Search results for: customer friendly washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5519

Search results for: customer friendly washing machine

299 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos

Authors: Nassima Noufail, Sara Bouhali

Abstract:

In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.

Keywords: video segmentation, action detection, classification, Kmeans, C3D

Procedia PDF Downloads 79
298 Isolation of Bacterial Species with Potential Capacity for Siloxane Removal in Biogas Upgrading

Authors: Ellana Boada, Eric Santos-Clotas, Alba Cabrera-Codony, Maria Martin, Lluis Baneras, Frederic Gich

Abstract:

Volatile methylsiloxanes (VMS) are a group of manmade silicone compounds widely used in household and industrial applications that end up on the biogas produced through the anaerobic digestion of organic matter in landfills and wastewater treatment plants. The presence of VMS during the biogas energy conversion can cause damage on the engines, reducing the efficiency of this renewable energy source. Non regenerative adsorption onto activated carbon is the most widely used technology to remove siloxanes from biogas, while new trends point out that biotechnology offers a low-cost and environmentally friendly alternative to conventional technologies. The first objective of this research was to enrich, isolate and identify bacterial species able to grow using siloxane molecules as a sole carbon source: anoxic wastewater sludge was used as initial inoculum in liquid anoxic enrichments, adding D4 (as representative siloxane compound) previously adsorbed on activated carbon. After several months of acclimatization, liquid enrichments were plated onto solid media containing D4 and thirty-four bacterial isolates were obtained. 16S rRNA gene sequencing allowed the identification of strains belonging to the following species: Ciceribacter lividus, Alicycliphilus denitrificans, Pseudomonas aeruginosa and Pseudomonas citronellolis which are described to be capable to degrade toxic volatile organic compounds. Kinetic assays with 8 representative strains revealed higher cell growth in the presence of D4 compared to the control. Our second objective was to characterize the community composition and diversity of the microbial community present in the enrichments and to elucidate whether the isolated strains were representative members of the community or not. DNA samples were extracted, the 16S rRNA gene was amplified (515F & 806R primer pair), and the microbiome analyzed from sequences obtained with a MiSeq PE250 platform. Results showed that the retrieved isolates only represented a minor fraction of the microorganisms present in the enrichment samples, which were represented by Alpha, Beta, and Gamma proteobacteria as dominant groups in the category class thus suggesting that other microbial species and/or consortia may be important for D4 biodegradation. These results highlight the need of additional protocols for the isolation of relevant D4 degraders. Currently, we are developing molecular tools targeting key genes involved in siloxane biodegradation to identify and quantify the capacity of the isolates to metabolize D4 in batch cultures supplied with a synthetic gas stream of air containing 60 mg m⁻³ of D4 together with other volatile organic compounds found in the biogas mixture (i.e. toluene, hexane and limonene). The isolates were used as inoculum in a biotrickling filter containing lava rocks and activated carbon to assess their capacity for siloxane removal. Preliminary results of biotrickling filter performance showed 35% of siloxane biodegradation in a contact time of 14 minutes, denoting that biological siloxane removal is a promising technology for biogas upgrading.

Keywords: bacterial cultivation, biogas upgrading, microbiome, siloxanes

Procedia PDF Downloads 259
297 Education Management and Planning with Manual Based

Authors: Purna Bahadur Lamichhane

Abstract:

Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.

Keywords: educatoin, planning, management, manual

Procedia PDF Downloads 19
296 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools

Authors: M. Radunovic

Abstract:

Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.

Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management

Procedia PDF Downloads 109
295 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 40
294 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 284
293 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
292 Production of Bio-Composites from Cocoa Pod Husk for Use in Packaging Materials

Authors: L. Kanoksak, N. Sukanya, L. Napatsorn, T. Siriporn

Abstract:

A growing population and demand for packaging are driving up the usage of natural resources as raw materials in the pulp and paper industry. Long-term effects of environmental is disrupting people's way of life all across the planet. Finding pulp sources to replace wood pulp is therefore necessary. To produce wood pulp, various other potential plants or plant parts can be employed as substitute raw materials. For example, pulp and paper were made from agricultural residue that mainly included pulp can be used in place of wood. In this study, cocoa pod husks were an agricultural residue of the cocoa and chocolate industries. To develop composite materials to replace wood pulp in packaging materials. The paper was coated with polybutylene adipate-co-terephthalate (PBAT). By selecting and cleaning fresh cocoa pod husks, the size was reduced. And the cocoa pod husks were dried. The morphology and elemental composition of cocoa pod husks were studied. To evaluate the mechanical and physical properties, dried cocoa husks were extracted using the soda-pulping process. After selecting the best formulations, paper with a PBAT bioplastic coating was produced on a paper-forming machine Physical and mechanical properties were studied. By using the Field Emission Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (FESEM/EDS) technique, the structure of dried cocoa pod husks showed the main components of cocoa pod husks. The appearance of porous has not been found. The fibers were firmly bound for use as a raw material for pulp manufacturing. Dry cocoa pod husks contain the major elements carbon (C) and oxygen (O). Magnesium (Mg), potassium (K), and calcium (Ca) were minor elements that were found in very small levels. After that cocoa pod husks were removed from the soda-pulping process. It found that the SAQ5 formula produced pulp yield, moisture content, and water drainage. To achieve the basis weight by TAPPI T205 sp-02 standard, cocoa pod husk pulp and modified starch were mixed. The paper was coated with bioplastic PBAT. It was produced using bioplastic resin from the blown film extrusion technique. It showed the contact angle, dispersion component and polar component. It is an effective hydrophobic material for rigid packaging applications.

Keywords: cocoa pod husks, agricultural residue, composite material, rigid packaging

Procedia PDF Downloads 77
291 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 126
290 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility

Procedia PDF Downloads 266
289 Technological Transference Tools to Diffuse Low-Cost Earthquake Resistant Construction with Adobe in Rural Areas of the Peruvian Andes

Authors: Marcial Blondet, Malena Serrano, Álvaro Rubiños, Elin Mattsson

Abstract:

In Peru, there are more than two million houses made of adobe (sun dried mud bricks) or rammed earth (35% of the total houses), in which almost 9 million people live, mainly because they cannot afford to purchase industrialized construction materials. Although adobe houses are cheap to build and thermally comfortable, their seismic performance is very poor, and they usually suffer significant damage or collapse with tragic loss of life. Therefore, over the years, researchers at the Pontifical Catholic University of Peru and other institutions have developed many reinforcement techniques as an effort to improve the structural safety of earthen houses located in seismic areas. However, most rural communities live under unacceptable seismic risk conditions because these techniques have not been adopted massively, mainly due to high cost and lack of diffusion. The nylon rope mesh reinforcement technique is simple and low-cost, and two technological transference tools have been developed to diffuse it among rural communities: 1) Scale seismic simulations using a portable shaking table have been designed to prove its effectiveness to protect adobe houses; 2) A step-by-step illustrated construction manual has been developed to guide the complete building process of a nylon rope mesh reinforced adobe house. As a study case, it was selected the district of Pullo: a small rural community in the Peruvian Andes where more than 80% of its inhabitants live in adobe houses and more than 60% are considered to live in poverty or extreme poverty conditions. The research team carried out a one-day workshop in May 2015 and a two-day workshop in September 2015. Results were positive: First, the nylon rope mesh reinforcement procedure was proven simple enough to be replicated by adults, both young and seniors, and participants handled ropes and knots easily as they use them for daily livestock activity. In addition, nylon ropes were proven highly available in the study area as they were found at two local stores in variety of color and size.. Second, the portable shaking table demonstration successfully showed the effectiveness of the nylon rope mesh reinforcement and generated interest on learning about it. On the first workshop, more than 70% of the participants were willing to formally subscribe and sign up for practical training lessons. On the second workshop, more than 80% of the participants returned the second day to receive introductory practical training. Third, community members found illustrations on the construction manual simple and friendly but the roof system illustrations led to misinterpretation so they were improved. The technological transfer tools developed in this project can be used to train rural dwellers on earthquake-resistant self-construction with adobe, which is still very common in the Peruvian Andes. This approach would allow community members to develop skills and capacities to improve safety of their households on their own, thus, mitigating their high seismic risk and preventing tragic losses. Furthermore, proper training in earthquake-resistant self-construction with adobe would prevent rural dwellers from depending on external aid after an earthquake and become agents of their own development.

