Search results for: learning physical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12796

Search results for: learning physical

7636 Effectiveness of Gamified Simulators in the Health Sector

Authors: Nuno Biga

Abstract:

The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.

Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness

Procedia PDF Downloads 20
7635 Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential

Authors: Ajay Kumar Singh, Arvind Kumar, S. P. Singh

Abstract:

Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology.

Keywords: enzymatic pretreatment, mechanical refining, nanofibrils, paper properties

Procedia PDF Downloads 355
7634 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 392
7633 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 172
7632 Implementing 3D Printed Structures as the Newest Textile Form

Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın

Abstract:

From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard.

Keywords: 3D printing technology, FDM, SLS, textile structure

Procedia PDF Downloads 345
7631 Self-Regulation and School Adjustment of Students with Autism Spectrum Disorder in Hong Kong

Authors: T. S. Terence Ma, Irene T. Ho

Abstract:

Conducting adequate assessment of the challenges students with ASD (Autism Spectrum Disorder) face and the support they need is imperative for promoting their school adjustment. Students with ASD often show deficits in communication, social interaction, emotional regulation, and self-management in learning. While targeting these areas in intervention is often helpful, we argue that not enough attention has been paid to weak self-regulation being a key factor underlying their manifest difficulty in all these areas. Self-regulation refers to one’s ability to moderate their behavioral or affective responses without assistance from others. Especially for students with high functioning autism, who often show problems not so much in acquiring the needed skills but rather in applying those skills appropriately in everyday problem-solving, self-regulation becomes a key to successful adjustment in daily life. Therefore, a greater understanding of the construct of self-regulation, its relationship with other daily skills, and its role in school functioning for students with ASD would generate insights on how students’ school adjustment could be promoted more effectively. There were two focuses in this study. Firstly, we examined the extent to which self-regulation is a distinct construct that is differentiable from other daily skills and the most salient indicators of this construct. Then we tested a model of relationships between self-regulation and other daily school skills as well as their relative and combined effects on school adjustment. A total of 1,345 Grade1 to Grade 6 students with ASD attending mainstream schools in Hong Kong participated in the research. In the first stage of the study, teachers filled out a questionnaire consisting of 136 items assessing a wide range of student skills in social, emotional and learning areas. Results from exploratory factor analysis (EFA) with 673 participants and subsequent confirmatory factor analysis (CFA) with another group of 672 participants showed that there were five distinct factors of school skills, namely (1) communication skills, (2) pro-social behavior, (3) emotional skills, (4) learning management, and (5) self-regulation. Five scales representing these skill dimensions were generated. In the second stage of the study, a model postulating the mediating role of self-regulation for the effects of the other four types of skills on school adjustment was tested with structural equation modeling (SEM). School adjustment was defined in terms of the extent to which the student is accepted well in school, with high engagement in school life and self-esteem as well as good interpersonal relationships. A 5-item scale was used to assess these aspects of school adjustment. Results showed that communication skills, pro-social behavior, emotional skills and learning management had significant effects on school adjustment only indirectly through self-regulation, and their total effects were found to be not high. The results indicate that support rendered to students with ASD focusing only on the training of well-defined skills is not adequate for promoting their inclusion in school. More attention should be paid to the training of self-management with an emphasis on the application of skills backed by self-regulation. Also, other non-skill factors are important in promoting inclusive education.

Keywords: autism, assessment, factor analysis, self-regulation, school adjustment

Procedia PDF Downloads 113
7630 Induced Pulsation Attack Against Kalman Filter Driven Brushless DC Motor Control System

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

We use modeling and simulation tools, to introduce a novel bias injection attack, named the ’Induced Pulsation Attack’, which targets Cyber Physical Systems with closed-loop controlled Brushless DC (BLDC) motor and Kalman filter driver in the feedback loop. This attack involves engaging a linear function with a constant gradient to distort the coefficient of the injected bias, which falsifies the Kalman filter estimates of the rotor’s angular speed. As a result, this manipulation interaction inside the control system causes periodic pulsations in a form of asymmetric sine wave of both current and voltage in the circuit windings, with a high magnitude. It is shown that by varying the gradient of linear function, one can control both the frequency and structure of the induced pulsations. It is also demonstrated that terminating the attack at any point leads to additional compensating effort from the controller to restore the speed to its equilibrium value. This compensation effort produces an exponentially decaying wave, which we call the ’attack withdrawal syndrome’ wave. The conditions for maximizing or minimizing the impact of the attack withdrawal syndrome are determined. Linking the termination of the attack to the end of the full period of the induced pulsation wave has been shown to nullify the attack withdrawal syndrome wave, thereby improving the attack’s covertness.

