Search results for: teacher centered learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8242

Search results for: teacher centered learning

3022 Experiences of Trainee Teachers: A Survey on Expectations and Realities in Special Secondary Schools in Kenya

Authors: Mary Cheptanui Sambu

Abstract:

Teaching practice is an integral component of students who are training to be teachers, as it provides them with an opportunity to gain experience in an actual teaching and learning environment. This study explored the experiences of trainee teachers from a local university in Kenya, undergoing a three-month teaching practice in Special Secondary schools in the country. The main aim of the study was to understand the trainees’ experiences, their expectations, and the realities encountered during the teaching practice period. The study focused on special secondary schools for learners with hearing impairment. A descriptive survey design was employed and a sample size of forty-four respondents from special secondary schools for learners with hearing impairment was purposively selected. A questionnaire was administered to the respondents and the data obtained analysed using the Statistical Package for the Social Sciences (SPSS). Preliminary analysis shows that challenges facing special secondary schools include inadequate teaching and learning facilities and resources, low academic performance among learners with hearing impairment, an overloaded curriculum and inadequate number of teachers for the learners. The study findings suggest that the Kenyan government should invest more in the education of special needs children, particularly focusing on increasing the number of trained teachers. In addition, the education curriculum offered in special secondary schools should be tailored towards the needs and interest of learners. These research findings will be useful to policymakers and curriculum developers, and will provide information that can be used to enhance the education of learners with hearing impairment; this will lead to improved academic performance, consequently resulting in better transitions and the realization of Vision 2030.

Keywords: hearing impairment, special secondary schools, trainee, teaching practice

Procedia PDF Downloads 161
3021 The Quality of Multi-Ethnic Preschool Environment and Human Resources: Teachers' Satisfaction on Their Career Development

Authors: Nordin Mamat, Abdul Rahim Razalli, Loy Chee Luen, Abdul Talib Hashim

Abstract:

This study was designed to investigate preschool environment in multi-ethnic preschool in Malaysia. The objectives are to identify the quality of work environment in multi-ethnic preschools; to investigate the practices of teachers’ role and responsibility; and to identify the quality of human resources. The study involved 2004 respondents who are the staff of multi-ethnic preschool from the government agency who provide preschool service. This study was conducted using a mixed method in which questionnaires and interviews were used to obtain data from respondents. The findings were analysed using mean and used Likert scale to determine the three-stage level such as the high, moderate and low. Findings indicated that the work environment at a moderate level, but the facilities provided insufficient to carry out educational activities with children. The result based on ranking of duties and responsibilities of teachers in multi-ethnic preschool shows the teachers practice daily record of children's development is very little, that only 65 persons are recording the child's development. The poor ratio of teachers and child in multi-ethnic preschool is between 25 to 35 children per class which means the children need a lot of attention. Meanwhile, the work environment is moderate with a mean score of 3.65 and overall mean score for level of staff career development 3.66 also moderate. The findings indicate the facilities provided in their workplace and staff career development requires improvements. Overall, the level of work environment is moderate, and it needs an improvement in term of facilities.

Keywords: environment, human resources, multi-ethnic preschool, quality teacher

Procedia PDF Downloads 322
3020 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 63
3019 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani

Abstract:

In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 452
3018 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 228
3017 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 62
3016 Event Data Representation Based on Time Stamp for Pedestrian Detection

Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita

Abstract:

In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.

Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption

Procedia PDF Downloads 97
3015 Telemedicine in Physician Assistant Education: A Partnership with Community Agency

Authors: Martina I. Reinhold, Theresa Bacon-Baguley

Abstract:

A core challenge of physician assistant education is preparing professionals for lifelong learning. While this conventionally has encompassed scientific advances, students must also embrace new care delivery models and technologies. Telemedicine, the provision of care via two-way audio and video, is an example of a technological advance reforming health care. During a three-semester sequence of Hospital Community Experiences, physician assistant students were assigned experiences with Answer Health on Demand, a telemedicine collaborative. Preceding the experiences, the agency lectured on the application of telemedicine. Students were then introduced to the technology and partnered with a provider. Prior to observing the patient-provider interaction, patient consent was obtained. Afterwards, students completed a reflection paper on lessons learned and the potential impact of telemedicine on their careers. Thematic analysis was completed on the students’ reflection papers (n=13). Preceding the lecture and experience, over 75% of students (10/13) were unaware of telemedicine. Several stated they were 'skeptical' about the effectiveness of 'impersonal' health care appointments. After the experience, all students remarked that telemedicine will play a large role in the future of healthcare and will provide benefits by improving access in rural areas, decreasing wait time, and saving cost. More importantly, 30% of students (4/13) commented that telemedicine is a technology they can see themselves using in their future practice. Initial results indicate that collaborative interaction between students and telemedicine providers enhanced student learning and exposed students to technological advances in the delivery of care. Further, results indicate that students perceived telemedicine more favorably as a viable delivery method after the experience.

