Search results for: offline learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7362

Search results for: offline learning

2292 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 101
2291 Outcome Evaluation of a Blended-Learning Mental Health Training Course in South African Public Health Facilities

Authors: F. Slaven, M. Uys, Y. Erasmus

Abstract:

The South African National Mental Health Education Programme (SANMHEP) was a National Department of Health (NDoH) initiative to strengthen mental health services in South Africa in collaboration with the Foundation for Professional Development (FPD), SANOFI and the various provincial departments of health. The programme was implemented against the backdrop of a number of challenges in the management of mental health in the country related to staff shortages and infrastructure, the intersection of mental health with the growing burden of non-communicable diseases and various forms of violence, and challenges around substance abuse and its relationship with mental health. The Mental Health Care Act (No. 17 of 2002) prescribes that mental health should be integrated into general health services including primary, secondary and tertiary levels to improve access to services and reduce stigma associated with mental illness. In order for the provisions of the Act to become a reality, and for the journey of mental health patients through the system to improve, sufficient and skilled health care providers are critical. SANMHEP specifically targeted Medical Doctors and Professional Nurses working within the facilities that are listed to conduct 72-hour assessments, as well as District Hospitals. The aim of the programme was to improve the clinical diagnosis and management of mental disorders/conditions and the understanding of and compliance with the Mental Health Care Act and related Regulations and Guidelines in the care, treatment and rehabilitation of mental health care users. The course used a blended-learning approach and trained 1 120 health care providers through 36 workshops between February and November 2019. Of those trained, 689 (61.52%) were Professional Nurses, 337 (30.09%) were Medical Doctors, and 91 (8.13%) indicated their occupation as ‘other’ (of these more than half were psychologists). The pre- and post-evaluation of the face-to-face training sessions indicated a marked improvement in knowledge and confidence level scores (both clinical and legislative) in the care, treatment and rehabilitation of mental health care users by participants in all the training sessions. There was a marked improvement in the knowledge and confidence of participants in performing certain mental health activities (on average the ratings increased by 2.72; or 27%) and in managing certain mental health conditions (on average the ratings increased by 2.55; or 25%). The course also required that participants obtain 70% or higher in their formal assessments as part of the online component. The 337 participants who completed and passed the course scored 90% on average. This illustrates that when participants attempted and completed the course, they did very well. To further assess the effect of the course on the knowledge and behaviour of the trained mental health care practitioners a mixed-method outcome evaluation is currently underway consisting of a survey with participants three months after completion, follow-up interviews with participants, and key informant interviews with department of health officials and course facilitators. This will enable a more detailed assessment of the impact of the training on participants' perceived ability to manage and treat mental health patients.

Keywords: mental health, public health facilities, South Africa, training

Procedia PDF Downloads 121
2290 Revisited: Financial Literacy and How University Students Fare

Authors: Zaiton Osman, Phang Ing, Azaze Azizi Abd Adis, Izyanti Awg Razli, Mohd Rizwan Abd Majid, Rosle Mohidin

Abstract:

This study is conducted to investigate the level of financial literacy among students taking Financial Management and Banking in Universiti Malaysia Sabah, Malaysia. Students are asked to answer basic financial literacy questions in their first class before study commence and the similar questions were given in their final week of study (after 14 weeks of study duration). The comparison on their level of financial literacy will be examined. This study is expected to yields the following findings; firstly, comparison of the level of financial literacy 'before and after' courses in finance being introduced can be revealed. Secondly, it will provide suggestion on improving the standard of teaching and learning in financial management and banking courses and lastly it will help in identifying financial courses that are important in improving the level of financial literacy among students in Malaysia.