Keywords: cyber-attack, induced pulsation, bias injection, Kalman filter, BLDC motor, control system, closed loop, P- controller, PID-controller, saw-function, cyber-physical system

Procedia PDF Downloads 74
7629 Influence of Physicochemical Water Quality Parameters on Abundance of Aquatic Insects in Rivers of Perak, Malaysia

Authors: Nur Atirah Hasmi, Nadia Nisha Musa, Hasnun Nita Ismail, Zulfadli Mahfodz

Abstract:

The effect of water quality parameters on the abundance of aquatic insects has been studied in Batu Berangkai, Dipang, Kuala Woh and Lata Kinjang Rivers, Perak, northern peninsular Malaysia. The focuses are to compare the abundance of aquatic insects in each sampling areas and to investigate the physical and chemical factors (water temperature, depth of water, canopy, water velocity, pH value, and dissolved oxygen) on the abundance of aquatic insects. The samples and data were collected by using aquatic net and multi-probe parameter. Physical parameters; water velocity, water temperature, depth, canopy cover, and two chemical parameters; pH value and dissolved oxygen have been measured in situ and recorded. A total of 631 individuals classified into 6 orders and 18 families of aquatic insects were identified from four sampling sites. The largest percentage of samples collected is from order Plecoptera 35.8%, followed by Ephemeroptera 32.6%, Trichoptera 17.0%, Hemiptera 8.1%, Coleoptera 4.8%, and the least is Odonata 1.7%. The aquatic insects collected from Dipang River have the highest abundance of 273 individuals from 6 orders and 13 families and the least insects trapped at Lata Kinjang which only have 64 individuals from 5 orders and 6 families. There is significant association between different sampling areas and abundance of aquatic insects (p<0.05). High abundance of aquatic insects was found in higher water temperature, low water velocity, deeper water, low pH, high amount of dissolved oxygen, and the area that is not covered by canopy.

Keywords: aquatic insect, physicochemical parameter, river, water quality

Procedia PDF Downloads 221
7628 Pedagogical Opportunities of Physics Education Technology Interactive Simulations for Secondary Science Education in Bangladesh

Authors: Mohosina Jabin Toma, Gerald Tembrevilla, Marina Milner-Bolotin

Abstract:

Science education in Bangladesh is losing its appeal at an alarming rate due to the lack of science laboratory equipment, excessive teacher-student ratio, and outdated teaching strategies. Research-based educational technologies aim to address some of the problems faced by teachers who have limited access to laboratory resources, like many Bangladeshi teachers. Physics Education Technology (PhET) research team has been developing science and mathematics interactive simulations to help students develop deeper conceptual understanding. Still, PhET simulations are rarely used in Bangladesh. The purpose of this study is to explore Bangladeshi teachers’ challenges in learning to implement PhET-enhanced pedagogies and examine teachers’ views on PhET’s pedagogical opportunities in secondary science education. Since it is a new technology for Bangladesh, seven workshops on PhET were conducted in Dhaka city for 129 in-service and pre-service teachers in the winter of 2023 prior to data collection. This study followed an explanatory mixed method approach that included a pre-and post-workshop survey and five semi-structured interviews. Teachers participated in the workshops voluntarily and shared their experiences at the end. Teachers’ challenges were also identified from workshop discussions and observations. The interviews took place three to four weeks after the workshop and shed light on teachers’ experiences of using PhET in actual classroom settings. The results suggest that teachers had difficulty handling new technology; hence, they recommended preparing a booklet and Bengali YouTube videos on PhET to assist them in overcoming their struggles. Teachers also faced challenges in using any inquiry-based learning approach due to the content-loaded curriculum and exam-oriented education system, as well as limited experience with inquiry-based education. The short duration of classes makes it difficult for them to design PhET activities. Furthermore, considering limited access to computers and the internet in school, teachers think PhET simulations can bring positive changes if used in homework activities. Teachers also think they lack pedagogical skills and sound content knowledge to take full advantage of PhET. They highly appreciated the workshops and proposed that the government designs some teacher training modules on how to incorporate PhET simulations. Despite all the challenges, teachers believe PhET can enhance student learning, ensure student engagement and increase student interest in STEM Education. Considering the lack of science laboratory equipment, teachers recognized the potential of PhET as a supplement to hands-on activities for secondary science education in Bangladesh. They believed that if PhET develops more curriculum-relevant sims, it will bring revolutionary changes to how Bangladeshi students learn science. All the participating teachers in this study came from two organizations, and all the workshops took place in urban areas; therefore, the findings cannot be generalized to all secondary science teachers. A nationwide study is required to include teachers from diverse backgrounds. A further study can shed light on how building a professional learning community can lessen teachers’ challenges in incorporating PhET-enhanced pedagogy in their teaching.