Keywords: collaboration, physician assistant education, teaching innovative health care delivery method, telemedicine

Procedia PDF Downloads 196
3014 A Case Study Using Sounds Write and The Writing Revolution to Support Students with Literacy Difficulties

Authors: Emilie Zimet

Abstract:

During our department meetings for teachers of children with learning disabilities and difficulties, we often discuss the best practices for supporting students who come to school with literacy difficulties. After completing Sounds Write and Writing Revolution courses, it seems there is a possibility to link approaches and still maintain fidelity to a program and provide individualised instruction to support students with such difficulties and disabilities. In this case study, the researcher has been focussing on how best to use the knowledge acquired to provide quality intervention that targets the varied areas of challenge that students require support in. Students present to school with a variety of co-occurring reading and writing deficits and with complementary approaches, such as The Writing Revolution and Sounds Write, it is possible to support students to improve their fundamental skills in these key areas. Over the next twelve weeks, the researcher will collect data on current students with whom this approach will be trialled and then compare growth with students from last year who received support using Sounds-Write only. Maintaining fidelity may be a potential challenge as each approach has been tested in a specific format for best results. The aim of this study is to determine if approaches can be combined, so the implementation will need to incorporate elements of both reading (from Sounds Write) and writing (from The Writing Revolution). A further challenge is the time length of each session (25 minutes), so the researcher will need to be creative in the use of time to ensure both writing and reading are targeted while ensuring the programs are implemented. The implementation will be documented using student work samples and planning documents. This work will include a display of findings using student learning samples to demonstrate the importance of co-targeting the reading and writing challenges students come to school with.

Keywords: literacy difficulties, intervention, individual differences, methods of provision

Procedia PDF Downloads 52
3013 Promoting Libraries' Services and Events by Librarians Led Instagram Account: A Case Study on Qatar National Library's Research and Learning Instagram Account

Authors: Maryam Alkhalosi, Ahmad Naddaf, Rana Alani

Abstract:

Qatar National Library has its main accounts on social media, which presents the general image of the library and its daily news. A paper will be presented based on a case study researching the outcome of having a separate Instagram account led by librarians, not the Communication Department of the library. The main purpose of the librarians-led account is to promote librarians’ services and events, such as research consultation, reference questions, community engagement programs, collection marketing, etc. all in the way that librarians think it reflects their role in the community. Librarians had several obstacles to help users understanding librarians' roles. As was noticed that Instagram is the most popular social media platform in Qatar, it was selected to promote how librarians can help users through a focused account to create a direct channel between librarians and users. Which helps librarians understand users’ needs and interests. This research will use a quantitative approach depending on the case study, librarians have used their case in the department of Research and learning to find out the best practices might help in promoting the librarians' services and reaching out to a bigger number of users. Through the descriptive method, this research will describe the changes observed in the numbers of community users who interact with the Instagram account and engaged in librarians’ events. Statistics of this study are based on three main sources: 1. The internal monthly statistics sheet of events and programs held by the Research and Learning Department. 2. The weekly tracking of the Instagram account statistics. 3. Instagram’s tools such as polls, quizzes, questions, etc. This study will show the direct effect of a librarian-led Instagram account on the number of community members who participate and engage in librarian-led programs and services. In addition to highlighting the librarians' role directly with the community members. The study will also show the best practices on Instagram, which helps reaching a wider community of users. This study is important because, in the region, there is a lack of studies focusing on librarianship, especially on contemporary problems and its solution. Besides, there is a lack of understanding of the role of a librarian in the Arab region. The research will also highlight how librarians can help the public and researchers as well. All of these benefits can come through one popular easy channel in social media. From another side, this paper is a chance to share the details of this experience starting from scratch, including the phase of setting the policy and guidelines of managing the social media account, until librarians reached to a point where the benefits of this experience are in reality. This experience had even added many skills to the librarians.

Keywords: librarian’s role, social media, instagram and libraries, promoting libraries’ services

Procedia PDF Downloads 96
3012 Roof and Road Network Detection through Object Oriented SVM Approach Using Low Density LiDAR and Optical Imagery in Misamis Oriental, Philippines

Authors: Jigg L. Pelayo, Ricardo G. Villar, Einstine M. Opiso

Abstract:

The advances of aerial laser scanning in the Philippines has open-up entire fields of research in remote sensing and machine vision aspire to provide accurate timely information for the government and the public. Rapid mapping of polygonal roads and roof boundaries is one of its utilization offering application to disaster risk reduction, mitigation and development. The study uses low density LiDAR data and high resolution aerial imagery through object-oriented approach considering the theoretical concept of data analysis subjected to machine learning algorithm in minimizing the constraints of feature extraction. Since separating one class from another in distinct regions of a multi-dimensional feature-space, non-trivial computing for fitting distribution were implemented to formulate the learned ideal hyperplane. Generating customized hybrid feature which were then used in improving the classifier findings. Supplemental algorithms for filtering and reshaping object features are develop in the rule set for enhancing the final product. Several advantages in terms of simplicity, applicability, and process transferability is noticeable in the methodology. The algorithm was tested in the different random locations of Misamis Oriental province in the Philippines demonstrating robust performance in the overall accuracy with greater than 89% and potential to semi-automation. The extracted results will become a vital requirement for decision makers, urban planners and even the commercial sector in various assessment processes.

