Search results for: cognitive models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8524

Search results for: cognitive models

3394 Investigation of Antidepressant Activity of Dracaena Trifasciata in Rats

Authors: Samiah Rehman, Kashmira J. Gohil

Abstract:

Objective: Dracaena trifascaita extract (DTE) possesses strong antioxidant and anti-inflammatory properties that play a vital role in the treatment of mental disorders like depression. The present study was designed to evaluate the antidepressant effects of hydroalcoholic extracts of DT on behavioral models of depression. Methodology: Animals were randomly divided into 6 groups of 5 each: Group 1 and 2 received distilled water and standard drug, imipramine: 25mg/kg, respectively. Groups 4, 5 and 6 received DTE treatment orally at doses of 200 ,400 and 600mg/ kg, respectively, for 14 days. Time of immobility was noted by force swimming test (FST)and tail suspension test (TST) on the 1st,7th and 14th days. Results: The time of immobility was reduced in the treatment group as compared to the control and standard. DTE600 mg/kg showed the highest and most significant antidepressant effects as compared to the standard drug imipramine. (25mg/kg). Conclusion: DTE has good potential as an alternative therapy for depression.

Keywords: Dracaena trifasciata, antidepressants, force swimming test, tail suspension test, herbal drug of depression

Procedia PDF Downloads 78
3393 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 for Neural Regeneration after Traumatic Brain Injury

Authors: Xiao-Yin Liu, Liang-Xue Zhou

Abstract:

Traumatic brain injury (TBI), as a kind of nerve trauma caused by an external force, affects people all over the world and is a global public health problem. Although there are various clinical treatments for brain injury, including surgery, drug therapy, and rehabilitation therapy, the therapeutic effect is very limited. To improve the therapeutic effect of TBI, scaffolds combined with exosomes are a promising but challenging method for TBI repair. In this study, we examined whether a novel 3D-printed collagen/chitosan scaffold/exosomes derived from neural stem cells (NSCs) pretreated with insulin growth factor-1 (IGF-I) scaffolds (3D-CC-INExos) could be used to improve TBI repair and functional recovery after TBI. Our results showed that composite scaffolds of collagen-, chitosan- and exosomes derived from NSCs pretreated with IGF-I (INExos) could continuously release the exosomes for two weeks. In the rat TBI model, 3D-CC-INExos scaffold transplantation significantly improved motor and cognitive function after TBI, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that the recovery of damaged nerve tissue in the injured area was significantly improved by 3D-CC-INExos implantation. In conclusion, our data suggest that 3D-CC-INExos might provide a potential strategy for the treatment of TBI and lay a solid foundation for clinical translation.

Keywords: traumatic brain injury, exosomes, insulin growth factor-1, neural stem cells, collagen, chitosan, 3D printing, neural regeneration, angiogenesis, functional recovery

Procedia PDF Downloads 85
3392 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems

Authors: Yuzuru Mitsui, Takashi Ikegami

Abstract:

The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.

Keywords: chaos, density effect, population dynamics, Taylor’s law

Procedia PDF Downloads 177
3391 Cross-Cultural Study of Stroop Interference among Juvenile Delinquents

Authors: Tanusree Moitra, Garga Chatterjee, Diganta Mukherjee, Anjali Ghosh

Abstract:

Stroop task is considered to be an important measure of selective attention. However, the color – word Stroop task cannot be administered to the illiterate population. Some of the participants in the present study are illiterate, therefore, object – color Stroop task was used among male juvenile delinquents of India and Bangladesh citizenship (IC & BC), housed in delinquent home in India. The purpose of the study is to test the hypothesis that over - selective attention is present among juvenile delinquents across both the countries. Eighty juvenile delinquents and matched control of 12 – 18 years (50 IC juvenile delinquents, 30 BC juvenile delinquents and 50 Indian control) were shown 24 familiar objects in both typical (e.g. a red apple) and atypical (e.g. a blue apple) color. Repeated – measure factorial ANOVA was used and it was found that all the three groups have taken longer response time in the atypical condition compared to the typical condition. However, contrary to the over - selective attention hypothesis, both groups of juvenile delinquents displayed higher Stroop interference in comparison to the matched control group. The findings of the study can be explained on the basis of anxiety score. IC and BC juvenile delinquents have high anxiety score compared to the control group which indicates that increased anxiety is correlated with the interference produced by the atypical color object stimuli when compared with the typical object stimuli. Funding acknowledgement: Authors acknowledge Department of Science and Technology, Government of India for financial support to the first author of the paper vide Reference no. SR/CSRI/PDF -01/2013 under Cognitive Science Research Initiative (CSRI) to carry out this work.