Keywords: educational technology, inquiry-based learning, PhET interactive simulations, PhET-enhanced pedagogies, science education, science laboratory equipment, teacher professional development

Procedia PDF Downloads 99
7627 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering

Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo

Abstract:

One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.

Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli

Procedia PDF Downloads 91
7626 Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone

Authors: Mohamed Saad Gad Eloghby

Abstract:

Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants.

Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope

Procedia PDF Downloads 80
7625 A Qualitative Study of the Psychologically Challenging Aspects of Taking Part in an Ultra-Endurance Atlantic Rowing Event

Authors: John Allbutt, Andrew Murray, Jonathan Ling, Thomas M. Heffernan

Abstract:

Ultra-endurance events place unique physical and psychological pressures on participants. In this study, we examined the psychologically challenging aspects of taking part in a 3000 mile transatlantic rowing race using a qualitative approach. To date, more people have been into space than have rowed an ocean and only one psychological study has been conducted on this experience which had a specific research focus. The current study was a qualitative study using semi-structured interviews. Participants were an opportunity sample of seven competitors from a recent ocean rowing race. Participants were asked about the psychological aspects of the event after it had finished. The data were analysed using thematic analysis. Several themes emerged from the analysis. These related to: 1) preparation; 2) bodily aches/pains, 3) race setbacks; 4) boat conditions; 5) interpersonal factors and communication; 6) strategies for managing stress and interpersonal tensions. While participants were generally very positive about the event, the analysis showed that they experienced significant psychological challenges during their voyage. Competitors paid considerable attention to preparing for the physical challenges of the event. However, not all prospective competitors gave the same time to preparing for psychological factors or were aware how they might play out during their voyage. All Atlantic rowing crews should be aware of the psychological challenges they face, and have strategies in place to help cope with the psychological strain of taking part.

Keywords: confinement experiences, ocean rowing, stress, ultra-endurance sport

Procedia PDF Downloads 336
7624 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis

Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud

Abstract:

This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.

Keywords: reinforced soil, geogrid, sand dunes, bearing capacity

Procedia PDF Downloads 429
7623 Automation of AAA Game Development using AI and Procedural Generation

Authors: Paul Toprac, Branden Heng, Harsheni Siddharthan, Allison Tseng, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high budget, high profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 13 AI tools for game development. During this process, the following tools were found to be the most productive: (1) ChatGPT 4.0 for both game and narrative concepting and documentation; (2) Dall-E 3 and OpenArt for concept art; (3) Beatoven for music drafting; (4) Epic PCG for level design; and (5) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are at best tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 33
7622 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 18
7621 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 121
7620 Young People, Well-Being and Risk-Taking: Doing Gender in Relation to Health and Heavy Drinking

Authors: Jukka Torronen

Abstract:

Introduction: Alcohol consumption and health are areas where gender binaries have persisted. By intoxication, men have displayed their masculinity as strong, while matters of health have formed a feminine undertaking. However, in recent years young people’s alcohol consumption has declined and been challenged by competing activities, including the rising health trend. This makes the comparison of young people’s masculinities and femininities in health and heavy drinking an important case to study. Methods: The data consists of semi-structured interviews about alcohol, health, and leisure activities among young people aged between 15 and 19 (N=56). By drawing on Butler’s work on “gender as performative” and Connell’s understanding of gendered identities as “configurations of practices,” the paper analyzes how the interviewees are doing masculinities and femininities in relation to health and heavy drinking, and how their gender performances are dichotomous, naturalized and contested. Results: The interviewees approach health from two perspectives, which are called “social health” and “physical health” approaches. They are both gendered. Especially in the “social health” approach, in which intoxication and risk-taking are used to increase well-being, the interviewees perform stereotypical gender binaries. The interviewees’ gendered performances in the “physical health” approach show more variability and are more reflective and critical. In contrast to intoxication, in relation to which the interviewees perform biologically driven gender binaries, they perform culturally driven genders in relation to health. Conclusions: Health seems to provide for the interviewees a field in which they feel more liberated to perform flexible and alternative genders.

Keywords: young people, decline in drinking, qualitative interviews, gender, health, risk-taking

Procedia PDF Downloads 138
7619 Factors Affecting of Musculoskeletal Disorders in Nurses from a Taiwan Hospital

Authors: Hsien Hua Kuo, Wen Chun Lin, Chia Chi Hsu, Hsien Wen Kuo

Abstract:

Objective: Despite the high prevalence of musculoskeletal disorders (MSDs) among nurses, which has been consistently observed in the studies of Western countries, very little information regarding intensity of workload and work-related quality of life (WRQOL) related to MSDs among nurses is available in Taiwan. The objective of this study is to investigate the factors affecting musculoskeletal disorders in nurses from a hospital. Methods: 550 nurses from a hospital in Taoyuan were interviewed using a modified standardized Nordic Musculoskeletal (NMQ) questionnaire which contained the demographic information, workplace condition and musculoskeletal disorders. Results: Response rate of nurses were 92.5% from a teaching hospital. Based on medical diagnosis by physician, neck of musculoskeletal disorders had the highest percentage in nine body portions. The higher percentage of musculoskeletal disorders in nurses found from wards of internal and surgery. Severity and symptoms of musculoskeletal disorders diagnosed by self-reported questionnaire significantly correlated with WRQOL, job satisfaction and intensity of workload among nurses based on the logistic regression model. Conclusion: The severity and symptoms of musculoskeletal disorders among nurses showed a dose-dependent with WRQOL and workload. When work characteristics in hospital were modified, the severity of musculoskeletal disorders among nurses will be decreased and alleviated. Comment: Multifaceted ergonomic intervention programme to reduce the prevalence of MSDs among nurses was by encouraging nurses to do more physical activity which will make them more flexible and increase their strength. Therefore, the head nurse should encourage nurses to regularly physical activity and to modify unfitting ergonomic environment in order to reduce the prevalence of MSDs.

Keywords: musculoskeletal disorders, nurse, WRQOL, job satisfaction

Procedia PDF Downloads 337
7618 Obesity and Cancer: Current Scientific Evidence and Policy Implications

Authors: Martin Wiseman, Rachel Thompson, Panagiota Mitrou, Kate Allen

Abstract:

Since 1997 World Cancer Research Fund (WCRF) International and the American Institute for Cancer Research (AICR) have been at the forefront of synthesising and interpreting the accumulated scientific literature on the link between diet, nutrition, physical activity and cancer, and deriving evidence-based Cancer Prevention Recommendations. The 2007 WCRF/AICR 2nd Expert Report was a landmark in the analysis of evidence linking diet, body weight and physical activity to cancer and led to the establishment of the Continuous Update Project (CUP). In 2018, as part of the CUP, WCRF/AICR will publish a new synthesis of the current evidence and update the Cancer Prevention Recommendations. This will ensure that everyone - from policymakers and health professionals to members of the public - has access to the most up-to-date information on how to reduce the risk of developing cancer. Overweight and obesity play a significant role in cancer risk, and rates of both are increasing in many parts of the world. This session will give an overview of new evidence relating obesity to cancer since the 2007 report. For example, since the 2007 Report, the number of cancers for which obesity is judged to be a contributory cause has increased from seven to eleven. The session will also shed light on the well-established mechanisms underpinning obesity and cancer links. Additionally, the session will provide an overview of diet and physical activity related factors that promote positive energy imbalance, leading to overweight and obesity. Finally, the session will highlight how policy can be used to address overweight and obesity at a population level, using WCRF International’s NOURISHING Framework. NOURISHING formalises a comprehensive package of policies to promote healthy diets and reduce obesity and non-communicable diseases; it is a tool for policymakers to identify where action is needed and assess if an approach is sufficiently comprehensive. The framework brings together ten policy areas across three domains: food environment, food system, and behaviour change communication. The framework is accompanied by a regularly updated database providing an extensive overview of implemented government policy actions from around the world. In conclusion, the session will provide an overview of obesity and cancer, highlighting the links seen in the epidemiology and exploring the mechanisms underpinning these, as well as the influences that help determine overweight and obesity. Finally, the session will illustrate policy approaches that can be taken to reduce overweight and obesity worldwide.

Keywords: overweight, obesity, nutrition, cancer, mechanisms, policy

Procedia PDF Downloads 160
7617 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 33
7616 Early Childhood Care and Education in the North-West of Nigeria: Trends and Challenges

Authors: Muhammad Adamu Kwankwaso

Abstract:

Early childhood is a critical period of rapid physical, cognitive and psycho-social development of a child. The quality of care and Education which a child receives at this crucial age will determine to a great extent the level of his/her physical and cognitive development in the future. In Nigeria, Early Childhood Care and Education (ECCE) is a fundamental aspect or form of Education for children between the age of 3-6. It was started after independence as pre-primary Education or early child development as contained in the 1977 National Policy on Education. The trends towards ECCE in Nigeria and the northwestern part of the country in particular keep up changing as in the case of other part of the world. The current trends are now towards expansions, inclusiveness, redefinition, early literacy, increased government participation and the unprecedented societal response and awareness towards the Education of the younger children. While all hands are on deck to ensure successful implementation of the ECCE programme, it is unfortunate that, ECCE is facing some challenges. This paper therefore, examines the trends in Early Childhood Care and Education and the major challenges in the north west of Nigeria. Some of the major challenges include, inadequate trained ECCE teachers, lack of unified curriculum, teacher pupil’s ratio, and the medium of instructions and inadequate infrastructural and teaching facilities respectively. To improve the situation the paper offered the following recommendations; establishment of more ECCE classes, enforcement for the use of mothers’ tongue or the languages of the immediate community as a medium of instructions, and adequate provision of infrastructural facilities and the unified curriculum across the northwestern States of Nigeria.

Keywords: early childhood care, education, trends, challenges

Procedia PDF Downloads 480
7615 Exploring the Association between Personality Traits and Adolescent Wellbeing in Online Education: A Systematic Review

Authors: Rashmi Motwani, Ritu Raj

Abstract:

The emergence of online educational environments has changed the way adolescents learn, which has benefits and drawbacks for their development. This review has as its goal the examination of how personality traits and adolescents’ well-being are associated in the setting of online education. This review analyses the effects of a variety of personality traits on the mental, emotional, and social health of online school-going adolescents by looking at a wide range of previous research. This research explores the mechanisms that mediate or regulate the connection between one's personality traits and well-being in an online educational environment. The elements can be broken down into two categories: technological, like internet availability and digital literacy, and social, including social support, peer interaction, and teacher-student connections. To improve the well-being of adolescents in online learning environments, it is essential to understand factors that moderate the effects of interventions and support systems. This review concludes by emphasising the complex nature of the association between individual differences in personality and the success of online students aged 13 to 18. This review contributes to the development of evidence-based strategies for promoting positive mental health and overall well-being among adolescents engaged in online educational settings by shedding light on the impact of personality traits on various dimensions of well-being and by identifying the mediating or moderating factors. Educators, governments, and parents can use the findings of this review to create an online learning environment that is safe and well-being for adolescents.