Keywords: financial literacy, university students, personal financial planning, business and management engineering

Procedia PDF Downloads 724
2289 The Importance of Analysis of Internal Quality Management Systems and Self-Examination Processes in Engineering Accreditation Processes

Authors: Wilfred Fritz

Abstract:

The accreditation process of engineering degree programmes is based on various reports evaluated by the relevant governing bodies of the institution of higher education. One of the aforementioned reports for the accreditation process is a self-assessment report which is to be completed by the applying institution. This paper seeks to emphasise the importance of analysis of internal quality management systems and self-examination processes in the engineering accreditation processes. A description of how the programme fulfils the criteria should be given. Relevant stakeholders all need to contribute in the writing and structuring of the self-assessment report. The last step is to gather evidence in the form of supporting documentation. In conclusion, the paper also identifies learning outcomes in a case study in seeking accreditation from an international relevant professional body.

Keywords: accreditation, governing bodies, self-assessment report, quality management

Procedia PDF Downloads 124
2288 Implication of Attention Deficit and Task Avoidance on the Mathematics Performance of Pupils with Intellectual Disabilities

Authors: Matthew Bamidele Ojuawo

Abstract:

To some parents, task avoidance implies the time when argument ensues between parents and their children in order to get certain things done correctly without being forced. However, some children avoid certain task because of the fears that it is too hard or cannot be done without parental help. Laziness plays a role in task avoidance when children do not want to do something because they do not feel like it is easy enough or if they just want their parent help them get it over with more quickly. Children with attention deficit disorder more often have difficulties with social skills, such as social interaction and forming and maintaining friendships. The focus of this study is how task avoidance and attention deficit have effect on the mathematics performance of pupils in the lower basic classroom. Mathematics performance of pupils with learning disabilities has been seriously low due to avoidance of task and attention deficit posed as carried out in the previous researches, but the research has not been carried out in the lower basic classroom in Oyo, Oyo state, Nigeria.

Keywords: task avoidance, parents, children with attention deficit, mathematics

Procedia PDF Downloads 144
2287 Academic Writing vs Creative Writing for Arabic Speaking Students

Authors: Yacoub Aljaffery

Abstract:

Many English writing instructors try to avoid creative writing in their classrooms thinking they need to teach essay rules and organization skills. They seem to forget that creative writing has do’s and don’ts as well. While academic writing is different from fiction writing in some important ways (although perhaps the boundaries are fruitfully blurring), there is much that can be writerly selves. The differences between creative writing and academic writing are that creative writing is written mainly to entertain with the creativity of the mind and academic writing is written mainly to inform in a formal manner or to incite the reader to make an action such as purchase the writer’s product. In this research paper, we are going to find out how could Arabic speaking students, who are learning academic writing in universities, benefit from creative writing such as literature, theatrical scripts, music, and poems. Since Arabic language is known as poetic language, students from this culture tend to like writing with creativity. We will investigate the positive influence of creative writing rules on academic essays and paragraphs in universities, and We will prove the importance of using creative writing activities in any academic writing classroom.

Keywords: ESL teaching, motivation, teaching methods, academic writing , creative writing

Procedia PDF Downloads 556
2286 The Effect of Engineering Construction in Online Consultancy

Authors: Mariam Wagih Nagib Eskandar

Abstract:

The engineering design process is the activities formulation, to help an engineer raising a plan with a specified goal and performance. The engineering design process is a multi-stage course of action including the conceptualization, research, feasibility studies, establishment of design parameters, preliminary and finally the detailed design. It is a progression from the abstract to the concrete; starting with probably abstract ideas about need, and thereafter elaborating detailed specifications of the object that would satisfy the needs, identified. Engineering design issues, problems, and solutions are discussed in this paper using qualitative approach from an information structure perspective. The objective is to identify the problems, to analyze them and propose solutions by integrating; innovation, practical experience, time and resource management, communications skills, isolating the problem in coordination with all stakeholders. Consequently, this would be beneficial for the engineering community to improve the Engineering design practices.