Keywords: Bangladesh, India, male juvenile delinquent, objects - color Stroop task

Procedia PDF Downloads 346
3390 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 123
3389 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 274
3388 The Mother Tongue and Related Issues in Algeria

Authors: Farouk A.N. Bouhadiba

Abstract:

Based on Fishman’s Theoretical Paradigm (1991), we shall first discuss his three value positions for the case of the so called minority native languages in Algeria and how they may be included into a global language teaching program in Algeria. We shall then move on to his scale on language loss, language maintenance and language renewal with illustrating examples taken from the Algerian context. The second part of our talk relates to pedagogical issues on how to proceed for a smooth transition from mother tongue to school tongue, what methods or approaches suit best the teaching of mother tongue and school tongue (Immersion Programs, The Natural Approach, Applied Literacy Programs, The Berlitz Method, etc.). We shall end up our talk on how one may reshuffle the current issues on the “Arabic-only” movement and the abrupt transition from mother tongue to school tongue in use today by opting for teaching programs that involve pre-school language acquisition and in-school language acquisition grammars, and thus pave the way to effective language teaching programs and living curricula and pedagogies such as language nests, intergenerational continuity, communication and identity teaching programs, which result in better language teaching models that make language policies become a reality.

Keywords: native languages, language maintenance, mother tongue, school tongue, education, Algeria

Procedia PDF Downloads 39
3387 Investigating (Im)Politeness Strategies in Email Communication: The Case Algerian PhD Supervisees and Irish Supervisors

Authors: Zehor Ktitni

Abstract:

In pragmatics, politeness is regarded as a feature of paramount importance to successful interpersonal relationships. On the other hand, emails have recently become one of the indispensable means of communication in educational settings. This research puts email communication at the core of the study and analyses it from a politeness perspective. More specifically, it endeavours to look closely at how the concept of (im)politeness is reflected through students’ emails. To this end, a corpus of Algerian supervisees’ email threads, exchanged with their Irish supervisors, was compiled. Leech’s model of politeness (2014) was selected as the main theoretical framework of this study, in addition to making reference to Brown and Levinson’s model (1987) as it is one of the most influential models in the area of pragmatic politeness. Further, some follow-up interviews are to be conducted with Algerian students to reinforce the results derived from the corpus. Initial findings suggest that Algerian Ph.D. students’ emails tend to include more politeness markers than impoliteness ones, they heavily make use of academic titles when addressing their supervisors (Dr. or Prof.), and they rely on hedging devices in order to sound polite.

Keywords: politeness, email communication, corpus pragmatics, Algerian PhD supervisees, Irish supervisors

Procedia PDF Downloads 76
3386 The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones

Authors: Ayoub El Bourtali, Abdessamed Najine, Amrou Moussa Benmoussa

Abstract:

It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity.

Keywords: derna river, 1D hydrodynamic model, flood modelling, HEC-RAS 5.0.4

Procedia PDF Downloads 320
3385 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows

Procedia PDF Downloads 277
3384 Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions

Authors: Ashish Kumar Singh, Preeti Tiwari, Shubham Srivastava, Rajiv Prakash, Herman Terryn, Gopal Ji

Abstract:

Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm.