Keywords: adobe, Peruvian Andes, safe housing, technological transference

Procedia PDF Downloads 293
288 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses

Authors: David Philpott, Karen Kennedy

Abstract:

In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.

Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis

Procedia PDF Downloads 293
287 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 187
286 Virtual Metrology for Copper Clad Laminate Manufacturing

Authors: Misuk Kim, Seokho Kang, Jehyuk Lee, Hyunchang Cho, Sungzoon Cho

Abstract:

In semiconductor manufacturing, virtual metrology (VM) refers to methods to predict properties of a wafer based on machine parameters and sensor data of the production equipment, without performing the (costly) physical measurement of the wafer properties (Wikipedia). Additional benefits include avoidance of human bias and identification of important factors affecting the quality of the process which allow improving the process quality in the future. It is however rare to find VM applied to other areas of manufacturing. In this work, we propose to use VM to copper clad laminate (CCL) manufacturing. CCL is a core element of a printed circuit board (PCB) which is used in smartphones, tablets, digital cameras, and laptop computers. The manufacturing of CCL consists of three processes: Treating, lay-up, and pressing. Treating, the most important process among the three, puts resin on glass cloth, heat up in a drying oven, then produces prepreg for lay-up process. In this process, three important quality factors are inspected: Treated weight (T/W), Minimum Viscosity (M/V), and Gel Time (G/T). They are manually inspected, incurring heavy cost in terms of time and money, which makes it a good candidate for VM application. We developed prediction models of the three quality factors T/W, M/V, and G/T, respectively, with process variables, raw material, and environment variables. The actual process data was obtained from a CCL manufacturer. A variety of variable selection methods and learning algorithms were employed to find the best prediction model. We obtained prediction models of M/V and G/T with a high enough accuracy. They also provided us with information on “important” predictor variables, some of which the process engineers had been already aware and the rest of which they had not. They were quite excited to find new insights that the model revealed and set out to do further analysis on them to gain process control implications. T/W did not turn out to be possible to predict with a reasonable accuracy with given factors. The very fact indicates that the factors currently monitored may not affect T/W, thus an effort has to be made to find other factors which are not currently monitored in order to understand the process better and improve the quality of it. In conclusion, VM application to CCL’s treating process was quite successful. The newly built quality prediction model allowed one to reduce the cost associated with actual metrology as well as reveal some insights on the factors affecting the important quality factors and on the level of our less than perfect understanding of the treating process.

Keywords: copper clad laminate, predictive modeling, quality control, virtual metrology

Procedia PDF Downloads 351
285 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique

Authors: Pavana Basavakumar, Devadas Bhat

Abstract:

Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.

Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes

Procedia PDF Downloads 326
284 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257
283 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 497
282 Chemical Pollution of Water: Waste Water, Sewage Water, and Pollutant Water

Authors: Nabiyeva Jamala

Abstract:

We divide water into drinking, mineral, industrial, technical and thermal-energetic types according to its use and purpose. Drinking water must comply with sanitary requirements and norms according to organoleptic devices and physical and chemical properties. Mineral water - must comply with the norms due to some components having therapeutic properties. Industrial water must fulfill its normative requirements by being used in the industrial field. Technical water should be suitable for use in the field of agriculture, household, and irrigation, and the normative requirements should be met. Heat-energy water is used in the national economy, and it consists of thermal and energy water. Water is a filter-accumulator of all types of pollutants entering the environment. This is explained by the fact that it has the property of dissolving compounds of mineral and gaseous water and regular water circulation. Environmentally clean, pure, non-toxic water is vital for the normal life activity of humans, animals and other living beings. Chemical pollutants enter water basins mainly with wastewater from non-ferrous and ferrous metallurgy, oil, gas, chemical, stone, coal, pulp and paper and forest materials processing industries and make them unusable. Wastewater from the chemical, electric power, woodworking and machine-building industries plays a huge role in the pollution of water sources. Chlorine compounds, phenols, and chloride-containing substances have a strong lethal-toxic effect on organisms when mixed with water. Heavy metals - lead, cadmium, mercury, nickel, copper, selenium, chromium, tin, etc. water mixed with ingredients cause poisoning in humans, animals and other living beings. Thus, the mixing of selenium with water causes liver diseases in people, the mixing of mercury with the nervous system, and the mixing of cadmium with kidney diseases. Pollution of the World's ocean waters and other water basins with oil and oil products is one of the most dangerous environmental problems facing humanity today. So, mixing even the smallest amount of oil and its products in drinking water gives it a bad, unpleasant smell. Mixing one ton of oil with water creates a special layer that covers the water surface in an area of 2.6 km2. As a result, the flood of light, photosynthesis and oxygen supply of water is getting weak and there is a great danger to the lives of living beings.

Keywords: chemical pollutants, wastewater, SSAM, polyacrylamide

Procedia PDF Downloads 73
281 Preparedness of Health System in Providing Continuous Health Care: A Case Study From Sri Lanka

Authors: Samantha Ramachandra, Avanthi Rupasinghe

Abstract:

Demographic transition from lower to higher percentage of elderly population eventually coupled with epidemiological transition from communicable to non-communicable diseases (NCD). Higher percentage of NCD overload the health system as NCD survivors claims continuous health care. The demands are challenging to a resource constrained setting but reorganizing the system may find solutions. The study focused on the facilities available and their utilization at outpatient department (OPD) setting of the public hospitals of Sri Lanka for continuous medical care. This will help in identifying steps of reorganizing the system to provide better care with the maximum utilization of available facilities. The study was conducted as a situation analysis with secondary data at hospital planning units. Variable were identified according to the world health organization (WHO) recommendation on continuous health care for elders in “age-friendly primary health care toolkit”. Data were collected from secondary and tertiary care hospitals of Sri Lanka where most of the continuous care services are available. Out of 58 secondary and tertiary care hospitals, 16 were included in the study to represent each hospital categories. Average number of patient attending for episodic treatment at OPD and Clinical follow-up of chronic conditions shows vast disparity according to the category of the hospital ranging from 3750 – 800 per day at OPD and 1250 – 200 per clinic session. Average time spent per person at OPD session is low, range from 1.54 - 2.28 minutes, the time was increasing as the hospital category goes down. 93.7% hospitals had special arrangements for providing acute care on chronic conditions such as catheter, feeding tube and wound care. 25% hospitals had special clinics for elders, 81.2% hospitals had healthy lifestyle clinics (HLC), 75% hospitals had physical rehabilitation facilities and 68.8% hospitals had facilities for counselling. Elderly clinics and HLC were mostly available at lower grade hospitals where as rehabilitation and counselling facilities were mostly available at bigger hospitals. HLC are providing health education for both patients and their family members, refer patients for screening of complication but not provide medical examinations, investigations or treatments even though they operate in the hospital setting. Physical rehabilitation is basically offered for patients with rheumatological conditions but utilization of centers for injury rehabilitation and rehabilitation of survivors following major illness such as myocardial infarctions, stroke, cancer is not satisfactory (12.5%). Human Resource distribution within hospital shows vast disparity and there are 103 physiotherapists in the biggest hospital where only 36 physiotherapists available at the next level hospital. Counselling facilities also provided mainly for the patient with psychological conditions (100%) but they were not providing counselling for newly diagnosed patients with major illnesses (0%). According to results, most of the public-sector hospitals in Sri Lanka have basic facilities required in providing continuous care but the utilization of services need more focus. Hospital administration or the government need to have initial steps in proper utilization of them in improving continuous health care incorporating team approach of rehabilitation. The author wishes to acknowledge that this paper was made possible by the support and guidance given by the “Australia Awards Fellowships Program for Sri Lanka – 2017,” which was funded by the Department of Foreign Affairs and Trade, Australia, and co-hosted by Monash University, Australia and the Sri Lanka Institute of Development Administration.