Keywords: education, engineering, math, performanceengineering design, architectural engineering, team-based learning, construction safetyrequirement engineering, models, practices, organizations

Procedia PDF Downloads 84
2285 Development of a One Health and Comparative Medicine Curriculum for Medical Students

Authors: Aliya Moreira, Blake Duffy, Sam Kosinski, Kate Heckman, Erika Steensma

Abstract:

Introduction: The One Health initiative promotes recognition of the interrelatedness between people, animals, plants, and their shared environment. The field of comparative medicine studies the similarities and differences between humans and animals for the purpose of advancing medical sciences. Currently, medical school education is narrowly focused on human anatomy and physiology, but as the COVID-19 pandemic has demonstrated, a holistic understanding of health requires comprehension of the interconnection between health and the lived environment. To prepare future physicians for unique challenges from emerging zoonoses to climate change, medical students can benefit from exposure to and experience with One Health and Comparative Medicine content. Methods: In January 2020, an elective course for medical students on One Health and Comparative Medicine was created to provide medical students with the background knowledge necessary to understand the applicability of animal and environmental health in medical research and practice. The 2-week course was continued in January 2021, with didactic and experiential activities taking place virtually due to the COVID-19 pandemic. In response to student feedback, lectures were added to expand instructional content on zoonotic and wildlife diseases for the second iteration of the course. Other didactic sessions included interprofessional lectures from 20 physicians, veterinarians, public health professionals, and basic science researchers. The first two cohorts of students were surveyed regarding One Health and Comparative Medicine concepts at the beginning and conclusion of the course. Results: 16 medical students have completed the comparative medicine course thus far, with 87.5% (n=14) completing pre-and post-course evaluations. 100% of student respondents indicated little to no exposure to comparative medicine or One Health concepts during medical school. Following the course, 100% of students felt familiar or very familiar with comparative medicine and One Health concepts. To assess course efficacy, questions were evaluated on a five-point Likert scale. 100% agreed or strongly agreed that learning Comparative Medicine and One Health topics augmented their medical education. 100% agreed or strongly agreed that a course covering this content should be regularly offered to medical students. Conclusions: Data from the student evaluation surveys demonstrate that the Comparative Medicine course was successful in increasing medical student knowledge of Comparative Medicine and One Health. Results also suggest that interprofessional training in One Health and Comparative Medicine is applicable and useful for medical trainees. Future iterations of this course could capitalize on the inherently interdisciplinary nature of these topics by enrolling students from veterinary and public health schools into a longitudinal course. Such recruitment may increase the course’s value by offering multidisciplinary student teams the opportunity to conduct research projects, thereby strengthening both the individual learning experience as well as sparking future interprofessional research ventures. Overall, these efforts to educate medical students in One Health topics should be reproducible at other institutions, preparing more future physicians for the diverse challenges they will encounter in practice.

Keywords: medical education, interprofessional instruction, one health, comparative medicine

Procedia PDF Downloads 111
2284 A Recent Investigation into College Freshmen's Foreign Language Classroom Anxiety in the Context of AI

Authors: Xiao Yu Yang

Abstract:

In the current era of AI and the Internet, students' access to AI has increased significantly, and it is no longer surprising that young generations can effectively utilize resources to learn foreign languages. This study aims to investigate the foreign language classroom anxiety of college students who just entered university in 2024 and understand the current anxiety levels of students. Meanwhile, this study conducts the investigation by using a scale tool based on the FLCAS (Foreign Language Classroom Anxiety Scale), which consists of 21 items that were adjusted and re-tested for validity in 2019. A total of three classes taught by the researcher participated in this study. Further interview comparisons are conducted, particularly with students from rural areas and urban cities. Considering the prevalence of AI in modern education, the relationship between the investigated foreign language classroom anxiety and the adopted AI-assisted teaching and learning will be further explored to discuss potential implications.

