Search results for: plant material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9875

Search results for: plant material

4775 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.

Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy

Procedia PDF Downloads 315
4774 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils

Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev

Abstract:

The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.

Keywords: slope, channel, landslide, collapse, swell, soil, structure

Procedia PDF Downloads 91
4773 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State

Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi

Abstract:

Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.

Keywords: soil organic carbon (SOC), horizon, pedon, Akure

Procedia PDF Downloads 157
4772 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra

Procedia PDF Downloads 233
4771 Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall performance of BFRP panel had a 15% increase compared to that of GFRP infill panel system. However, the variation of buckling load in terms of temperature for the BFRP system showed a more sensitive nature compared to those of GFRP system.

Keywords: basalt fiber reinforced polymer (BFRP), buckling performance, numerical simulation, temperature dependent materials

Procedia PDF Downloads 203
4770 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells

Authors: David Ompong, Jai Singh

Abstract:

A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.

Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels

Procedia PDF Downloads 454
4769 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 135
4768 The Retrospective Investigation of the Impacts of Alien Taxa on Human Health: A Case Study of Two Poison Information Centers

Authors: Moleseng Claude Moshobane

Abstract:

Alien species cause considerable negative impacts on biodiversity, economy and public health. Impacts of alien species on public health have received a degree of attention worldwide, largely in developed countries, but scarce in developing countries. Here, we provide a review of human exposures and poisonings cases from native and alien plant species reported to poison information centers. A retrospective review of the Tygerberg Poison Information Centre (TPIC) and Poisons Information Centre (PIC) at Red Cross War Memorial Children's Hospital (RCWMCH) was conducted over approximately 2-year period (1 June 2015 through to 06 March 2017). Combined, TPIC and PIC handled 626 cases during the 2-year period. Toxicity cases were more abundant in Gauteng (47.1%), followed by Western Cape (29.4%). The primary mechanism of injury was ingestion (96.7%), and all cases were predominantly accidental. Most reported cases involved infants (20.6%), with few fully-grown adults related cases (5.8%). Adults presented minor to moderate toxicity, while infants none to minor toxicity. We conclude that reported toxicity cases on human health are biased towards few alien species and that several cases relate to unknown species of mushrooms. Public awareness is essential to reducing the poisoning incidences.

Keywords: alien species, poisoning, invasive species, public health

Procedia PDF Downloads 189
4767 Radiation Dosimetry Using Sintered Pellets of Yellow Beryl (Heliodor) Crystals

Authors: Lucas Sátiro Do Carmo, Betzabel Noemi Silva Carrera, Shigueo Watanabe, J. F. D. Chubaci

Abstract:

Beryl is a silicate with chemical formula Be₃Al₂(SiO₃)₆ commonly found in Brazil. It has a few colored variations used as jewelry, like Aquamarine (blueish), Emerald (green) and Heliodor (yellow). The color of each variation depends on the dopant that is naturally present in the crystal lattice. In this work, Heliodor pellets of 5 mm diameter and 1 mm thickness have been produced and investigated using thermoluminescence (TL) to evaluate its potential for use as gamma ray’s dosimeter. The results show that the pellets exhibited a prominent TL peak at 205 °C that grows linearly with dose when irradiated from 1 Gy to 1000 Gy. A comparison has been made between powdered and sintered dosimeters. The results show that sintered pellets have higher sensitivity than powder dosimeter. The TL response of this mineral is satisfactory for radiation dosimetry applications in the studied dose range.

Keywords: dosimetry, beryl, gamma rays, sintered pellets, new material

Procedia PDF Downloads 101
4766 Influence of Iron Content in Carbon Nanotubes on the Intensity of Hyperthermia in the Cancer Treatment

Authors: S. Wiak, L. Szymanski, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