Keywords: feature extraction, machine learning, OBIA, remote sensing

Procedia PDF Downloads 360
3011 Brazilian Constitution and the Fundamental Right to Sanitation

Authors: Michely Vargas Delpupo, José Geraldo Romanello Bueno

Abstract:

The right to basic sanitation, was elevated to the category of fundamental right by the Brazilian Constitution of 1988 to protect the ecologically balanced environment, ensuring social rights to health and adequate housing warranting dignity of the human person as a principle of the Brazilian Democratic State. Because of their essentiality to the Brazilian population, this article seeks to understand why universal access to basic sanitation is a goal so difficult to achieve in Brazil. Therefore, this research uses the deductive and analytical method. Given the nature of the research literature, research techniques were centered in specialized books on the subject, journals, theses and dissertations, laws, relevant law case and raising social indicators relating to the theme. The relevance of the topic stems, among other things, the fact that sanitation services are essential for a dignified life, i.e. everyone is entitled to the maintenance of the necessary existence conditions are satisfied. However, the effectiveness of this right is undermined in society, since Brazil has huge deficit in sanitation services, denying thus a worthy life to most of the population. Thus, it can be seen that the provision of water and sewage services in Brazil is still characterized by a large imbalance, since the municipalities with lower population index have greater disability in the sanitation service. The truth is that the precariousness of water and sewage services in Brazil is still very concentrated in the North and Northeast regions, limiting the effective implementation of the Law 11.445/2007 in the country. Therefore, there is urgent need for a positive service by the State in the provision of sanitation services in order to prevent and control disease, improve quality of life and productivity of individuals, besides preventing contamination of water resources. More than just social and economic necessity, there is even a an obligation of the government to implement such services. In this sense, given the current scenario, to achieve universal access to basic sanitation imposes many hurdles. These are mainly in the field of properly formulated and implemented public policies, i.e. it requires an excellent institutional organization, management services, strategic planning, social control, in order to provide answers to complex challenges.

Keywords: fundamental rights, health, sanitation, universal access

Procedia PDF Downloads 410
3010 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 158
3009 Machine Learning Based Digitalization of Validated Traditional Cognitive Tests and Their Integration to Multi-User Digital Support System for Alzheimer’s Patients

Authors: Ramazan Bakir, Gizem Kayar

Abstract:

It is known that Alzheimer and Dementia are the two most common types of Neurodegenerative diseases and their visibility is getting accelerated for the last couple of years. As the population sees older ages all over the world, researchers expect to see the rate of this acceleration much higher. However, unfortunately, there is no known pharmacological cure for both, although some help to reduce the rate of cognitive decline speed. This is why we encounter with non-pharmacological treatment and tracking methods more for the last five years. Many researchers, including well-known associations and hospitals, lean towards using non-pharmacological methods to support cognitive function and improve the patient’s life quality. As the dementia symptoms related to mind, learning, memory, speaking, problem-solving, social abilities and daily activities gradually worsen over the years, many researchers know that cognitive support should start from the very beginning of the symptoms in order to slow down the decline. At this point, life of a patient and caregiver can be improved with some daily activities and applications. These activities include but not limited to basic word puzzles, daily cleaning activities, taking notes. Later, these activities and their results should be observed carefully and it is only possible during patient/caregiver and M.D. in-person meetings in hospitals. These meetings can be quite time-consuming, exhausting and financially ineffective for hospitals, medical doctors, caregivers and especially for patients. On the other hand, digital support systems are showing positive results for all stakeholders of healthcare systems. This can be observed in countries that started Telemedicine systems. The biggest potential of our system is setting the inter-user communication up in the best possible way. In our project, we propose Machine Learning based digitalization of validated traditional cognitive tests (e.g. MOCA, Afazi, left-right hemisphere), their analyses for high-quality follow-up and communication systems for all stakeholders. R. Bakir and G. Kayar are with Gefeasoft, Inc, R&D – Software Development and Health Technologies company. Emails: ramazan, gizem @ gefeasoft.com This platform has a high potential not only for patient tracking but also for making all stakeholders feel safe through all stages. As the registered hospitals assign corresponding medical doctors to the system, these MDs are able to register their own patients and assign special tasks for each patient. With our integrated machine learning support, MDs are able to track the failure and success rates of each patient and also see general averages among similarly progressed patients. In addition, our platform also supports multi-player technology which helps patients play with their caregivers so that they feel much safer at any point they are uncomfortable. By also gamifying the daily household activities, the patients will be able to repeat their social tasks and we will provide non-pharmacological reminiscence therapy (RT – life review therapy). All collected data will be mined by our data scientists and analyzed meaningfully. In addition, we will also add gamification modules for caregivers based on Naomi Feil’s Validation Therapy. Both are behaving positively to the patient and keeping yourself mentally healthy is important for caregivers. We aim to provide a therapy system based on gamification for them, too. When this project accomplishes all the above-written tasks, patients will have the chance to do many tasks at home remotely and MDs will be able to follow them up very effectively. We propose a complete platform and the whole project is both time and cost-effective for supporting all stakeholders.