Keywords: FLCAS in China, freshman, AI, English teaching

Procedia PDF Downloads 5
2283 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 422
2282 Decoding the Structure of Multi-Agent System Communication: A Comparative Analysis of Protocols and Paradigms

Authors: Gulshad Azatova, Aleksandr Kapitonov, Natig Aminov

Abstract:

Multiagent systems have gained significant attention in various fields, such as robotics, autonomous vehicles, and distributed computing, where multiple agents cooperate and communicate to achieve complex tasks. Efficient communication among agents is a crucial aspect of these systems, as it directly impacts their overall performance and scalability. This scholarly work provides an exploration of essential communication elements and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of these protocols across various scenarios. The research also sheds light on emerging trends within communication protocols for multiagent systems, including the incorporation of machine learning methods and the adoption of blockchain-based solutions to ensure secure communication. These trends provide valuable insights into the evolving landscape of multiagent systems and their communication protocols.

Keywords: communication, multi-agent systems, protocols, consensus

Procedia PDF Downloads 77
2281 Teaching English as a Foreign Language: Insights from the Philippine Context

Authors: Arlene Villarama, Micol Grace Guanzon, Zenaida Ramos

Abstract:

This paper provides insights into teaching English as a Foreign Language in the Philippines. The authors reviewed relevant theories and literature, and provide an analysis of the issues in teaching English in the Philippine setting in the light of these theories. The authors made an investigation in Bagong Barrio National High School (BBNHS) - a public school in Caloocan City. The institution has a population of nearly 3,000 students. The performances of randomly chosen 365 respondents were scrutinised. The study regarding the success of teaching English as a foreign language to Filipino children were highlighted. This includes the respondents’ family background, surroundings, way of living, and their behavior and understanding regarding education. The results show that there is a significant relationship between demonstrative, communal, and logical areas that touch the efficacy of introducing English as a foreign Dialectal. Filipino children, by nature, are adventurous and naturally joyful even for little things. They are born with natural skills and capabilities to discover new things. They highly consider activities and work that ignite their curiosity. They love to be recognised and are inspired the most when given the assurance of acceptance and belongingness. Fun is the appealing influence to ignite and motivate learning. The magic word is excitement. The study reveals the many facets of the accumulation and transmission of erudition, in introduction and administration of English as a foreign phonological; it runs and passes through different channels of diffusion. Along the way, there are particles that act as obstructions in protocols where knowledge are to be gathered. Data gained from the respondents conceals a reality that is beyond one’s imagination. One significant factor that touches the inefficacy of understanding and using English as a foreign language is an erroneous outset gained from an old belief handed down from generation to generation. This accepted perception about the power and influence of the use of language, gives the novices either a negative or a positive notion. The investigation shows that a higher number of dislikes in the use of English can be tracked down from the belief of the story on how the English language came into existence. The belief that only the great and the influential have the right to use English as a means of communication kills the joy of acceptance. A significant notation has to be examined so as to provide a solution or if not eradicate the misconceptions that lie behind the substance of the matter. The result of the authors’ research depicts a substantial correlation between the emotional (demonstrative), social (communal), and intellectual (logical). The focus of this paper is to bring out the right notation and disclose the misconceptions with regards to teaching English as a foreign language. This will concentrate on the emotional, social, and intellectual areas of the Filipino learners and how these areas affect the transmittance and accumulation of learning. The authors’ aim is to formulate logical ways and techniques that would open up new beginnings in understanding and acceptance of the subject matter.

Keywords: accumulation, behaviour, facets, misconceptions, transmittance

Procedia PDF Downloads 206
2280 Event Extraction, Analysis, and Event Linking

Authors: Anam Alam, Rahim Jamaluddin Kanji

Abstract:

With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.

Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation

Procedia PDF Downloads 598
2279 Tenure Track System and Its Impact on Grading Leniency and Student Effort: A Quasi-Experimental Approach

Authors: Shao-Hsun Keng, Hwang-Ruey Song

Abstract:

This paper examines the causal effect of the tenure track system on instructors’ grading practices and teaching effectiveness by taking advantage of a natural experiment in Taiwan. The results show that assistant professors subject to the tenure track policy are more likely to grade leniently and fail fewer students. The course grade is 5% higher in classes taught by assistant professors subject to the tenure system. However, the tendency to grade leniently is reversed after assistant professors subject to the tenure system are promoted to a higher rank. Our findings are consistent with the exchange theory. We also show that teaching and student efforts are adversely affected by the tenure policy, which could reduce student learning and the quality of the workforce in the long run.