Keywords: mild steel, Azo dye, EIS, Langmuir isotherm

Procedia PDF Downloads 385
3383 On Demand Transport: Feasibility Study - Local Needs and Capabilities within the Oran Wilaya

Authors: Nadjet Brahmia

Abstract:

The evolution of urban forms, the new aspects of mobility, the ways of life and economic models make public transport conventional collective low-performing on the majority of largest Algerian cities, particularly in the west of Algeria. On the other side, the information and communication technologies (ICT) open new eventualities to develop a new mode of transport which brings together both the tenders offered by the public service collective and those of the particular vehicle, suitable for urban requirements, social and environmental. Like the concrete examples made in the international countries in terms of on-demand transport systems (ODT) more particularly in the developed countries, this article has for objective the opportunity analysis to establish a service of ODT at the level of a few towns of Oran Wilaya, such a service will be subsequently spread on the totality of the Wilaya if not on the whole of Algeria. In this context, we show the different existing means of transport in the current network whose aim to illustrate the points of insufficiency accented in the present transport system, then we discuss the solutions that may exhibit a service of ODT to the problem studied all around the transport sector, to carry at the end to highlight the capabilities of ODT replying to the transformation of mobilities, this in the light of well-defined cases.

Keywords: mobility, on-demand transport, public transport collective, transport system

Procedia PDF Downloads 362
3382 Risk Assessment and Management Using Machine Learning Models

Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh

Abstract:

In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.

Keywords: machine learning, risk assessment, ethical considerations, financial inclusion

Procedia PDF Downloads 78
3381 Asymmetric Information and Composition of Capital Inflows: Stock Market Microstructure Analysis of Asia Pacific Countries

Authors: Farid Habibi Tanha, Hawati Janor, Mojtaba Jahanbazi

Abstract:

The purpose of this study is to examine the effect of asymmetric information on the composition of capital inflows. This study uses the stock market microstructure to capture the asymmetric information. Such an approach allows one to capture the level and extent of the asymmetric information from a firm’s perspective. This study focuses on the two-dimensional measure of the market microstructure in capturing asymmetric information. The composition of capital inflows is measured by running six models simultaneously. By employing the panel data technique, the main finding of this research shows an increase in the asymmetric information of the stock market, in any of the two dimensions of width and depth. This leads to the reduction of foreign investments in both forms of foreign portfolio investment (FPI) and foreign direct investment (FDI), while the reduction in FPI is higher than that of the FDI. The significant effect of asymmetric information on capital inflows implicitly suggests for policymakers to control the changes of foreign capital inflows through transparency in the level of the market.

Keywords: capital flows composition, asymmetric information, stock market microstructure, foreign portfolio investment, foreign direct investment

Procedia PDF Downloads 366
3380 Assessing Two Protocols for Positive Reinforcement Training in Captive Olive Baboons (Papio anubis)

Authors: H. Cano, P. Ferrer, N. Garcia, M. Popovic, J. Zapata

Abstract:

Positive Reinforcement Training is a well-known methodology which has been reported frequently to be used in captive non-human primates. As a matter of fact, it is an invaluable tool for different purposes related with animal welfare, such as primate husbandry and environmental enrichment. It is also essential to perform some cognitive experiments. The main propose of this pilot study was to establish an efficient protocol to train captive olive baboons (Papio anubis). This protocol seems to be vital in the context of a larger research program in which it will be necessary to train a complete population of around 40 baboons. Baboons were studied at the Veterinary Research Farm of the University of Murcia. Temporally isolated animals were trained to perform three basic tasks. Firstly, they were required to take food prices directly from the researchers’ hands. Then a clicker sound or bridge stimulus was added each time the animal acceded to the reinforcement. Finally, they were trained to touch a target, consisted of a whip with a red ball in its end, with their hands or their nose. When the subject completed correctly this task, it was also exposed to the bridge stimulus and awarded with a food price, such as a portion of banana, orange, apple, peach or a raisin. Two protocols were tested during this experiment. In both of them, there were 6 series of 2min training periods each day. However, in the first protocol, the series consisted in 3 trials, whereas in the second one, in each series there were 5 trials. A reliable performance was obtained with only 6 days of training in the case of the 5-trials protocol. However, with the 3-trials one, 26 days of training were needed. As a result, the 5-trials protocol seems to be more effective than the 3-trials one, in order to teach these three basic tasks to olive baboons. In consequence, it will be used to train the rest of the colony.