Keywords: continuous care, outpatient department, non communicable diseases, rehabilitation

Procedia PDF Downloads 168
280 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 69
279 Monitoring Memories by Using Brain Imaging

Authors: Deniz Erçelen, Özlem Selcuk Bozkurt

Abstract:

The course of daily human life calls for the need for memories and remembering the time and place for certain events. Recalling memories takes up a substantial amount of time for an individual. Unfortunately, scientists lack the proper technology to fully understand and observe different brain regions that interact to form or retrieve memories. The hippocampus, a complex brain structure located in the temporal lobe, plays a crucial role in memory. The hippocampus forms memories as well as allows the brain to retrieve them by ensuring that neurons fire together. This process is called “neural synchronization.” Sadly, the hippocampus is known to deteriorate often with age. Proteins and hormones, which repair and protect cells in the brain, typically decline as the age of an individual increase. With the deterioration of the hippocampus, an individual becomes more prone to memory loss. Many memory loss starts off as mild but may evolve into serious medical conditions such as dementia and Alzheimer’s disease. In their quest to fully comprehend how memories work, scientists have created many different kinds of technology that are used to examine the brain and neural pathways. For instance, Magnetic Resonance Imaging - or MRI- is used to collect detailed images of an individual's brain anatomy. In order to monitor and analyze brain functions, a different version of this machine called Functional Magnetic Resonance Imaging - or fMRI- is used. The fMRI is a neuroimaging procedure that is conducted when the target brain regions are active. It measures brain activity by detecting changes in blood flow associated with neural activity. Neurons need more oxygen when they are active. The fMRI measures the change in magnetization between blood which is oxygen-rich and oxygen-poor. This way, there is a detectable difference across brain regions, and scientists can monitor them. Electroencephalography - or EEG - is also a significant way to monitor the human brain. The EEG is more versatile and cost-efficient than an fMRI. An EEG measures electrical activity which has been generated by the numerous cortical layers of the brain. EEG allows scientists to be able to record brain processes that occur after external stimuli. EEGs have a very high temporal resolution. This quality makes it possible to measure synchronized neural activity and almost precisely track the contents of short-term memory. Science has come a long way in monitoring memories using these kinds of devices, which have resulted in the inspections of neurons and neural pathways becoming more intense and detailed.

Keywords: brain, EEG, fMRI, hippocampus, memories, neural pathways, neurons

Procedia PDF Downloads 88
278 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 99
277 Variables, Annotation, and Metadata Schemas for Early Modern Greek

Authors: Eleni Karantzola, Athanasios Karasimos, Vasiliki Makri, Ioanna Skouvara

Abstract:

Historical linguistics unveils the historical depth of languages and traces variation and change by analyzing linguistic variables over time. This field of linguistics usually deals with a closed data set that can only be expanded by the (re)discovery of previously unknown manuscripts or editions. In some cases, it is possible to use (almost) the entire closed corpus of a language for research, as is the case with the Thesaurus Linguae Graecae digital library for Ancient Greek, which contains most of the extant ancient Greek literature. However, concerning ‘dynamic’ periods when the production and circulation of texts in printed as well as manuscript form have not been fully mapped, representative samples and corpora of texts are needed. Such material and tools are utterly lacking for Early Modern Greek (16th-18th c.). In this study, the principles of the creation of EMoGReC, a pilot representative corpus of Early Modern Greek (16th-18th c.) are presented. Its design follows the fundamental principles of historical corpora. The selection of texts aims to create a representative and balanced corpus that gives insight into diachronic, diatopic and diaphasic variation. The pilot sample includes data derived from fully machine-readable vernacular texts, which belong to 4-5 different textual genres and come from different geographical areas. We develop a hierarchical linguistic annotation scheme, further customized to fit the characteristics of our text corpus. Regarding variables and their variants, we use as a point of departure the bundle of twenty-four features (or categories of features) for prose demotic texts of the 16th c. Tags are introduced bearing the variants [+old/archaic] or [+novel/vernacular]. On the other hand, further phenomena that are underway (cf. The Cambridge Grammar of Medieval and Early Modern Greek) are selected for tagging. The annotated texts are enriched with metalinguistic and sociolinguistic metadata to provide a testbed for the development of the first comprehensive set of tools for the Greek language of that period. Based on a relational management system with interconnection of data, annotations, and their metadata, the EMoGReC database aspires to join a state-of-the-art technological ecosystem for the research of observed language variation and change using advanced computational approaches.