Keywords: personality traits, adolescent, wellbeing, online education

Procedia PDF Downloads 54
7614 Induced Emotional Empathy and Contextual Factors like Presence of Others Reduce the Negative Stereotypes Towards Persons with Disabilities through Stronger Prosociality

Authors: Shailendra Kumar Mishra

Abstract:

In this paper, we focus on how contextual factors like the physical presence of other perceivers and then developed induced emotional empathy towards a person with disabilities may reduce the automatic negative stereotypes and then response towards that person. We demonstrated in study 1 that negative attitude based on negative stereotypes assessed on ATDP-test questionnaires on five points Linkert-scale are significantly less negative when participants were tested with a group of perceivers and then tested alone separately by applying 3 (positive, indifferent, and negative attitude levels) X 2 (physical presence condition and alone) factorial design of ANOVA test. In the second study, we demonstrate, by applying regression analysis, in the presence of other perceivers, whether in a small group, participants showed more induced emotional empathy through stronger prosociality towards a high distress target like a person with disabilities in comparison of that of other stigmatized persons such as racial biased or gender-biased people. Thus results show that automatic affective response in the form of induced emotional empathy in perceiver and contextual factors like the presence of other perceivers automatically activate stronger prosocial norms and egalitarian goals towards physically challenged persons in comparison to other stigmatized persons like racial or gender-biased people. This leads to less negative attitudes and behaviour towards a person with disabilities.

Keywords: contextual factors, high distress target, induced emotional empathy, stronger prosociality

Procedia PDF Downloads 141
7613 Effectiveness of Using Phonemic Awareness Based Activities in Improving Decoding Skills of Third Grade Students Referred for Reading Disabilities in Oman

Authors: Mahmoud Mohamed Emam

Abstract:

In Oman the number of students referred for reading disabilities is on the rise. Schools serve these students by placement in the so-called learning disabilities unit. Recently the author led a strategic project to train teachers on the use of curriculum based measurement to identify students with reading disabilities in Oman. Additional the project involved training teachers to use phonemic awareness based activities to improve reading skills of those students. Phonemic awareness refers to the ability to notice, think about, and work with the individual sounds in words. We know that a student's skill in phonemic awareness is a good predictor of later reading success or difficulty. Using multiple baseline design across four participants the current studies investigated the effectiveness of using phonemic awareness based activities to improve decoding skills of third grade students referred for reading disabilities in Oman. During treatment students received phonemic awareness based activities that were designed to fulfill the idiosyncratic characteristics of Arabic language phonology as well as orthography. Results indicated that the phonemic awareness based activities were effective in substantially increasing the number of correctly decoded word for all four participants. Maintenance of strategy effects was evident for the weeks following the termination of intervention for the four students. In addition, the effects of intervention generalized to decoding novel words for all four participants.

Keywords: learning disabilities, phonemic awareness, third graders, Oman

Procedia PDF Downloads 645
7612 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 59
7611 Protection of Human Rights in Polish Centres for Foreigners – in the Context of the European Human Rights System

Authors: Oktawia Braniewicz

Abstract:

The phenomenon of emigration and migration increasingly affects Poland's borders as well. For this reason, it is necessary to examine the level of protection of Human Rights in Polish Centres for Foreigners. The field study covered 11 centers for Foreigners in the provinces Kujawsko-Pomorskie Region, Lubelskie Region, Lodzkie Region, Mazowieckie Region and Podlaskie Region. Photographic documentation of living and social conditions, conversations with center employees and refugees allow to show a comprehensive picture of the situation prevailing in Centres for Foreigners. The object of reflection will be, in particular, the standards resulting from art. 8 and 13 of the Convention for the Protection of Human Rights and Fundamental Freedoms and article 2 of Protocol No. 1 to the Convention for the Protection of Human Rights and Fundamental Freedoms. The degree of realization of the right to education and the right to respect for family and private life will be shown. Issues related to learning the Polish language, access to a professional translator and psychological help will also be approximated. Learning Polish is not obligatory, which causes problems with assimilation and integration with other members of the new community. In centers for foreigners, there are no translators - a translator from an external company is rented if necessary. The waiting time for an interpreter makes the refugees feel anxious, unable to communicate with the employees of the centers (this is a situation in which the refugees do not know either English, Polish or Russian). Psychologist's help is available on designated days of the week. There is no separate specialist in child psychology, which is a serious problem.