Keywords: alzheimer’s, dementia, cognitive functionality, cognitive tests, serious games, machine learning, artificial intelligence, digitalization, non-pharmacological, data analysis, telemedicine, e-health, health-tech, gamification

Procedia PDF Downloads 136
3008 A Comparative Understanding of Critical Problems Faced by Pakistani and Indian Transportation Industry

Authors: Fawad Hussain, Saleh Abdullah Saleh, Mohammad Basir B Saud, Mohd Azwardi Md. Isa

Abstract:

It is very important for a developing nation to develop their infrastursture on the prime priority because their infrastursture particularly their roads and transporation functions as a blood in the system. Almost 1.1 billion populations share the travel and transportation industry in India. On the other hand, the Pakistan transportation industry is also extensive and elevating about 170 million users of transportation. Indian and Pakistani specifically within bus industry have good interconnectivity within and between the urban and rural areas as well as connectivity between the two countries, which is dramatically helping the economic alleviation of both countries. Due to high economic instability, unemployment and poverty rate are among the reasons why both the governments are very committed and seriously taken further action to help boost their economy. They believe that any form of transportation development would play a vital role in the development of land, infrastructure which could indirectly support many other industries’ development, such as tourism, freighting and shipping businesses, just to mention a few. However, it seems that their previous transportation planning in the due course has failed to meet the fast growing demand. As with the spin of time, both the countries are looking forward for a reasonable, safe and economical long term solutions, which is from time to time keep appreciating and reacting according to other key economic drivers. Content analysis method and case study approach is used in this paper and secondary data from the bureau of statistic is used for case analysis. The paper centered on the mobility concerns of the lower and middle income people in India and Pakistan. The paper is aimed to highlight the weaknesses, opportunities and limitations resulting from low priority industry for government, which is making the either country's public suffer. The paper has concluded that the main issue is identified as the slow, inappropriate and unfavorable decisions which are not in favor of long term country’s economic development and public welfare as well as interest. The paper also recommends to future market sense public and private transportation, which has failed to meet the public expectations.

Keywords: bus transportation industries, transportation demand, government parallel initiatives, road and traffic congestions

Procedia PDF Downloads 275
3007 Relationship Building Between Peer Support Worker and Person in Recovery in the Community-based One-to-One Peer Support Service of Mental Health Setting

Authors: Yuen Man Yan

Abstract:

Peer support has been a rising prevalent mental health service in the globe. The community-based mental health services employ persons with lived experience of mental illness to be peer support workers (PSWs) to provide peer support service to those who are in the progress of recovery (PIRs). It represents the transformation of mental health service system to a recovery-oriented and person-centered care. Literatures proved the feasibility and effectiveness of the peer support service. Researchers have attempted to explore the unique good qualities of peer support service that benefit the PIRs. Empirical researches found that the strength of the relationship between those who sought for change and the change agents positively related to the outcomes in one-to-one therapies across theoretical orientations. However, there is lack of literature on investigating the relationship building between the PSWs and PIRs in the one-to-one community-based peer support service. This study aims to identify and characterise the relationship in the community-based one-to-one peer support service from the perspectives of PSWs and PIRs; and to conceptualize the components of relationship building between PSWs and PIRs in the community-based one-to-one peer support service. The study adopted the constructivist grounded theory approach. 10 pairs of the PSWs and PIRs participated in the study. Data were collected through multiple qualitative methods, including observation of the interaction and exchange of the PSWs and PIRs in the 1ₛₜ, 3ᵣ𝒹 and 9th sessions of the community-based one-to-one peer support service; and semi-structural interview with the PSWs and PIRs separately after the 3ᵣ𝒹and 9ₜₕ session of the peer support service. This presentation is going to report the preliminary findings of the study. PSWs and PIRs identified their relationship as “life alliance”. Empathy was found to be one of key components of the relationship between the PSWs and the PIRs. Unlike the empathy, as explained by Carl Roger, in which the service provider was able to put themselves into the shoes of the service recipients as if he was the service recipients, the intensity of the empathy was much greater in the relationship between PSWs and PIRs because PSWs had the lived experience of mental illness and recovery. The dimensions of the empathy in the relationship between PSWs and PIRs was found to be multiple, not only related to the mental illness but also related to various aspects in life, like family relationship, employment, interest of life, self-esteem and etc.