Keywords: tenure track system, grading leniency, study time, grade inflation

Procedia PDF Downloads 414
2278 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 68
2277 CRISPR-DT: Designing gRNAs for the CRISPR-Cpf1 System with Improved Target Efficiency and Specificity

Authors: Houxiang Zhu, Chun Liang

Abstract:

The CRISPR-Cpf1 system has been successfully applied in genome editing. However, target efficiency of the CRISPR-Cpf1 system varies among different gRNA sequences. The published CRISPR-Cpf1 gRNA data was reanalyzed. Many sequences and structural features of gRNAs (e.g., the position-specific nucleotide composition, position-nonspecific nucleotide composition, GC content, minimum free energy, and melting temperature) correlated with target efficiency were found. Using machine learning technology, a support vector machine (SVM) model was created to predict target efficiency for any given gRNAs. The first web service application, CRISPR-DT (CRISPR DNA Targeting), has been developed to help users design optimal gRNAs for the CRISPR-Cpf1 system by considering both target efficiency and specificity. CRISPR-DT will empower researchers in genome editing.

Keywords: CRISPR-Cpf1, genome editing, target efficiency, target specificity

Procedia PDF Downloads 264
2276 Comprehensive Interpretation of Leadership from the Narratives in Literature

Authors: Nidhi Kaushal, Sanjit Mishra

Abstract:

Narrative writings in literature are ample source of knowledge and easily understandable. In every old tradition, we found that people learn ethics from oral tales. They had their leaders and lessons of leadership in their stories. In India, we have sufficient amount of stories of leaders. Whether the story is of an ordinary person or a corporate leader of large firm, it always has a unique message of motivation. The objective of this paper is to elaborate the story lines in literature and get the leadership lessons from them, so that we can set up a new concept of leadership based on scholarship of literature. This is our hypothesis that leadership lessons can be learned from the study of literary writings and it can also act an innovative way of learning the management skills through literature. The role of the leader can be familiarly communicated in the form of the tales. Describing a positive psychological narrative from the text is the best way to manifesting an idea into the minds of people. We accomplished this paper that leadership as an attribute can be learned from the folk psychological literary writings.

Keywords: leadership, literature, management, psychology

Procedia PDF Downloads 270
2275 Developing Creativity as a Scientific Literacy among IT Engineers towards Sustainability

Authors: Chunfang Zhou

Abstract:

The growing issues of sustainability have increased the discussions on how to foster “green engineers” from diverse perspectives in both contexts of education and organizations. As creativity has been considered as the first stage of innovation process that can also be regarded as a path to sustainability, this paper will particularly propose creativity as a scientific literacy meaning a collection of awareness, ability, and skills about sustainability. From this sense, creativity should be an element in IT engineering education and organizational learning programmes, since IT engineers are one group of key actors in designing, researching and developing social media products that are most important channels of improving public awareness of sustainability. This further leads this paper to discuss by which pedagogical strategies and by which training methods in organizations, creativity and sustainability can be integrated into IT engineering education and IT enterprise innovation process in order to meeting the needs of ‘creative engineers’ in the society changes towards sustainability. Accordingly, this paper contributes to future work on the links between creativity, innovation, sustainability, and IT engineering development both theoretically and practically.

Keywords: creativity, innovation, IT engineers, sustainability

Procedia PDF Downloads 330
2274 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 45
2273 Identification of Bayesian Network with Convolutional Neural Network

Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz

Abstract:

In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.

Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference

Procedia PDF Downloads 178
2272 The Effect of Emotional Intelligence on Physiological Stress of Managers

Authors: Mikko Salminen, Simo Järvelä, Niklas Ravaja

Abstract:

One of the central models of emotional intelligence (EI) is that of Mayer and Salovey’s, which includes ability to monitor own feelings and emotions and those of others, ability to discriminate different emotions, and to use this information to guide thinking and actions. There is vast amount of previous research where positive links between EI and, for example, leadership successfulness, work outcomes, work wellbeing and organizational climate have been reported. EI has also a role in the effectiveness of work teams, and the effects of EI are especially prominent in jobs requiring emotional labor. Thus, also the organizational context must be taken into account when considering the effects of EI on work outcomes. Based on previous research, it is suggested that EI can also protect managers from the negative consequences of stress. Stress may have many detrimental effects on the manager’s performance in essential work tasks. Previous studies have highlighted the effects of stress on, not only health, but also, for example, on cognitive tasks such as decision-making, which is important in managerial work. The motivation for the current study came from the notion that, unfortunately, many stressed individuals may not be aware of the circumstance; periods of stress-induced physiological arousal may be prolonged if there is not enough time for recovery. To tackle this problem, physiological stress levels of managers were collected using recording of heart rate variability (HRV). The goal was to use this data to provide the managers with feedback on their stress levels. The managers could access this feedback using a www-based learning environment. In the learning environment, in addition to the feedback on stress level and other collected data, also developmental tasks were provided. For example, those with high stress levels were sent instructions for mindfulness exercises. The current study focuses on the relation between the measured physiological stress levels and EI of the managers. In a pilot study, 33 managers from various fields wore the Firstbeat Bodyguard HRV measurement devices for three consecutive days and nights. From the collected HRV data periods (minutes) of stress and recovery were detected using dedicated software. The effects of EI on HRV-calculated stress indexes were studied using Linear Mixed Models procedure in SPSS. There was a statistically significant effect of total EI, defined as an average score of Schutte’s emotional intelligence test, on the percentage of stress minutes during the whole measurement period (p=.025). More stress minutes were detected on those managers who had lower emotional intelligence. It is suggested, that high EI provided managers with better tools to cope with stress. Managing of own emotions helps the manager in controlling possible negative emotions evoked by, e.g., critical feedback or increasing workload. High EI managers may also be more competent in detecting emotions of others, which would lead to smoother interactions and less conflicts. Given the recent trend to different quantified-self applications, it is suggested that monitoring of bio-signals would prove to be a fruitful direction to further develop new tools for managerial and leadership coaching.

Keywords: emotional intelligence, leadership, heart rate variability, personality, stress

Procedia PDF Downloads 227
2271 Smartphones: Tools for Enhancing Teaching in Nigeria’s Higher Institutions

Authors: Ma'amun Muhammed

Abstract:

The ability of smartphones in enhancing communication, providing access to business and serving as a pool for information retrieval has a far reaching and potentially beneficial impacts on enhancing teaching in higher institutions in the developing countries like Nigeria. Nigeria as one of the fast growing economies in Africa, whose citizens patronize smartphones can utilize this opportunity by inculcating the culture of using smartphones not only for communication, business transaction, banking etc. but also for enhancing teaching in the higher institutions. Smartphones have become part and parcel of our lives, particularly among young people. The primary objective of this paper is to ascertain the use of smartphones in enhancing teaching in Nigeria’s higher institutions, to achieve this, content analysis was used thoroughly. This paper examines the opportunities offered by smartphones to the students of higher institutions of learning, the challenges being faced by lecturers of these institutions in classrooms. Lastly, it offers solution on how some of these critical challenges will be overcame, so as to utilize the technology of these devices.

Keywords: communication, information retrieval, mobile phone, smartphones teaching

Procedia PDF Downloads 426
2270 A Low Cost and Reconfigurable Experimental Platform for Engineering Lab Education

Authors: S. S. Kenny Lee, C. C. Kong, S. K. Ting

Abstract:

Teaching engineering lab provides opportunity for students to practice theories learned through physical experiment in the laboratory. However, building laboratories to accommodate increased number of students are expensive, making it impossible for an educational institution to afford the high expenses. In this paper, we develop a low cost and remote platform to aid teaching undergraduate students. The platform is constructed where the real experiment setting up in laboratory can be reconfigure and accessed remotely, the aim is to increase student’s desire to learn at which they can interact with the physical experiment using network enabled devices at anywhere in the campus. The platform is constructed with Raspberry Pi as a main control board that provides communication between computer interfaces to the actual experiment preset in the laboratory. The interface allows real-time remote viewing and triggering the physical experiment in the laboratory and also provides instructions and learning guide about the experimental.