Keywords: human rights, Polish centres, foreigners, fundamental freedoms

Procedia PDF Downloads 136
7610 A Preliminary Outcome of the Effect of an Accumulating 10,000 Daily Steps on Blood Pressure and Diabetes in Overweight Thai Participants

Authors: Kornanong Yuenyongchaiwat, Duangnate Pepatsitipong, Panthip Sangprasert

Abstract:

High blood pressure and diabetes have been suggested as being non-communicable disease (NCDs), and there is one of the components of the definition of metabolic syndrome. Therefore, the purpose of this study was to evaluate the effect of a 12-week pedometer based community walking intervention on change in resting blood pressure and blood glucose in participants with overweight in the community setting. Method: Participants were recruited both males and females who had a sedentary lifestyle aged 35-59 years (mean aged 49.67 years). A longitudinal quasi-experimental study was designed with 35 overweight participants who had body mass index ≥ 25 kg/m2. These volunteers were assigned to the 12-week pedometer-based walking program (an accumulated at least 10,000 steps a day). Blood pressure and blood glucose were measured initially before and after 12-week intervention. Results: Systolic blood pressure and heart rate were significantly lower in 30 individuals who had accumulated 10,000 steps d-1 in the intervention group at 12 week follow-up (-13.74 mmHg and 5.3 bpm, respectively). In addition, reduction in blood glucose (-14.89 mmol) in the intervention participants was statistically significant (p < .001). A regression analysis indicated that reductions in systolic blood pressure were significantly related to the increase in steps per day. Conclusion: The accumulation of least 10,000 steps d-1 resulted in decreased resting systolic blood pressure and blood glucose in overweight participants. This has also shown that an increase in physical activity in overweight participants with sedentary lifestyle by accumulating at least 10,000 steps a day can reduce the risk of cardiovascular disease (e.g., hypertension and diabetes).

Keywords: blood glucose, blood pressure, diabetes, hypertension, physical activity, walking

Procedia PDF Downloads 285
7609 Application to Monitor the Citizens for Corona and Get Medical Aids or Assistance from Hospitals

Authors: Vathsala Kaluarachchi, Oshani Wimalarathna, Charith Vandebona, Gayani Chandrarathna, Lakmal Rupasinghe, Windhya Rankothge

Abstract:

It is the fundamental function of a monitoring system to allow users to collect and process data. A worldwide threat, the corona outbreak has wreaked havoc in Sri Lanka, and the situation has gotten out of hand. Since the epidemic, the Sri Lankan government has been unable to establish a systematic system for monitoring corona patients and providing emergency care in the event of an outbreak. Most patients have been held at home because of the high number of patients reported in the nation, but they do not yet have access to a functioning medical system. It has resulted in an increase in the number of patients who have been left untreated because of a lack of medical care. The absence of competent medical monitoring is the biggest cause of mortality for many people nowadays, according to our survey. As a result, a smartphone app for analyzing the patient's state and determining whether they should be hospitalized will be developed. Using the data supplied, we are aiming to send an alarm letter or SMS to the hospital once the system recognizes them. Since we know what those patients need and when they need it, we will put up a desktop program at the hospital to monitor their progress. Deep learning, image processing and application development, natural language processing, and blockchain management are some of the components of the research solution. The purpose of this research paper is to introduce a mechanism to connect hospitals and patients even when they are physically apart. Further data security and user-friendliness are enhanced through blockchain and NLP.

Keywords: blockchain, deep learning, NLP, monitoring system

Procedia PDF Downloads 137
7608 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: broadcasting contents, scripts, text similarity, topic model

Procedia PDF Downloads 324
7607 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 128