The term ‘cancer’ is given to a collection of related diseases that may affect any part of the human body. It is a pathological behaviour of cells with the potential to undergo abnormal breakdown in the processes that control cell proliferation, differentiation, and death of particular cells. Although cancer is commonly considered as modern disease, there are beliefs that drastically growing number of new cases can be linked to the extensively prolonged life expectancy and enhanced techniques for cancer diagnosis. Magnetic hyperthermia therapy is a novel approach to cancer treatment, which may greatly contribute to higher efficiency of the therapy. Employing carbon nanotubes as nanocarriers for magnetic particles, it is possible to decrease toxicity and invasiveness of the treatment by surface functionalisation. Despite appearing in recent years, magnetic particle hyperthermia has already become of the highest interest in the scientific and medical environment. The reason why hyperthermia therapy brings so much hope for future treatment of cancer lays in the effect that it produces in malignant cells. Subjecting them to thermal shock results in activation of numerous degradation processes inside and outside the cell. The heating process initiates mechanisms of DNA destruction, protein denaturation and induction of cell apoptosis, which may lead to tumour shrinkage, and in some cases, it may even cause complete disappearance of cancer. The factors which have the major impact on the final efficiency of the treatment include temperatures generated inside the tissues, time of exposure to the heating process, and the character of an individual cancer cell type. The vast majority of cancer cells is characterised by lower pH, persistent hypoxia and lack of nutrients, which can be associated to abnormal microvasculature. Since in healthy tissues we cannot observe presence of these conditions, they should not be seriously affected by elevation of the temperature. The aim of this work is to investigate the influence of iron content in iron filled Carbon Nanotubes on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon- ferromagnetic nanocontainers (FNCs) includes the synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, radio frequency field

Procedia PDF Downloads 127
4765 Parameters of Minimalistic Mosque in India within Minimalism

Authors: Hafila Banu

Abstract:

Minimalism is a postmodern style movement which emerged in the 50s of the twentieth century, but it was rapidly growing in the years of 60s and 70s. Minimalism is defined as the concept of minimizing distractions from what is truly valuable or essential. On the same grounds, works of minimalism offer a direct view at and raises questions about the true nature of the subject or object inviting the viewer to consider it for it for the real shape, a thought, a movement reminding us to focus on what is really important. The Architecture of Minimalism is characterized by an economy with materials , focusing on building quality with considerations for ‘essences’ as light, form, detail of material, texture, space and scale, place and human conditions . The research of this paper is mainly into the basis of designing a minimalistic mosque in India while analysing the parameters for the design from the matching characteristics of Islamic architecture in specific to a mosque and the minimalism. Therefore, the paper is about the mosque architecture and minimalism and of their underlying principles, matching characteristics and design goals.

Keywords: Islamic architecture, minimalism, minimalistic mosque, mosque in India

Procedia PDF Downloads 201
4764 Performing Arts and Performance Art: Interspaces and Flexible Transitions

Authors: Helmi Vent

Abstract:

This four-year artistic research project has set the goal of exploring the adaptable transitions within the realms between the two genres. This paper will single out one research question from the entire project for its focus, namely on how and under what circumstances such transitions between a reinterpretation and a new creation can take place during the performative process. The film documentation that accompany the project were produced at the Mozarteum University in Salzburg, Austria, as well as on diverse everyday stages at various locations. The model institution that hosted the project is the LIA – Lab Inter Arts, under the direction of Helmi Vent. LIA combines artistic research with performative applications. The project participants are students from various artistic fields of study. The film documentation forms a central platform for the entire project. They function as audiovisual records of performative performative origins and development processes, while serving as the basis for analysis and evaluation, including the self-evaluation of the recorded material and they also serve as illustrative and discussion material in relation to the topic of this paper. Regarding the “interspaces” and variable 'transitions': The performing arts in the western cultures generally orient themselves toward existing original compositions – most often in the interconnected fields of music, dance and theater – with the goal of reinterpreting and rehearsing a pre-existing score, choreographed work, libretto or script and presenting that respective piece to an audience. The essential tool in this reinterpretation process is generally the artistic ‘language’ performers learn over the course of their main studies. Thus, speaking is combined with singing, playing an instrument is combined with dancing, or with pictorial or sculpturally formed works, in addition to many other variations. If the Performing Arts would rid themselves of their designations from time to time and initially follow the emerging, diffusely gliding transitions into the unknown, the artistic language the performer has learned then becomes a creative resource. The illustrative film excerpts depicting the realms between Performing Arts and Performance Art present insights into the ways the project participants embrace unknown and explorative processes, thus allowing the genesis of new performative designs or concepts to be invented between the participants’ acquired cultural and artistic skills and their own creations – according to their own ideas and issues, sometimes with their direct involvement, fragmentary, provisional, left as a rough draft or fully composed. All in all, it is an evolutionary process and its key parameters cannot be distilled down to their essence. Rather, they stem from a subtle inner perception, from deep-seated emotions, imaginations, and non-discursive decisions, which ultimately result in an artistic statement rising to the visible and audible surface. Within these realms between performing arts and performance art and their extremely flexible transitions, exceptional opportunities can be found to grasp and realise art itself as a research process.