Keywords: engineering lab, low cost, network, remote platform, reconfigure, real-time

Procedia PDF Downloads 310
2269 Building a Measure of Sensory Preferences For (Wrestling and Boxing) Players

Authors: Mohamed Nabhan

Abstract:

The research aims to build a measure of sensory preferences for (wrestling and boxing) players. The researchers used the descriptive approach and a sample of (8) consisting of (40) wrestling players, (40) boxing players with different scales, and they were chosen in a deliberate random way, and the most important results were that there were statistically significant differences between wrestlers and boxers in the sensory preferences of their senses. There is no indication in the sensory preferences for the senses of “sight and hearing” and that the significance is in favor of the wrestlers in the senses of “sight and touch,” and there is a convergence in the sense of hearing. Through the value of the averagesAfter collecting the data and statistical treatments and the results reached by the researcher, it was possible to reach: The following conclusions and recommendations: There are differences between wrestling and boxing players in their sensory preferences, the senses used in learning, due to several reasons, the most important of which may be as follows:- Scales for the player and for each sport separately. The nature of the game, the performance of skills, and dealing with the opponent or competitor.Tools used in performance and training.

Keywords: sensory preferences, sensory scale, wrestling players, boxing players

Procedia PDF Downloads 113
2268 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 458
2267 The Relation between Proactive Coping and Well-Being: An Example of Middle-Aged and Older Learners from Taiwan

Authors: Ya-Hui Lee, Ching-Yi Lu, Hui-Chuan Wei

Abstract:

The purpose of this research was to explore the relation between proactive coping and well-being of middle-aged adults. We conducted survey research that with t-test, one way ANOVA, Pearson correlation and stepwise multiple regression to analyze. This research drew on a sample of 395 participants from the senior learning centers of Taiwan. The results provided the following findings: 1.The participants from different residence areas associated significant difference with proactive coping, but not with well-being. 2. The participants’ perceived of financial level associated significant difference with both proactive coping and well-being. 3. There was significant difference between participants’ income and well-being. 4. The proactive coping was positively correlated with well-being. 5. From stepwise multiple regression analysis showed that two dimensions of proactive coping had positive predictability. Finally, these results of this study can be provided as references for designing older adult educational programs in Taiwan.

Keywords: middle-age and older adults, learners, proactive coping, well-being

Procedia PDF Downloads 459
2266 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors

Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde

Abstract:

In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.

Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance

Procedia PDF Downloads 125
2265 Read-Aloud with Multimedia Enhancement Strategy as an Effective Strategy to Use in the Classroom

Authors: Rahime Filiz Kiremit

Abstract:

This study identifies six different articles to explain which strategies are most effective for kindergarten English Language Learners. The literature review project has information about six different research articles, purpose of the studies, and results of the studies. There are several strategies can be used for ELL students to help them to develop their English language skills. Some articles mention technology as a multimedia integrated into the curriculum, some of them mention writing as a method of learning English as a second language. However, they all have a common strategy that is shared reading. According to these six articles, shared reading has a big role of ELL students’ language developmental process. All in all, read-aloud with multimedia enhancement strategy is the best strategy to use in the classroom, because this strategy is based on shared reading and also integrated with technology.

Keywords: bilingual education, effective strategies, english language learners, kindergarten

Procedia PDF Downloads 295
2264 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 310
2263 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes

Authors: F. Arıkan, Z. Karakus

Abstract:

Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.

Keywords: cancer patients, e-learning, nursing, web based education

Procedia PDF Downloads 432