Search results for: stagnation properties
3861 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose
Authors: Rungsinee Sothornvit, Pattrathip Rodsamran
Abstract:
Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity
Procedia PDF Downloads 3953860 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction
Authors: Jitka Hroudova, Jiri Zach
Abstract:
The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction
Procedia PDF Downloads 3353859 Design and Development of Mucoadhesive Buccal Film Bearing Itraconazole
Authors: Yuvraj Singh Dangi, Kamta Prasad Namdeo, Surendra Bodhake
Abstract:
The purpose of this research was to develop and evaluate mucoadhesive films for buccal administration of itraconazole using film-forming and mucoashesive polymers. Buccal films of chitosan bearing Itraconazole were prepared by solvent casting technique. The films have been evaluated in terms of film weight, thickness, density, surface pH, FTIR, X-ray diffraction analysis, bioadhesion, swelling properties, and in vitro drug release studies. It was found that film formulations of 2 cm2 size having weight in the range of 204 ± 0.76 to 223 ± 2.09 mg and film thickness were in the range of 0.44 ± 0.11 to 0.57 ± 0.19 mm. Density of the films was found to be 0.102 to 0.126 g/ml. Drug content was found to be uniform in the range of 8.23 ± 0.07 to 8.73 ± 0.09 mg/cm2 for formulation A1 to A4. Maximum bioadhesion force was recorded for HPMC buccal films (A2) i.e. 0.57 ± 0.47 as compared to other films. In vitro residence time was in range of 1.7 ± 0.12 to 7.65 ± 0.15 h. The drug release studies show that formulations follow non-fickian diffusion. These mucoadhesive formulations could offer many advantages in comparison to traditional treatments.Keywords: biovariability, buccal patches, itraconazole, Mucoadhesion
Procedia PDF Downloads 5143858 Analysis of Process for Solution of Fiber-Ends after Biopolishing on the Surface of Cotton Knit Fabric
Authors: P. Altay, G. Kartal, B. Kizilkaya, S. Kahraman, N. C. Gursoy
Abstract:
Biopolishing is applied to remove the fuzz or pills on the fiber or fabric surface which will reduce its tendency to pill or fuzz after repetitive launderings. After biopolishing process, the fuzzes ripped by cellulase enzymes cannot be thoroughly removed from fabric surface, they remain on the fabric or fiber surface; accordingly disturb the user and lead to decrease in productivity of drying process. The main objective of this study is to develop a method for removing weakened fuzz fibers and surface pills from biofinished fabric surface before drying process. Fuzzes in the lattice structure of fabric were completely removed from the internal structure of the fabric by air blowing. The presence of fuzzes leads to problems with formation of pilling and faded appearance; the removal of fuzzes from the fabric results in reduced tendency to pill formation, cleaner, smoother and softer surface, improved handling properties of fabric with maintaining original color.Keywords: biopolishing, fuzz fiber, weakened fiber, biofinished cotton fabric
Procedia PDF Downloads 3813857 Bread Quality Improvement with Special Novel Additives
Authors: Mónika Bartalné-Berceli, Eszter Izsó, Szilveszter Gergely, András Salgó
Abstract:
Nowadays a significant portion of the Earth's population does not have access to healthy food. Either because they can not afford them or because they do not know which they are. The aim of the VIIth Framework CHANCE project (Nr. 266331) supported by the European Union has been to develop relatively cheap food favorable from nutritional point of view and has acceptable quality for consumers. Within the project we dealt with manufacturing of bread belonging to basic foods. We had examined the enrichment of bread products with four kinds of bran, with a special milling product of grain industry (aleurone flour) and with a soy-based sprouted additive. The applied concentration of the six mentioned additives has been optimized and the physical and sensory properties of the bread products were monitored. The weight of the enriched breads increased slightly, however the volume and height decreased slightly compared to the corresponding data of the control bread. The composition of the final product is favorable affected by these additives having highly preferred composition from nutritional point of view.Keywords: bread products, brans, YASO, aleurone flour
Procedia PDF Downloads 3883856 Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products
Authors: Merve Sogancioglu, Esra Yel, Ferda Tartar, Nihan Canan Iskender
Abstract:
Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.Keywords: biochar, co-pyrolysis, waste plastic, waste olive pomace
Procedia PDF Downloads 3193855 Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System
Authors: M. M. El-Awad
Abstract:
The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system.Keywords: thermodynamic optimisation, engineering education, excel, VBA, cascade refrigeration system
Procedia PDF Downloads 4383854 Ab Initio Calculation of Fundamental Properties of CaxMg1-xA (a = Se and Te) Alloys in the Rock-Salt Structure