Keywords: art as research method, Lab Inter Arts ( LIA ), performing arts, performance art

Procedia PDF Downloads 275
4763 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 553
4762 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 344
4761 Muscle: The Tactile Texture Designed for the Blind

Authors: Chantana Insra

Abstract:

The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.

Keywords: blind, tactile texture, muscle, visual arts and design

Procedia PDF Downloads 273
4760 Technology Blending as an Innovative Construction Mechanism in the Global South

Authors: Janet Kaningen, Richard N. Kaningen, Jonas Kaningen

Abstract:

This paper aims to discover the best ways to improve production efficiency, cost efficiency, community cohesion, and long-term sustainability in Ghana's housing delivery. Advanced Construction Technologies (ACTs) are set to become the sustainable mainstay of the construction industry due to the demand for innovative housing solutions. Advances in material science, building component production, and assembly technologies are leading to the development of next-generation materials such as polymeric-fiber-based products, light-metal alloys, and eco-materials. Modular housing construction has become more efficient and cost-effective than traditional building methods and is becoming increasingly popular for commercial, industrial, and residential projects. Effective project management and logistics will be imperative in the future speed and cost of modular construction housing.

Keywords: technology blending, sustainability, housing, Ghana

Procedia PDF Downloads 93
4759 Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method

Authors: Gueridi Bachir, Dadache Derradji, Rouabah Farid

Abstract:

This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films.

Keywords: sol-gel method, hybrid materials, PVA/SIO₂/TiO₂, spectroscopical characterization

Procedia PDF Downloads 20
4758 Personalized Learning: An Analysis Using Item Response Theory

Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah

Abstract:

Personalized learning becomes increasingly popular which not is restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability. The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT, it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores. Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.

Keywords: assessment, item response theory, cognitive load theory, learning, motivation, performance

Procedia PDF Downloads 321
4757 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System

Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh

Abstract:

Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.

Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato

Procedia PDF Downloads 448
4756 Physico-Chemical Characteristics of Terminalia arjuna Encapsulated Dairy Drink

Authors: Sawale Pravin Digambar, G. R. Patil, Shaik Abdul Hussain

Abstract:

Terminalia arjuna (TA), an important medicinal plant in Indian System of Medicine, is specifically recognized for its recuperative effect on heart ailments. Alcoholic extract of TA (both free and encapsulated) was incorporated into milk to obtain functional dairy beverages. The respective beverages were appropriately flavored and optimized using response surface methodology to improve the sensory appeal. The beverages were evaluated for their compositional, anti-oxidative and various other physico-chemical aspects. Addition of herb (0.3%) extract to flavoured dairy drink (Drink 1) resulted in significantly lowered (p>0.05) HMF content and increased antioxidant activity, total phenol content as compared with control (Control 1). Subsequently, a significant (p>0.05) increase in acidity and sedimentation was also observed. Encapsulated herb (1.8%) incorporated drink (Drink 2) had significantly (P>0.05) enhanced HMF value and decreased antioxidant activity, phenol content as compared to herb added vanilla chocolate dairy drink (Drink 1). It can be concluded that addition of encapsulated TA extract and non-encapsulated TA extract to chocolate dairy drink at 0.3% concentration altered the functional properties vanilla chocolate dairy drink which could be related to the interaction of herb components such as polyphenol with milk protein or maltodextrin/ gum Arabic matrix.

Keywords: Terminalia arjuna, encapsulate, antioxidant activity, physicochemical study

Procedia PDF Downloads 365
4755 Optimizing of Machining Parameters of Plastic Material Using Taguchi Method

Authors: Jumazulhisham Abdul Shukor, Mohd. Sazali Said, Roshanizah Harun, Shuib Husin, Ahmad Razlee Ab Kadir

Abstract:

This paper applies Taguchi Optimization Method in determining the best machining parameters for pocket milling process on Polypropylene (PP) using CNC milling machine where the surface roughness is considered and the Carbide inserts cutting tool are used. Three machining parameters; speed, feed rate and depth of cut are investigated along three levels; low, medium and high of each parameter (Taguchi Orthogonal Arrays). The setting of machining parameters were determined by using Taguchi Method and the Signal-to-Noise (S/N) ratio are assessed to define the optimal levels and to predict the effect of surface roughness with assigned parameters based on L9. The final experimental outcomes are presented to prove the optimization parameters recommended by manufacturer are accurate.