Keywords: person with lived experience, peer support worker, peer support service, relationship building, therapeutic alliance, community-based mental health setting

Procedia PDF Downloads 72
3006 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 128
3005 Comparison of Sign Language Skill and Academic Achievement of Deaf Students in Special and Inclusive Primary Schools of South Nation Nationalities People Region, Ethiopia

Authors: Tesfaye Basha

Abstract:

The purpose of this study was to examine the sign language and academic achievement of deaf students in special and inclusive primary schools of Southern Ethiopia. The study used a mixed-method to collect varied data. The study contained Signed Amharic and English skill tasks, questionnaire, 8th-grade Primary School Leaving Certificate Examination results, classroom observation, and interviews. For quantitative (n=70) deaf students and for qualitative data collection, 16 participants were involved. The finding revealed that the limitation of sign language is a problem in signing and academic achievements. This displays that schools are not linguistically rich to enable sign language achievement for deaf students. Moreover, the finding revealed that the contribution of Total Communication in the growth of natural sign language for deaf students was unsatisfactory. The results also indicated that special schools of deaf students performed better sign language skills and academic achievement than inclusive schools. In addition, the findings revealed that high signed skill group showed higher academic achievement than the low skill group. This displayed that sign language skill is highly associated with academic achievement. In addition, to qualify deaf students in sign language and academics, teacher institutions must produce competent teachers on how to teach deaf students with sign language and literacy skills.

Keywords: academic achievement, inclusive school, sign language, signed Amharic, signed English, special school, total communication

Procedia PDF Downloads 132
3004 Co-Creation of Content with the Students in Entrepreneurship Education to Capture Entrepreneurship Phenomenon in an Innovative Way

Authors: Prema Basargekar

Abstract:

Facilitating the subject ‘Entrepreneurship Education’ in higher education, such as management studies, can be exhilarating as well as challenging. It is a multi-disciplinary and ever-evolving subject. Capturing entrepreneurship as a phenomenon in a holistic manner is a daunting task as it requires covering various dimensions such as new ideas generation, entrepreneurial traits, business opportunities scanning, the role of policymakers, value creation, etc., to name a few. Implicit entrepreneurship theory and effectuation are two different theories that focus on engaging the participants to create content by using their own experiences, perceptions, and belief systems. It helps in understanding the phenomenon holistically. The assumption here is that all of us are part of the entrepreneurial ecosystem, and effective learning can come through active engagement and peer learning by all the participants together. The present study is an attempt to use these theories in the class assignment given to the students at the beginning of the course to build the course content and understand entrepreneurship as a phenomenon in a better way through peer learning. The assignment was given to three batches of MBA post-graduate students doing the program in one of the private business schools in India. The subject of ‘Entrepreneurship Management’ is facilitated in the third trimester of the first year. At the beginning of the course, the students were given the assignment to submit a brief write-up/ collage/picture/poem or in any other format about “What entrepreneurship means to you?” They were asked to give their candid opinions about entrepreneurship as a phenomenon as they perceive it. Nearly 156 students doing post-graduate MBA submitted the assignment. These assignments were further used to find answers to two research questions. – 1) Are students able to use divergent and innovative forms to express their opinions, such as poetry, illustrations, videos, etc.? 2) What are various dimensions of entrepreneurship which are emerging to understand the phenomenon in a better way? The study uses the Brawn and Clark framework of reflective thematic analysis for qualitative analysis. The study finds that students responded to this assignment enthusiastically and expressed their thoughts in multiple ways, such as poetry, illustration, personal narrative, videos, etc. The content analysis revealed that there could be seven dimensions to looking at entrepreneurship as a phenomenon. They are 1) entrepreneurial traits, 2) entrepreneurship as a journey, 3) value creation by entrepreneurs in terms of economic and social value, 4) entrepreneurial role models, 5) new business ideas and innovations, 6) personal entrepreneurial experiences and aspirations, and 7) entrepreneurial ecosystem. The study concludes that an implicit approach to facilitate entrepreneurship education helps in understanding it as a live phenomenon. It also encourages students to apply divergent and convergent thinking. It also helps in triggering new business ideas or stimulating the entrepreneurial aspirations of the students. The significance of the study lies in the application of implicit theories in the classroom to make higher education more engaging and effective.

Keywords: co-creation of content, divergent thinking, entrepreneurship education, implicit theory

Procedia PDF Downloads 73
3003 Enhancing English Language Learning through Learners Cultural Background

Authors: A. Attahiru, Rabi Abdullahi Danjuma, Fatima Bint

Abstract:

Language and culture are two concepts which are closely related that one affects the other. This paper attempts to examine the definition of language and culture by discussing the relationship between them. The paper further presents some instructional strategies for the teaching of language and culture as well as the influence of culture on language. It also looks at its implication to language education and finally some recommendation and conclusion were drawn.