Authors: M. A. Ghebouli, H. Choutri, B. Ghebouli , M. Fatmi, L. Louail
Abstract:
We employed the density-functional perturbation theory (DFPT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA) to study the effect of composition on the structure, stability, energy gaps, electron effective mass, the dynamic effective charge, optical and acoustical phonon frequencies and static and high dielectric constants of the rock-salt CaxMg1-xSe and CaxMg1-xTe alloys. The computed equilibrium lattice constant and bulk modulus show an important deviation from the linear concentration. From the Voigt-Reuss-Hill approximation, CaxMg1-xSe and CaxMg1-xTe present lower stiffness and lateral expansion. For Ca content ranging between 0.25-0.75, the elastic constants, energy gaps, electron effective mass and dynamic effective charge are predictions. The elastic constants and computed phonon dispersion curves indicate that these alloys are mechanically stable.Keywords: CaxMg1-xSe, CaxMg1-xTe, band structure, phonon
Procedia PDF Downloads 5423853 Synthesis of Green Fuel Additive from Waste Bio-Glycerol
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai
Abstract:
Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-acetone, bio-glycerol, acetylation, solketal
Procedia PDF Downloads 2653852 Effect of Scalping on the Mechanical Behavior of Coarse Soils
Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane
Abstract:
This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.Keywords: coarse soils, mechanical behavior, scalping, replacement, triaxial devices
Procedia PDF Downloads 2093851 Influence of Coenzyme as a Corrosion Barrier for Biodegradable Magnesium
Authors: Minjung Park, Jimin Park, Youngwoon Kim, Hyungseop Han, Myoungryul Ok, Hojeong Jeon, Hyunkwang Seok, Yuchan Kim
Abstract:
Magnesium is an essential element in human body and has unique characteristics such as bioabsorbable and biodegradable properties. Therefore, there has been much attention on studies on the implants based on magnesium to avoid subsequent surgery. However, high amount of hydrogen gas is generated by relatively severe corrosion of magnesium especially in aqueous condition with chloride ions. And it contributes to the causes of swelling of skin and causes consequent inflammation of soft tissue where is directly in contact with implants. Therefore, there is still concern about the safety of the using biodegradable magnesium alloys, which is limited to various applications. In this study, we analyzed the influence of coenzyme on corrosion behavior of magnesium. The analysis of corrosion rate was held by using Hanks’ balanced salt solution (HBSS) as a body stimulated fluid and in condition of 37°C. Thus, with deferring the concentration of the coenzyme used in this study, corrosion rates from 0.0654ml/ cm² to 0.0438ml/cm² were observed in immersion tests. Also, comparable results were obtained in electrochemical tests. Results showed that hydrogen gas produced from corrosion of magnesium can be controlled.Keywords: biodegradable magnesium, biomaterials, coenzyme, corrosion
Procedia PDF Downloads 4263850 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique
Authors: Sudip Kumar Sinha, Saptarshi Ghosh
Abstract:
While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide
Procedia PDF Downloads 2413849 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach
Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie
Abstract:
The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.Keywords: end clamp effect, full-size timber test, shear properties, torsion test, wood engineering
Procedia PDF Downloads 2843848 Performance and Emission Characteristics of Diesel Engine Fuelled with Palm Biodiesel Blends
Authors: Jalpit B. Prajapati, Ketankumar G. Patel
Abstract:
Palm oil may be employed in diesel engine as an alternative fuel. Biofuel has so far been backed by government policies in the quest for low carbon fuel in the near future and promises to ensure energy security through partially replacing fossil fuels. This paper presents an experimental investigation of performance and emission characteristics by using palm oil in diesel engine. The properties of palm oil can be compared favorably with the characteristics required for internal combustion engine fuels especially diesel engine. Experiments will be performed for fixed compression ratio i.e. 18 using biodiesel-diesel blends i.e. B0, B10, B20, B30, B40, B50 with load variation from no load to full load and compared with base cases i.e. engine using diesel as a fuel. The parameters studied in performance characteristics are brake power, brake specific fuel consumption and brake thermal efficiency, in emission characteristics are carbon monoxide, unburnt hydrocarbons and nitrogen oxide. After experimental results B20 (20% palm oil and 80% diesel) is best in performance, but NOx formation is little higher in B20.Keywords: palm biodiesel, performance, emission, diesel-biodiesel blend
Procedia PDF Downloads 3703847 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars
Authors: Othman S. Alsheraida, Sherif El-Gamal
Abstract:
Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.Keywords: anchorage, concrete, epoxy, frp, pre-stressed
Procedia PDF Downloads 2973846 Assessing Measures and Caregiving Experiences of Thai Caregivers of Persons with Dementia
Authors: Piyaorn Wajanatinapart, Diane R. Lauver
Abstract:
The number of persons with dementia (PWD) has increased. Informal caregivers are the major providing care. They can have perceived gains and burdens. Caregivers who reported high in perceived gains may report low in burdens and better health. Gaps of caregiving literature were: no report psychometrics in a few studies and unclear definitions of gains; most studies with no theory-guided and conducting in Western countries; not fully described relationships among caregiving variables: motivations, satisfaction with psychological needs, social support, gains, burdens, and physical and psycho-emotional health. Those gaps were filled by assessing psychometric properties of selected measures, providing clearly definitions of gains, using self-determination theory (SDT) to guide the study, and developing the study in Thailand. The study purposes were to evaluate six measures for internal consistency reliability, content validity, and construct validity. This study also examined relationships of caregiving variables: motivations (controlled and autonomous motivations), satisfaction with psychological needs (autonomy, competency, and relatedness), perceived social support, perceived gains, perceived burdens, and physical and psycho-emotional health. This study was a cross-sectional and correlational descriptive design with two convenience samples. Sample 1 was five Thai experts to assess content validity of measures. Sample 2 was 146 Thai caregivers of PWD to assess construct validity, reliability, and relationships among caregiving variables. Experts rated questionnaires and sent them back via e-mail. Caregivers answered questionnaires at clinics of four Thai hospitals. Data analysis was used descriptive statistics and bivariate and multivariate analyses using the composite indicator structural equation model to control measurement errors. For study results, most caregivers were female (82%), middle age (M =51.1, SD =11.9), and daughters (57%). They provided care for 15 hours/day with 4.6 years. The content validity indices of items and scales were .80 or higher for clarity and relevance. Experts suggested item revisions. Cronbach’s alphas were .63 to .93 of ten subscales of four measures and .26 to .57 of three subscales. The gain scale was acceptable for construct validity. With controlling covariates, controlled motivations, the satisfaction with three subscales of psychological needs, and perceived social support had positive relationships with physical and psycho-emotional health. Both satisfaction with autonomy subscale and perceived social support had negative relationship with perceived burdens. The satisfaction with three subscales of psychological needs had positive relationships among them. Physical and psycho-emotional health subscales had positive relationships with each other. Furthermore, perceived burdens had negative relationships with physical and psycho-emotional health. This study was the first use SDT to describe relationships of caregiving variables in Thailand. Caregivers’ characteristics were consistent with literature. Four measures were valid and reliable except two measures. Breadth knowledge about relationships was provided. Interpretation of study results was cautious because of using same sample to evaluate psychometric properties of measures and relationships of caregiving variables. Researchers could use four measures for further caregiving studies. Using a theory would help describe concepts, propositions, and measures used. Researchers may examine the satisfaction with psychological needs as mediators. Future studies to collect data with caregivers in communities are needed.Keywords: caregivers, caregiving, dementia, measures
Procedia PDF Downloads 3093845 Thermal Property Improvement of Silica Reinforced Epoxy Composite Specimens
Authors: Hyu Sang Jo, Gyo Woo Lee
Abstract:
In this study, the mechanical and thermal properties of epoxy composites that are reinforced with micrometer-sized silica particles were investigated by using the specimen experiments. For all specimens used in this study (from the baseline to specimen containing 70 wt% silica filler), the tensile strengths were gradually increased by 8-10%, but the ductility of the specimen was decreased by 34%, compared with those of the baseline samples. Similarly, for the samples containing 70 wt% silica filler, the coefficient of thermal expansion was reduced by 25%, but the thermal conductivity was increased by 100%, compared with those of the baseline samples. The improvement of thermal stability of the silica-reinforced specimen was confirmed to be within the experimented range, and the smaller silica particle was found to be more effective in delaying the thermal expansion of the specimens. When the smaller particle was used as filler, due to the increased specific interface area between filler and matrix, the thermal conductivities of the composite specimens were measured to be slightly lower than those of the specimens reinforced with the larger particle.Keywords: carbon nanotube filler, epoxy composite, mechanical property, thermal property