Keywords: inserts, milling process, signal-to-noise (S/N) ratio, surface roughness, Taguchi Optimization Method

Procedia PDF Downloads 644
4754 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies

Procedia PDF Downloads 578
4753 Effect of Tillage Practices and Planting Patterns on Growth and Yield of Maize (Zee Maize)

Authors: O. R. Obalowu, F. B. Akande, T. P Abegunrin

Abstract:

Maize (Zea may) is mostly grown and consumed by Nigeria farmers using different tillage practices which have a great effect on its growth and yield. In order to maximize output, there is need to recommend a suitable tillage practice for crop production which will increase the growth and yield of maize. This study investigated the effect of tillage practices and planting pattern on the growth and yield of maize. The experiment was arranged in a 4x3x3 Randomized Complete Block Design (RCBD) layout, with four tillage practices consisting of no-tillage (NT), disc ploughing only (Ponly), disc ploughing followed by harrowing (PH), and disc ploughing, harrowing then ridging (PHR). Three planting patterns which include; 65 x 75, 75 x 75 and 85 x 75 cm spacing within and between the rows respectively, were randomly applied on the plots. All treatments were replicated three times. Data which consist of plant height, stem girth, leaf area and weight of maize per plots were taken and recorded. Data gathered were analyzed using Analysis of Variance (ANOVA) in the Minitab Software Package. The result shows that PHR under the third planting pattern has the highest growth rate (216.50 cm) while NT under the first planting pattern has the lowest mean value of growth rate (115.60 cm). Also, Ponly under the first planting pattern gives a better maize yield (19.45 kg) when compared with other tillage practices while NT under first planting pattern recorded the least yield of maize (9.40 kg). In conclusion, considering soil and weather conditions of the research area, plough only under the first planting pattern (65 x 75 cm) is the best alternative for the production of the Swan maize variety.

Keywords: tillage practice, planting pattern, disc ploughing, harrowing, ridging

Procedia PDF Downloads 498
4752 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method

Authors: M. E. Velásquez Torres, F. Tzompantzi, J. C. Castillo-Rodríguez, A. G. Romero Villegas, S. Mendéz-Salazar, C. E. Santolalla-Vargas, J. Cardoso-Martínez

Abstract:

Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%.

Keywords: 4-chlorophenol, photocatalysis, water pollutant, sol-gel

Procedia PDF Downloads 136
4751 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet

Authors: Jan Schmidt, Pierre Köhring

Abstract:

Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.

Keywords: analytical model, eddy current, losses, lattice network, permanent magnet

Procedia PDF Downloads 425
4750 Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials

Authors: Gennady M. Kulikov, Svetlana V. Plotnikova

Abstract:

This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity.

Keywords: electroelasticity, functionally graded material, laminated piezoelectric shell, sampling surfaces method

Procedia PDF Downloads 696
4749 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques

Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi

Abstract:

An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.

Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel

Procedia PDF Downloads 471
4748 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending

Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel

Abstract:

Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.

Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear

Procedia PDF Downloads 117
4747 Dielectric Thickness Modulation Based Optically Transparent Leaky Wave Antenna Design

Authors: Waqar Ali Khan

Abstract:

A leaky-wave antenna design is proposed which is based on the realization of a certain kind of surface impedance profile that allows the existence of a perturbed surface wave (fast wave) that radiates. The antenna is realized by using optically transparent material Plexiglas. Plexiglas behaves as a dielectric at radio frequencies and is transparent at optical frequencies. In order to have a ground plane for the microwave frequencies, metal strips are used parallel to the E field of the operating mode. The microwave wavelength chosen is large enough such that it does not resolve the metal strip ground plane and sees it to be a uniform ground plane. While, at optical frequencies, the metal strips do have some shadowing effect. However still, about 62% of optical power can be transmitted through the antenna.

Keywords: Plexiglass, surface-wave, optically transparent, metal strip

Procedia PDF Downloads 148
4746 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 497