Keywords: culture, language, relationship, strategies, teaching

Procedia PDF Downloads 413
3002 Economic Recession and its Psychological Effects on Educated Youth: A Case Study of Pakistan

Authors: Aroona Hashmi

Abstract:

An economic recession can lead people to feel more insecure about their financial situation. The series of events leading into a recession can be especially distressing for Educated Youth. One of the most salient factors linking economic recession to psychological distress is unemployment. It is proved that a large number of educated young people are facing higher unemployment rate in Pakistan. Young people are likely to get frustrated at the lack of opportunities made available to them. If the young population increases more rapidly than job opportunities, then number of unemployment is likely to increase. The aim of present study was to investigate the relationship between economic instability, growing rate of aggression and frustration among educated youth. The study aimed to find out the impact of increased economic instability on the learning abilities of the students. Data was gathered from six university students of Punjab, Pakistan. The sample of the study consisted of three hundred male and female university students. The data was analyzed by applying Chi -square test. The results of the research indicate that there is a significant relationship between low household income and growing rate of aggression among educated youth. The increasing trend of economic instability significantly influences the learning abilities of the students. The study concludes that feeling of deprivation produce frustration and could be expressed through aggression. Therefore, if factors that are responsible for youth unemployment in Pakistan are addressed, psychological effects will be reduced. The right way of tackling the youth bulge is to turn the youth into a productive workforce. There is a dire need to transform the education system to societal needs. At the same time creating demand for the young workforce is achieved through dynamic changes in the economic structure.

Keywords: psychological effects, economic recession, educated youth, environmental factors

Procedia PDF Downloads 388
3001 The Analysis of the Stress Phenomenon among the Academic Teachers

Authors: Monika Szpringer, Mariola Wojciechowska, Robert Dutkiewicz, Grażyna Nowak-Starz, Marzena Olędzka

Abstract:

The main aim of this article is to determine the phenomenon of stress among academic teachers as well as to identify the extent to which the teachers experience work-related psychological risks. It is also important to support academic teachers trade unions in scope of stress-oriented activities, including psychological dangers in the assessment of risk in the workplace (college). The authors used a method of a diagnostic survey with a polling as a technique and authors’ questionnaire as a tool. The survey was conducted between September and December of 2013 and it comprised 1890 academic teachers from five voivodeships. The study reveals that 84.0% of the respondents found the work of an academic teacher to be borne with a considerable stress. The percentage values of the most frequent causes of stress are as follows: frequent changes of both organisational and didactic matters as well as overwhelming bureaucracy (77.8 %), time pressure regarding professional development and related risk of losing job (68.2 %), difficult working conditions (45.4%), conflicts and rivalry between teachers (44.1%), excessive amount of duties as well as increasing requirements and demanding attitude of students (33.7%). Work-related stress affects or significantly affects the private life of 69 % and 66.4 % of the respondents respectively. The majority of the people surveyed deals with stress by undertaking various activities, with 40% pointing at using various substances, mostly cigarettes and alcohol (p > 0,05) Physical ailments were experienced by 81% of the respondents, in 9% they were rare and 8 % of the respondents had never experienced such disorders. The entire group of the surveyed people (100 %) claimed that they have no possibility of contacting a psychologist at their workplace (p > 0.05), and they stated that the need of contacting specialists does exist.

Keywords: stress, academic teachers, psychological risks, work-related

Procedia PDF Downloads 394
3000 Investigating Students' Understanding about Mathematical Concept through Concept Map

Authors: Rizky Oktaviana

Abstract:

The main purpose of studying lies in improving students’ understanding. Teachers usually use written test to measure students’ understanding about learning material especially mathematical learning material. This common method actually has a lack point, such that in mathematics content, written test only show procedural steps to solve mathematical problems. Therefore, teachers unable to see whether students actually understand about mathematical concepts and the relation between concepts or not. One of the best tools to observe students’ understanding about the mathematical concepts is concept map. The goal of this research is to describe junior high school students understanding about mathematical concepts through Concept Maps based on the difference of mathematical ability. There were three steps in this research; the first step was choosing the research subjects by giving mathematical ability test to students. The subjects of this research are three students with difference mathematical ability, high, intermediate and low mathematical ability. The second step was giving concept mapping training to the chosen subjects. The last step was giving concept mapping task about the function to the subjects. Nodes which are the representation of concepts of function were provided in concept mapping task. The subjects had to use the nodes in concept mapping. Based on data analysis, the result of this research shows that subject with high mathematical ability has formal understanding, due to that subject could see the connection between concepts of function and arranged the concepts become concept map with valid hierarchy. Subject with intermediate mathematical ability has relational understanding, because subject could arranged all the given concepts and gave appropriate label between concepts though it did not represent the connection specifically yet. Whereas subject with low mathematical ability has poor understanding about function, it can be seen from the concept map which is only used few of the given concepts because subject could not see the connection between concepts. All subjects have instrumental understanding for the relation between linear function concept, quadratic function concept and domain, co domain, range.