Procedia PDF Downloads 2383844 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks
Authors: Bachir Chemani, Halima Chemani
Abstract:
The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.Keywords: clay, coal, resistance to compression, insulating bricks
Procedia PDF Downloads 3303843 Anti-tuberculosis, Resistance Modulatory, Anti-pulmonary Fibrosis and Anti-silicosis Effects of Crinum Asiaticum Bulbs and Its Active Metabolite, Betulin
Authors: Theophilus Asante, Comfort Nyarko, Daniel Antwi
Abstract:
Drug-resistant tuberculosis, together with the associated comorbidities like pulmonary fibrosis and silicosis, has been one of the most serious global public health threats that requires immediate action to curb or mitigate it. This prolongs hospital stays, increases the cost of medication, and increases the death toll recorded annually. Crinum asiaticum bulb (CAE) and betulin (BET) are known for their biological and pharmacological effects. Pharmacological effects reported on CAE include antimicrobial, anti-inflammatory, anti-pyretic, anti-analgesic, and anti-cancer effects. Betulin has exhibited a multitude of powerful pharmacological properties ranging from antitumor, anti-inflammatory, anti-parasitic, anti-microbial, and anti-viral activities. This work sought to investigate the anti-tuberculosis and resistant modulatory effects and also assess their effects on mitigating pulmonary fibrosis and silicosis. In the anti-tuberculosis and resistant modulatory effects, both CAE and BET showed strong antimicrobial activities (31.25 ≤ MIC ≤ 500) µg/ml against the studied microorganisms and also produced significant anti-efflux pump and biofilm inhibitory effects (ρ < 0.0001) as well as exhibiting resistance modulatory and synergistic effects when combined with standard antibiotics. Crinum asiaticum bulbs extract and betulin were shown to possess anti-pulmonary fibrosis effects. There was an increased survival rate in the CAE and BET treatment groups compared to the BLM-induced group. There was a marked decrease in the levels of hydroxyproline and collagen I and III in the CAE and BET treatment groups compared to the BLM-treated group. The treatment groups of CAE and BET significantly downregulated the levels of pro-fibrotic and pro-inflammatory cytokine concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increase in the BLM-treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM-induced pulmonary fibrosis in mice. The study showed improved lung functions with a wide focal area of viable alveolar spaces and few collagen fibers deposition on the lungs of the treatment groups. In the anti-silicosis and pulmonoprotective effects of CAE and BET, the levels of NF-κB, TNF-α, IL-1β, IL-6 and hydroxyproline, collagen types I and III were significantly reduced by CAE and BET (ρ < 0.0001). Both CAE and BET significantly (ρ < 0.0001) inhibited the levels of hydroxyproline, collagen I and III when compared with the negative control group. On BALF biomarkers such as macrophages, lymphocytes, monocytes, and neutrophils, CAE and BET were able to reduce their levels significantly (ρ < 0.0001). The CAE and BET were examined for anti-oxidant activity and shown to raise the levels of catalase (CAT) and superoxide dismutase (SOD) while lowering the level of malondialdehyde (MDA). There was an improvement in lung function when lung tissues were examined histologically. Crinum asiaticum bulbs extract and betulin were discovered to exhibit anti-tubercular and resistance-modulatory properties, as well as the capacity to minimize TB comorbidities such as pulmonary fibrosis and silicosis. In addition, CAE and BET may act as protective mechanisms, facilitating the preservation of the lung's physiological integrity. The outcomes of this study might pave the way for the development of leads for producing single medications for the management of drug-resistant tuberculosis and its accompanying comorbidities.Keywords: fibrosis, crinum, tuberculosis, antiinflammation, drug resistant
Procedia PDF Downloads 863842 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes
Authors: S. N. Harun, H. Ahmad
Abstract:
A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer
Procedia PDF Downloads 3073841 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures
Authors: Irfan Anjum Manarvi, Fawzi Aljassir
Abstract:
Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis
Procedia PDF Downloads 3313840 Antioxidant and Antimicrobial Properties of Twenty Medicinal Plants
Authors: S. Krimat, T. Dob, L. Lamari, H. Metidji
Abstract:
The aim of this study is to evaluate the antioxidant and antimicrobial activity of hydromethanolic extract of selected Algerian medicinal flora. The antioxidant activity of extract was evaluated in terms of radical scavenging potential (DPPH) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was tested against five microorganisms Pseu-domonas aeruginosa Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Candida albicans. The results showed that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50 = 4.60 μg/ml), while Populus trimula had the highest antioxidant activity in β-carotene/linolaic acid assay. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. The results indicate that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.Keywords: Algerian medicinal plants, antimicrobial activity, antioxidant activity, disc diffusion method
Procedia PDF Downloads 3503839 Effect of Nickel Coating on Corrosion of Alloys in Molten Salts
Authors: Divya Raghunandanan, Bhavesh D. Gajbhiye, C. S. Sona, Channamallikarjun S. Mathpati
Abstract:
Molten fluoride salts are considered as potential coolants for next generation nuclear plants where the heat can be utilized for production of hydrogen and electricity. Among molten fluoride salts, FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a potential candidate for the coolant due to its superior thermophysical properties such as high temperature stability, boiling point, volumetric heat capacity and thermal conductivity. Major technical challenge in implementation is the selection of structural material which can withstand corrosive nature of FLiNaK. Corrosion study of alloys SS 316L, Hastelloy B, Ni-201 was performed in molten FLiNaK at 650°C. Nickel was found to be more resistant to corrosive attack in molten fluoride medium. Corrosion experiments were performed to study the effect of nickel coating on corrosion of alloys SS 316L and Hastelloy B. Weight loss of the alloys due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloys was analyzed by Scanning Electron Microscopy.Keywords: corrosion, FLiNaK, hastelloy, weight loss
Procedia PDF Downloads 4433838 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol
Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai
Abstract:
Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-glycerol, catalyst, green additive, biomass
Procedia PDF Downloads 2433837 Nanostructural Analysis of the Polylactic Acid (PLA) Fibers Functionalized by RF Plasma Treatment
Authors: J. H. O. Nascimento, F. R. Oliveira, K. K. O. S. Silva, J. Neves, V. Teixeira, J. Carneiro
Abstract:
These the aliphatic polyesters such as Polylactic Acid (PLA) in the form of fibers, nanofibers or plastic films, generally possess chemically inert surfaces, free porosity, and surface free energy (ΔG) lesser than 32 mN/m. It is therefore considered a low surface energy material, consequently has a low work of adhesion. For this reason, the products manufactured using these polymers are often subjected to surface treatments in order to change its physic-chemical surface, improving their wettability and the Work of Adhesion (WA). Plasma Radio Frequency low pressure (RF) treatment was performed in order to improve the Work of Adhesion (WA) on PLA fibers. Different parameters, such as, power, ratio of working gas (Argon/Oxygen) and treatment time were used to optimize the plasma conditions to modify the PLA surface properties. With plasma treatment, a significant increase in the work of adhesion on PLA fiber surface was observed. The analysis performed by XPS showed an increase in polar functional groups and the SEM and AFM image revealed a considerable increase in roughness.Keywords: RF plasma, surface modification, PLA fabric, atomic force macroscopic, Nanotechnology
Procedia PDF Downloads 5393836 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 5853835 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.Keywords: blockchain, digital multi-utility, end use, demand forecasting
Procedia PDF Downloads 1733834 Effect of Rapeseed Press Cake on Extrusion System Parameters and Physical Pellet Quality of Fish Feed
Authors: Anna Martin, Raffael Osen
Abstract:
The demand for fish from aquaculture is constantly growing. Concurrently, due to a shortage of fishmeal caused by extensive overfishing, fishmeal substitution by plant proteins is getting increasingly important for the production of sustainable aquafeed. Several research studies evaluated the impact of plant protein meals, concentrates or isolates on fish health and fish feed quality. However, these protein raw materials often require elaborate and expensive manufacturing and their availability is limited. Rapeseed press cake (RPC) – a side product of de-oiling processes – exhibits a high potential as a plant-based fishmeal alternative in fish feed for carnivorous species due to its availability, low costs and protein content. In order to produce aquafeed with RPC, it is important to systematically assess i) inclusion levels of RPC with similar pellet qualities compared to fishmeal containing formulations and ii) how extrusion parameters can be adjusted to achieve targeted pellet qualities. However, the effect of RPC on extrusion system parameters and pellet