Keywords: captive primates, olive baboon, positive reinforcement training, Papio anubis, training

Procedia PDF Downloads 128
3379 Integrated Vegetable Production Planning Considering Crop Rotation Rules Using a Mathematical Mixed Integer Programming Model

Authors: Mohammadali Abedini Sanigy, Jiangang Fei

Abstract:

In this paper, a mathematical optimization model was developed to maximize the profit in a vegetable production planning problem. It serves as a decision support system that assists farmers in land allocation to crops and harvest scheduling decisions. The developed model can handle different rotation rules in two consecutive cycles of production, which is a common practice in organic production system. Moreover, different production methods of the same crop were considered in the model formulation. The main strength of the model is that it is not restricted to predetermined production periods, which makes the planning more flexible. The model is classified as a mixed integer programming (MIP) model and formulated in PYOMO -a Python package to formulate optimization models- and solved via Gurobi and CPLEX optimizer packages. The model was tested with secondary data from 'Australian vegetable growing farms', and the results were obtained and discussed with the computational test runs. The results show that the model can successfully provide reliable solutions for real size problems.

Keywords: crop rotation, harvesting, mathematical model formulation, vegetable production

Procedia PDF Downloads 193
3378 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring

Abstract:

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Keywords: dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA

Procedia PDF Downloads 180
3377 The Ability of Forecasting the Term Structure of Interest Rates Based on Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector auto-regressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel Model, neural networks, Svensson Model, vector autoregressive model, yield curve

Procedia PDF Downloads 340
3376 A Correlation Between Perceived Usage of Project Management Methodologies and Project Success in Horizon 2020 Projects

Authors: Aurelio Palacardo, Giulio Mangano, Alberto De Marco

Abstract:

Nowadays, the global economic framework is extremely competitive, and it consequently requires an efficient deployment of the resources provided by EU. In this context, Project management practices are intended to be one of the levers for increasing such an efficiency. The objective of this work is to explore the usage of Project Management methodologies and good practices in the European-wide research program “Horizon2020” and establish whether their maturity might impact the project's success. This allows to identify strengths in terms of application of PM methodologies and good practices and, in turn, to provide feedback and opportunities for improvements to be implemented in future programs. In order to achieve this objective, the present research makes use of a survey-based data retrieval and correlation analysis to investigate the level of perceived PM maturity in H2020 projects and the correlation of maturity with project success. The results show the Project Managers involved in H2020 to hold a high level of PM maturity, confirming PM standards, which are imposed by the EU commission as a binding process, are effectively enforced.

Keywords: project management, project management maturity, maturity models, project success

Procedia PDF Downloads 170
3375 Insights into the Assessment of Intercultural Competence of Female University Students in the KSA

Authors: Agnes Havril

Abstract:

The aim of this paper is to introduce some partial findings of an ongoing research project which is investigating the improvement of intercultural competence of Saudi female university students in English as a Second Language academic environment at the multicultural Jazan University. Since previous research results support the idea that this university generation has the desire to become interculturally or globally competent university students, the present-day investigation is focusing on the assessment of Saudi-specific cultural terms and intercultural competence components in comparison with the Anglo-Saxon oriented western perspective of intercultural competence theories and models. On this stage of the research quantitative research methodology is applied and a survey is being conducted among the female university students in different academic specializations. This paper discusses some empirical data with the aim of identifying and evaluating certain supplementary aspects of intercultural dimensions and components of the intercultural competence construct. The research results also highlight several gender issues in the gender separated higher education in the Kingdom of Saudi Arabia.

Keywords: gender separation, globally competent university student, intercultural competence, intercultural competence construct, higher education

Procedia PDF Downloads 341
3374 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis

Authors: Yazid Alkraimeen

Abstract:

Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.

Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses

Procedia PDF Downloads 141
3373 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 249
3372 Regulation and Transparency: The Case of Corporate Governance Disclosure on the Internet in the United Arab Emirates

Authors: Peter Oyelere, Fernando Zanella

Abstract:

Corporate governance is one of the most discussed and researched issues in recent times in countries around the world, with different countries developing and adopting different governance structures, models and mechanisms. While the Codes of corporate governance have been weaved into the regulatory fabrics of most countries, it is equally critically important that their mechanisms, procedures and practices be transparent, and be transparently communicated to all stakeholders. The Internet can be a very useful and cost-effective tool for the timely and voluntary communication of corporate governance matters to stakeholders. The current paper details the results of an investigation on the extent of which companies listed in the UAE are using the Internet for communicating corporate governance issues, matters and procedures. We surveyed the websites of companies listed on the two UAE Stock Exchanges – the Abu Dhabi Stock Exchange (ADX) and the Dubai Financial Market (DFM) – to find out their level and nature of usage of the Internet for corporate governance disclosures. Regulatory and policy implications of the results of our investigation, as well as other areas for further studies, are also presented in the paper.

