patent EP4317957A1. One of the key challenges of integrating sensors in a biocompatible, feasible, robust, and scalable manner is addressed through fully printed sensors, ensuring a customized, cost-effective, and scalable solution. With this technique, sensor reliability is enhanced, providing high sensitivity and selectivity for accurate parameter monitoring. In the present study, LoC is validated measuring a complete culture media. The oxygen sensor provided a measurement range from 0 mgO2/L to 6.3 mgO2/L. The pH sensor demonstrated a measurement range spanning 2 pH units to 9.5 pH units. Additionally, the glucose sensor achieved a measurement range from 0 mM to 11 mM. All the measures were performed with the sensors integrated in the LoC. In conclusion, this study showcases the impactful synergy of OoC technology with LoC systems using fully printed sensors, marking a significant step forward in ethical and effective biomedical research, particularly in drug development. This innovation not only meets current demands but also lays the groundwork for future advancements in precision and customization within scientific exploration.

Keywords: organ on chip, lab on chip, real time monitoring, biosensors

Procedia PDF Downloads 20
1946 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 120
1945 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography

Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw

Abstract:

Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.

Keywords: cardiotocography, foetus, intrapartum, hypoxia

Procedia PDF Downloads 216
1944 Color Conversion Films with CuInS2/ZnS Quantum Dots Embedded Polystyrene Nanofibers by Electrospinning Process

Authors: Wonkyung Na, Namhun Kim, Heeyeop Chae

Abstract:

Quantum dots (QDs) are getting attentions due to their excellent optical properties in display, solar cell, biomolecule detection and lighting applications. Energy band gap can be easilty controlled by controlling their size and QDs are proper to apply in light-emitting-diode(LED) and lighting application, especially. Typically cadmium (Cd) containing QDs show a narrow photoluminescence (PL) spectrum and high quantum yield. However, Cd is classified as a hazardous materials and the use of Cd is being tightly regulated under 100ppm level in many countries.InP and CuInS2 (CIS) are being investigated as Cd-free QD materials and it is recently demonstrated that the performance of those Cd-free QDs is comparable to their Cd-based rivals.Due to a broad emission spectrum, CuInS2 QDs are also proper to be applied to white LED.4 For the lighting applications, the QD should be made in forms of color conversion films. Various film processes are reported with QDs in polymer matrixes. In this work, we synthesized the CuInS2 (CIS) QDs and QD embedded polystyrene color conversion films were fabricated for white color emission with electro-spinning process. As a result, blue light from blue LED is converted to white light with high color rendering index (CRI) of 72 by the color conversion films.

Keywords: CuInS2/ZnS, electro-spinning, color conversion films, white light emitting diodes

Procedia PDF Downloads 813
1943 Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System

Authors: L. Abdou, O. Taibaoui, A. Moumen, A. Talib Ahmed

Abstract:

This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.

Keywords: distributed system, OS-CFAR system, independent sensors, simulating annealing

Procedia PDF Downloads 497
1942 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
1941 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
1940 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence

Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm

Abstract:

Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.

Keywords: thyroid, hail, papillary, microcarcinoma

Procedia PDF Downloads 308
1939 Cai Guo-Qiang: A Chinese Artist at the Cutting-Edge of Global Art

Authors: Marta Blavia

Abstract:

Magiciens de la terre, organized in 1989 by the Centre Pompidou, became 'the first worldwide exhibition of contemporary art' by presenting artists from Western and non-Western countries, including three Chinese artists. For the first time, West turned its eyes to other countries not as exotic sources of inspiration, but as places where contemporary art was also being created. One year later, Chine: demain pour hier was inaugurated as the first Chinese avant-garde group-exhibition in Occident. Among the artists included was Cai Guo-Qiang who, like many other Chinese artists, had left his home country in the eighties in pursuit of greater creative freedom. By exploring artistic non-Western perspectives, both landmark exhibitions questioned the predominance of the Eurocentric vision in the construction of history art. But more than anything else, these exhibitions laid the groundwork for the rise of the so-called phenomenon 'global contemporary art'. All the same time, 1989 also was a turning point in Chinese art history. Because of the Tiananmen student protests, The Chinese government undertook a series of measures to cut down any kind of avant-garde artistic activity after a decade of a relative openness. During the eighties, and especially after the Tiananmen crackdown, some important artists began to leave China to move overseas such as Xu Bing and Ai Weiwei (USA); Chen Zhen and Huang Yong Ping (France); or Cai Guo-Qiang (Japan). After emigrating abroad, Chinese overseas artists began to develop projects in accordance with their new environments and audiences as well as to appear in numerous international exhibitions. With their creations, that moved freely between a variety of Eastern and Western art sources, these artists were crucial agents in the emergence of global contemporary art. As other Chinese artists overseas, Cai Guo-Qiang’s career took off during the 1990s and early 2000s right at the same moment in which Western art world started to look beyond itself. Little by little, he developed a very personal artistic language that redefines Chinese ideas, symbols, and traditional materials in a new world order marked by globalization. Cai Guo-Qiang participated in many of the exhibitions that contributed to shape global contemporary art: Encountering the Others (1992); the 45th Venice Biennale (1993); Inside Out: New Chinese Art (1997), or the 48th Venice Biennale (1999), where he recreated the Chinese monumental social realist work Rent Collection Courtyard that earned him the Golden Lion Award. By examining the different stages of Cai Guo-Qiang’s artistic path as well as the transnational dimensions of his creations, this paper aims at offering a comprehensive survey on the construction of the discourse of global contemporary art.

Keywords: Cai Guo-Qiang, Chinese artists overseas, emergence global art, transnational art

Procedia PDF Downloads 284
1938 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 395
1937 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 101
1936 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites

Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano

Abstract:

Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.

Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene

Procedia PDF Downloads 128
1935 Enhancement of Environmental Security by the Application of Wireless Sensor Network in Nigeria

Authors: Ahmadu Girgiri, Lawan Gana Ali, Mamman M. Baba

Abstract:

Environmental security clearly articulates the perfections and developments of various communities around the world irrespective of the region, culture, religion or social inclination. Although, the present state of insecurity has become serious issue devastating the peace, unity, stability and progress of man and his physical environment particularly in developing countries. Recently, measure of security and it management in Nigeria has been a bottle-neck to the effectiveness and advancement of various sectors that include; business, education, social relations, politics and above all an economy. Several measures have been considered on mitigating environment insecurity such as surveillance, demarcation, security personnel empowerment and the likes, but still the issue remains disturbing. In this paper, we present the application of new technology that contributes to the improvement of security surveillance known as “Wireless Sensor Network (WSN)”. The system is new, smart and emerging technology that provides monitoring, detection and aggregation of information using sensor nodes and wireless network. WSN detects, monitors and stores information or activities in the deployed area such as schools, environment, business centers, public squares, industries, and outskirts and transmit to end users. This will reduce the cost of security funding and eases security surveillance depending on the nature and the requirement of the deployment.

Keywords: application, environment, insecurity, sensor, wireless sensor network

Procedia PDF Downloads 263
1934 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 175
1933 Electromagnetically-Vibrated Solid-Phase Microextraction for Organic Compounds

Authors: Soo Hyung Park, Seong Beom Kim, Wontae Lee, Jin Chul Joo, Jungmin Lee, Jongsoo Choi

Abstract:

A newly-developed electromagnetically vibrated solid-phase microextraction (SPME) device for extracting nonpolar organic compounds from aqueous matrices was evaluated in terms of sorption equilibrium time, precision, and detection level relative to three other more conventional extraction techniques involving SPME, viz., static, magnetic stirring, and fiber insertion/retraction. Electromagnetic vibration at 300~420 cycles/s was found to be the most efficient extraction technique in terms of reducing sorption equilibrium time and enhancing both precision and linearity. The increased efficiency for electromagnetic vibration was attributed to a greater reduction in the thickness of the stagnant-water layer that facilitated more rapid mass transport from the aqueous matrix to the SPME fiber. Electromagnetic vibration less than 500 cycles/s also did not detrimentally impact the sustainability of the extracting performance of the SPME fiber. Therefore, electromagnetically vibrated SPME may be a more powerful tool for rapid sampling and solvent-free sample preparation relative to other more conventional extraction techniques used with SPME.

Keywords: electromagnetic vibration, organic compounds, precision, solid-phase microextraction (SPME), sorption equilibrium time

Procedia PDF Downloads 255
1932 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi

Abstract:

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability

Procedia PDF Downloads 321