quality has only scarcely been investigated. Therefore, the aim of this study was to evaluate the impact of feed formulation, extruder barrel temperature (90, 100, 110 °C) and screw speed (200, 300, 400 rpm) on extrusion system parameters and the physical properties of fish feed pellets. A co-rotating pilot-scale twin screw extruder was used to produce five iso-nitrogenous feed formulations: a fish meal based reference formulation including 16 g/100g fishmeal and four formulations in which fishmeal was substituted by RPC to 25, 50, 75 or 100 %. Extrusion system parameters, being product temperature, pressure at the die, specific mechanical energy (SME) and torque, were monitored while samples were taken. After drying, pellets were analyzed regarding to optical appearance, sectional and longitudinal expansion, sinking velocity, bulk density, water stability, durability and specific hardness. In our study, the addition of minor amounts of RPC already had high impact on pellet quality parameters, especially on expansion but only marginally affected extrusion system parameters. Increasing amounts of RPC reduced sectional expansion, sinking velocity, bulk density and specific hardness and increased longitudinal expansion compared to a reference formulation without RPC. Water stability and durability were almost not affected by RPC addition. Moreover, pellets with rapeseed components showed a more coarse structure than pellets containing only fishmeal. When the adjustment of barrel temperature and screw speed was investigated, it could be seen that the increase of extruder barrel temperature led to a slight decrease of SME and die pressure and an increased sectional expansion of the reference pellets but did almost not affect rapeseed containing fish feed pellets. Also changes in screw speed had little effects on the physical properties of pellets however with raised screw speed the SME and the product temperature increased. In summary, a one-to-one substitution of fishmeal with RPC without the adjustment of extrusion process parameters does not result in fish feed of a designated quality. Therefore, a deeper knowledge of raw materials and their behavior under thermal and mechanical stresses as applied during extrusion is required.Keywords: extrusion, fish feed, press cake, rapeseed
Procedia PDF Downloads 1503833 Bearing Capacity Improvement in a Silty Clay Soil with Crushed Polyethylene Terephthalate
Authors: Renzo Palomino, Alessandra Trujillo, Lidia Pacheco
Abstract:
The document presents a study based on the incremental bearing capacity of silty clay soil with the incorporation of crushed PET fibers. For a better understanding of the behavior of soil, it is necessary to know its origin. The analyzed samples came from the subgrade layer of a highway that connects the cities of Muniches and Yurimaguas in Loreto, Peru. The material in this area usually has properties such as low support index, medium to high plasticity, and other characteristics that make it considered a ‘problematic’ soil due to factors such as climate, humidity, and geographical location. In addition, PET fibers are obtained from the decomposition of plastic bottles that are polluting agents with a high production rate in our country; in that sense, their use in a construction process represents a considerable reduction in environmental impact. Moreover, to perform a precise analysis of the behavior of this soil mixed with PET, tests such as the hydrometer test, Proctor and CBR with 15%, 10%, 5%, 4%, 3%, and 1% of PET with respect to the mass of the sample of natural soil were carried out. The results show that when a low percentage of PET is used, the support index increases.Keywords: environmental impact, geotechnics, PET, silty clay soil
Procedia PDF Downloads 2383832 Antifungal Lactobacilli Affect Mycelium Morphology and Protect Apricot Juice against Mold Spoilage
Authors: Nora Laref, Bettache Guessas
Abstract:
Preservation of foods mainly depends on delaying or inhibiting the growth of spoilage microorganisms, and antifungal activity of lactic acid bacteria is one of the technological properties researched. The antifungal activity was screened with overlay method of six strains of lactic acid bacteria (Lactobacillus plantarum LB54, LB52, LB51, LB20, LB24 Lactobacillus farciminis LB53) isolated from silage, camel milk and carrot against Aspergillus sp. Lactobacillus plantarum and farciminis inhibit spore germination and mycelia growth of Aspergillus sp., the production of antifungal compounds by these strains was detectable after 4h of incubation at 30°C and show total inhibition after 24h in liquid media, but in solid media showed a good inhibition after 96h of incubation, these compounds cause malformations in the thalle, conidiophore and conidia. These strains could be used as agents of biopreservation since have the ability to retard Aspergillus sp., growth in apricot juice with and without sugar conserved in refrigerator but not in bread.Keywords: lactobacillus, antifungal substances, aspergillus, biopreservation
Procedia PDF Downloads 348