Keywords: corporate governance, internet financial reporting, regulation, transparency, United Arab Emirates

Procedia PDF Downloads 371
3371 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
3370 Improved Anatomy Teaching by the 3D Slicer Platform

Authors: Ahmedou Moulaye Idriss, Yahya Tfeil

Abstract:

Medical imaging technology has become an indispensable tool in many branches of the biomedical, health area, and research and is vitally important for the training of professionals in these fields. It is not only about the tools, technologies, and knowledge provided but also about the community that this training project proposes. In order to be able to raise the level of anatomy teaching in the medical school of Nouakchott in Mauritania, it is necessary and even urgent to facilitate access to modern technology for African countries. The role of technology as a key driver of justifiable development has long been recognized. Anatomy is an essential discipline for the training of medical students; it is a key element for the training of medical specialists. The quality and results of the work of a young surgeon depend on his better knowledge of anatomical structures. The teaching of anatomy is difficult as the discipline is being neglected by medical students in many academic institutions. However, anatomy remains a vital part of any medical education program. When anatomy is presented in various planes medical students approve of difficulties in understanding. They do not increase their ability to visualize and mentally manipulate 3D structures. They are sometimes not able to correctly identify neighbouring or associated structures. This is the case when they have to make the identification of structures related to the caudate lobe when the liver is moved to different positions. In recent decades, some modern educational tools using digital sources tend to replace old methods. One of the main reasons for this change is the lack of cadavers in laboratories with poorly qualified staff. The emergence of increasingly sophisticated mathematical models, image processing, and visualization tools in biomedical imaging research have enabled sophisticated three-dimensional (3D) representations of anatomical structures. In this paper, we report our current experience in the Faculty of Medicine in Nouakchott Mauritania. One of our main aims is to create a local learning community in the fields of anatomy. The main technological platform used in this project is called 3D Slicer. 3D Slicer platform is an open-source application available for free for viewing, analysis, and interaction with biomedical imaging data. Using the 3D Slicer platform, we created from real medical images anatomical atlases of parts of the human body, including head, thorax, abdomen, liver, and pelvis, upper and lower limbs. Data were collected from several local hospitals and also from the website. We used MRI and CT-Scan imaging data from children and adults. Many different anatomy atlases exist, both in print and digital forms. Anatomy Atlas displays three-dimensional anatomical models, image cross-sections of labelled structures and source radiological imaging, and a text-based hierarchy of structures. Open and free online anatomical atlases developed by our anatomy laboratory team will be available to our students. This will allow pedagogical autonomy and remedy the shortcomings by responding more fully to the objectives of sustainable local development of quality education and good health at the national level. To make this work a reality, our team produced several atlases available in our faculty in the form of research projects.

Keywords: anatomy, education, medical imaging, three dimensional

Procedia PDF Downloads 247
3369 Polymorphisms of the UM Genotype of CYP2C19*17 in Thais Taking Medical Cannabis

Authors: Athicha Cherdpunt, Patompong Satapornpong

Abstract:

The medical cannabis is made up of components also known as cannabinoids, which consists of two ingredients which are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Interestingly, the Cannabinoid can be used for many treatments such as chemotherapy, including nausea and vomiting, cachexia, anorexia nervosa, spinal cord injury and disease, epilepsy, pain, and many others. However, the adverse drug reactions (ADRs) of THC can cause sedation, anxiety, dizziness, appetite stimulation and impairments in driving and cognitive function. Furthermore, genetic polymorphisms of CYP2C9, CYP2C19 and CYP3A4 influenced the THC metabolism and might be a cause of ADRs. Particularly, CYP2C19*17 allele increases gene transcription and therefore results in ultra-rapid metabolizer phenotype (UM). The aim of this study, is to investigate the frequency of CYP2C19*17 alleles in Thai patients who have been treated with medical cannabis. We prospectively enrolled 60 Thai patients who were treated with medical cannabis and clinical data from College of Pharmacy, Rangsit University. DNA of each patient was isolated from EDTA blood, using the Genomic DNA Mini Kit. CYP2C19*17 genotyping was conducted using the real time-PCR ViiA7 (ABI, Foster City, CA, USA). 30 patients with medical cannabis-induced ADRs group, 20 (67%) were female, and 10 (33%) were male, with an age range of 30-69 years. On the other hand, 30 patients without medical cannabis-induced ADRs (control group) consist of 17 (57%) female and 13 (43%) male. The most ADRs for medical cannabis treatment in the case group were dry mouth and dry throat (77%), tachycardia (70%), nausea (30%) and arrhythmia(10%). Accordingly, the case group carried CYP2C19*1/*1 (normal metabolizer) approximately 93%, while 7% patients carrying CYP2C19*1/*17 (ultra rapid metabolizers) exhibited in this group. Meanwhile, we found 90% of CYP2C19*1/*1 and 10% of CYP2C19*1/*17 in control group. In this study, we identified the frequency of CYP2C19*17 allele in Thai population which will support the pharmacogenetics biomarkers for screening and avoid ADRs of medical cannabis treatment.

Keywords: CYP2C19, allele frequency, ultra rapid metabolizer, medical cannabis

Procedia PDF Downloads 113
3368 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction

Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani

Abstract:

Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.

Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse

Procedia PDF Downloads 93
3367 A Prospective Evaluation of Thermal Radiation Effects on Magneto-Hydrodynamic Transport of a Nanofluid Traversing a Spongy Medium

Authors: Azad Hussain, Shoaib Ali, M. Y. Malik, Saba Nazir, Sarmad Jamal

Abstract:

This article reports a fundamental numerical investigation to analyze the impact of thermal radiations on MHD flow of differential type nanofluid past a porous plate. Here, viscosity is taken as function of temperature. Energy equation is deliberated in the existence of viscous dissipation. The mathematical terminologies of nano concentration, velocity and temperature are first cast into dimensionless expressions via suitable conversions and then solved by using Shooting technique to obtain the numerical solutions. Graphs has been plotted to check the convergence of constructed solutions. At the end, the influence of effective parameters on nanoparticle concentration, velocity and temperature fields are also deliberated in a comprehensive way. Moreover, the physical measures of engineering importance such as the Sherwood number, Skin friction and Nusselt number are also calculated. It is perceived that the thermal radiation enhances the temperature for both Vogel's and Reynolds' models but the normal stress parameter causes a reduction in temperature profile.

Keywords: MHD flow, differential type nanofluid, Porous medium, variable viscosity, thermal radiation

Procedia PDF Downloads 246
3366 An enhanced Framework for Regional Tourism Sustainable Adaptation to Climate Change

Authors: Joseph M. Njoroge

Abstract:

The need for urgent adaptation have triggered tourism stakeholders and research community to develop generic adaptation framework(s) for national, regional and or local tourism desti-nations. Such frameworks have been proposed to guide the tourism industry in the adaptation process with an aim of reducing tourism industry’s vulnerability and to enhance their ability to cope to climate associated externalities. However research show that current approaches are far from sustainability since the adaptation options sought are usually closely associated with development needs-‘business as usual’-where the implication of adaptation to social justice and environmental integrity are often neglected. Based on this view there is a need to look at adaptation beyond addressing vulnerability and resilience to include the need for adaptation to enhance social justice and environmental integrity. This paper reviews the existing adaptation frameworks/models and evaluates their suitability in enhancing sustainable adaptation for regional tourist destinations. It is noted that existing frameworks contradicts the basic ‘principles of sustainable adaptation’. Further attempts are made to propose a Sustainable Regional Tourism Adaptation Framework (SRTAF) to assist regional tourism stakeholders in the achieving sustainable adaptation.

Keywords: sustainable adaptation, sustainability principles, sustainability portfolio, Regional Tourism

Procedia PDF Downloads 405
3365 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 142