Keywords: early modern Greek, variation and change, representative corpus, diachronic variables.

Procedia PDF Downloads 68
276 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 429
275 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model

Authors: Jihane Bouabid

Abstract:

The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.

Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model

Procedia PDF Downloads 63
274 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations

Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim

Abstract:

Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.

Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy

Procedia PDF Downloads 83
273 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System

Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng

Abstract:

Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.

Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging

Procedia PDF Downloads 370
272 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task

Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli

Abstract:

Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.

Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making

Procedia PDF Downloads 252
271 Unpacking the Rise of Social Entrepreneurship over Sustainable Entrepreneurship among Sri Lankan Exporters in SMEs Sector: A Case Study in Sri Lanka

Authors: Amarasinghe Shashikala, Pramudika Hansini, Fernando Tajan, Rathnayake Piyumi

Abstract:

This study investigates the prominence of the social entrepreneurship (SE) model over the sustainable entrepreneurship model among Sri Lankan exporters in the small and medium enterprise (SME) sector. The primary objective of this study is to explore how the unique socio-economic contextual nuances of the country influence this behavior. The study employs a multiple-case study approach, collecting data from thirteen SEs in the SME sector. The findings reveal a significant alignment between SE and the lifestyle of the people in Sri Lanka, attributed largely to its deep-rooted religious setting and cultural norms. A crucial factor driving the prominence of SE is the predominantly labor-intensive nature of production processes within the exporters of the SME sector. These processes inherently lend themselves to SE, providing employment opportunities and fostering community engagement. Further, SE initiatives substantially resonate with community-centric practices, making them more appealing and accessible to the local populace. In contrast, the findings highlight a dilemma between cost-effectiveness and sustainable entrepreneurship. Transitioning to sustainable export products and production processes is demanded by foreign buyers and acknowledged as essential for environmental stewardship, which often requires capital-intensive makeovers. This investment inevitably raises the overall cost of the export product, making it less competitive in the global market. Interestingly, the study notes a disparity between international demand for sustainable products and the willingness of buyers to pay a premium for them. Despite the growing global preference for eco-friendly options, the findings suggest that the additional costs associated with sustainable entrepreneurship are not adequately reflected in the purchasing behavior of international buyers. The abundance of natural resources coupled with a minimal occurrence of natural catastrophes renders exporters less environmentally sensitive. The absence of robust policy support for environmental preservation exacerbates this inclination. Consequently, exporters exhibit a diminished motivation to incorporate environmental sustainability into their business decisions. Instead, attention is redirected towards factors such as the local population's minimum standards of living, prevalent social issues, governmental corruption and inefficiency, and rural poverty. These elements impel exporters to prioritize social well-being when making business decisions. Notably, the emphasis on social impact, rather than environmental impact, appears to be a generational trend, perpetuating a focus on societal aspects in the realm of business. In conclusion, the manifestation of entrepreneurial behavior within developing nations is notably contingent upon contextual nuances. This investigation contributes to a deeper understanding of the dynamics shaping the prevalence of SE over sustainable entrepreneurship among Sri Lankan exporters in the SME sector. The insights generated have implications for policymakers, industry stakeholders, and academics seeking to navigate the delicate balance between socio-cultural values, economic feasibility, and environmental sustainability in the pursuit of responsible business practices within the export sector.

Keywords: small and medium enterprises, social entrepreneurship, Sri Lanka, sustainable entrepreneurship

Procedia PDF Downloads 77
270 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications

Authors: Xianwei Zheng, Yuan Yan Tang

Abstract:

Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.

Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis

Procedia PDF Downloads 342