Keywords: concept map, concept mapping, mathematical concepts, understanding

Procedia PDF Downloads 270
2999 Enhancing Child Diets in Food-Insecure Rural Ethiopia

Authors: Tigist mamo, Beryl Oranga, Precious Mubanga

Abstract:

High rates of child undernutrition in Ethiopia place children at significant risk, highlighting the need for low-cost, nutritious diets starting at six months of age. These diets should be diverse and rich in essential nutrients like proteins, vitamins, and minerals. However, many rural households participating in the Productive Safety Net Program (PSNP) struggle to afford fortified foods and often rely on low-protein, cereal-based diets, leading to micronutrient deficiencies. In addition, fasting practices further restrict the consumption of animal-source foods for 190 to 250 days each year, limiting dietary diversity even more. Addressing these challenges requires solutions beyond nutrition counseling, focusing on factors such as seasonality, food perishability, and safety to promote better health outcomes for children. The program's main objective is to empower caregivers with practical recipes for complementary feeding for children aged 6 to 23 months by enhancing meals with affordable ingredients like cereal, legumes, dried vegetables, and meat. The ongoing implementation research within the SPIR-II program is centered on developing a cost-effective mixed flour and exploring drying techniques to extend shelf life, ultimately addressing the delayed introduction of complementary foods and increasing nutrient-rich options in households. Saleswomen participating in the SPIR-II program have been empowered to produce easy-to-use local complementary flour and conduct door-to-door sales in their neighborhoods. Caregivers who have purchased and fed this flour to their children have reported significant improvements in their nutritional status. Additionally, SPIR-II is testing low-tech drying methods suitable for rural Ethiopian contexts to reduce food loss and promote the inclusion of nutrient-dense foods in children's diets. The paper will highlight the primary outcomes of these initiatives as they are being implemented.

Keywords: food preservation, easy-to-use mixed flour, complementary feeding, drying techniques

Procedia PDF Downloads 6
2998 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 185
2997 Play Based Practices in Early Childhood Curriculum: The Contribution of High Scope, Modern School Movement and Pedagogy of Participation

Authors: Dalila Lino

Abstract:

The power of play for learning and development in early childhood education is beyond question. The main goal of this study is to analyse how three contemporary early childhood pedagogical approaches, the High Scope, the Modern School Movement (MEM) and the Pedagogy of Participation integrate play in their curriculum development. From this main goal the following objectives emerged: (i) to characterize how play is integrated in the daily routine of the pedagogical approaches under study; (ii) to analyse the teachers’ role during children’s playing situations; (iii) to identify the types of play that children are more often involved. The methodology used is the qualitative approach and is situated under the interpretative paradigm. Data is collected through semi-structured interviews to 30 preschool teachers and through observations of typical daily routines. The participants are 30 Portuguese preschool classrooms attending children from 3 to 6 years and working with the High Scope curriculum (10 classrooms), the MEM (10 classrooms) and the Pedagogy of Participation (10 classrooms). The qualitative method of content analysis was used to analyse the data. To ensure confidentiality, no information is disclosed without participants' consent, and the interviews were transcribed and sent to the participants for a final revision. The results show that there are differences how play is integrated and promoted in the three pedagogical approaches. The teachers’ role when children are at play varies according the pedagogical approach adopted, and also according to the teachers’ understanding about the meaning of play. The study highlights the key role that early childhood curriculum models have to promote opportunities for children to play, and therefore to be involved in meaningful learning.

Keywords: curriculum models, early childhood education, pedagogy, play

Procedia PDF Downloads 206
2996 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study

Authors: Tiffany Yung Hsuan Ma

Abstract:

The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.

Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education

Procedia PDF Downloads 67
2995 A Comparison between Bèi Passives and Yóu Passives in Mandarin Chinese

Authors: Rui-heng Ray Huang

Abstract:

This study compares the syntax and semantics of two kinds of passives in Mandarin Chinese: bèi passives and yóu passives. To express a Chinese equivalent for ‘The thief was taken away by the police,’ either bèi or yóu can be used, as in Xiǎotōu bèi/yóu jǐngchá dàizǒu le. It is shown in this study that bèi passives and yóu passives differ semantically and syntactically. The semantic observations are based on the theta theory, dealing with thematic roles. On the other hand, the syntactic analysis draws heavily upon the generative grammar, looking into thematic structures. The findings of this study are as follows. First, the core semantics of bèi passives is centered on the Patient NP in the subject position. This Patient NP is essentially an Affectee, undergoing the outcome or consequence brought up by the action represented by the predicate. This may explain why in the sentence Wǒde huà bèi/*yóu tā niǔqū le ‘My words have been twisted by him/her,’ only bèi is allowed. This is because the subject NP wǒde huà ‘my words’ suffers a negative consequence. Yóu passives, in contrast, place the semantic focus on the post-yóu NP, which is not an Affectee though. Instead, it plays a role which has to take certain responsibility without being affected in a way like an Affectee. For example, in the sentence Zhèbù diànyǐng yóu/*bèi tā dānrèn dǎoyǎn ‘This film is directed by him/her,’ only the use of yóu is possible because the post-yóu NP tā ‘s/he’ refers to someone in charge, who is not an Affectee, nor is the sentence-initial NP zhèbù diànyǐng ‘this film’. When it comes to the second finding, the syntactic structures of bèi passives and yóu passives differ in that the former involve a two-place predicate while the latter a three-place predicate. The passive morpheme bèi in a case like Xiǎotōu bèi jǐngchá dàizǒu le ‘The thief was taken away by the police’ has been argued by some Chinese syntacticians to be a two-place predicate which selects an Experiencer subject and an Event complement. Under this analysis, the initial NP xiǎotōu ‘the thief’ in the above example is a base-generated subject. This study, however, proposes that yóu passives fall into a three-place unergative structure. In the sentence Xiǎotōu yóu jǐngchá dàizǒu le ‘The thief was taken away by the police,’ the initial NP xiǎotōu ‘the thief’ is a topic which serves as a Patient taken by the verb dàizǒu ‘take away.’ The subject of the sentence is assumed to be an Agent, which is in a null form and may find its reference from the discourse or world knowledge. Regarding the post-yóu NP jǐngchá ‘the police,’ its status is dual. On the one hand, it is a Patient introduced by the light verb yóu; on the other, it is an Agent assigned by the verb dàizǒu ‘take away.’ It is concluded that the findings in this study contribute to better understanding of what makes the distinction between the two kinds of Chinese passives.

Keywords: affectee, passive, patient, unergative

Procedia PDF Downloads 273
2994 Facilitating Active Reading Strategies through Caps Chart to Foster Elementary EFL Learners’ Reading Skills and Reading Competency

Authors: Michelle Bulawan, Mei-Hua Chen

Abstract:

Reading comprehension is crucial for acquiring information, analyzing critically, and achieving academic proficiency. However, there is a lack of growth in reading comprehension skills beyond fourth grade. The developmental shift from "learning to read" to "reading to learn" occurs around this stage. Factual knowledge and diverse views in articles enhance reading comprehension abilities. Nevertheless, some face difficulties due to evolving textual requirements, such as expanding vocabulary and using longer, more complex terminology. Most research on reading strategies has been conducted at the tertiary and secondary levels, while few have focused on the elementary levels. Furthermore, the use of character, ask, problem, solution (CAPS) charts in teaching reading has also been hardly explored. Thus, the researcher decided to explore the facilitation of active reading strategies through the CAPS chart and address the following research questions: a) What differences existed in elementary EFL learners' reading competency among those who engaged in active reading strategies and those who did not? b) What are the learners’ metacognitive skills of those who engage in active reading strategies and those who do not, and what are their effects on their reading competency? c) For those participants who engage in active reading activities, what are their perceptions about incorporating active reading activities into their English classroom learning? Two groups of elementary EFL learners, each with 18 students of the same level of English proficiency, participated in this study. Group A served as the control group, while Group B served as the experimental group. Two teachers also participated in this research; one of them was the researcher who handled the experimental group. The treatment lasts for one whole semester or seventeen weeks. In addition to the CAPS chart, the researcher also used the metacognitive awareness of reading strategy inventory (MARSI) and a ten-item, five-point Likert scale survey.

Keywords: active reading, EFL learners, metacognitive skills, reading competency, student’s perception

Procedia PDF Downloads 89
2993 An Integrated Label Propagation Network for Structural Condition Assessment

Authors: Qingsong Xiong, Cheng Yuan, Qingzhao Kong, Haibei Xiong

Abstract:

Deep-learning-driven approaches based on vibration responses have attracted larger attention in rapid structural condition assessment while obtaining sufficient measured training data with corresponding labels is relevantly costly and even inaccessible in practical engineering. This study proposes an integrated label propagation network for structural condition assessment, which is able to diffuse the labels from continuously-generating measurements by intact structure to those of missing labels of damage scenarios. The integrated network is embedded with damage-sensitive features extraction by deep autoencoder and pseudo-labels propagation by optimized fuzzy clustering, the architecture and mechanism which are elaborated. With a sophisticated network design and specified strategies for improving performance, the present network achieves to extends the superiority of self-supervised representation learning, unsupervised fuzzy clustering and supervised classification algorithms into an integration aiming at assessing damage conditions. Both numerical simulations and full-scale laboratory shaking table tests of a two-story building structure were conducted to validate its capability of detecting post-earthquake damage. The identifying accuracy of a present network was 0.95 in numerical validations and an average 0.86 in laboratory case studies, respectively. It should be noted that the whole training procedure of all involved models in the network stringently doesn’t rely upon any labeled data of damage scenarios but only several samples of intact structure, which indicates a significant superiority in model adaptability and feasible applicability in practice.

Keywords: autoencoder, condition assessment, fuzzy clustering, label propagation

Procedia PDF Downloads 93