Search results for: type i error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8471

Search results for: type i error

7991 Satellite Image Classification Using Firefly Algorithm

Authors: Paramjit Kaur, Harish Kundra

Abstract:

In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.

Keywords: image classification, firefly algorithm, satellite image classification, terrain classification

Procedia PDF Downloads 400
7990 Lexical-Semantic Processing by Chinese as a Second Language Learners

Authors: Yi-Hsiu Lai

Abstract:

The present study aimed to elucidate the lexical-semantic processing for Chinese as second language (CSL) learners. Twenty L1 speakers of Chinese and twenty CSL learners in Taiwan participated in a picture naming task and a category fluency task. Based on their Chinese proficiency levels, these CSL learners were further divided into two sub-groups: ten CSL learners of elementary Chinese proficiency level and ten CSL learners of intermediate Chinese proficiency level. Instruments for the naming task were sixty black-and-white pictures: thirty-five object pictures and twenty-five action pictures. Object pictures were divided into two categories: living objects and non-living objects. Action pictures were composed of two categories: action verbs and process verbs. As in the naming task, the category fluency task consisted of two semantic categories – objects (i.e., living and non-living objects) and actions (i.e., action and process verbs). Participants were asked to report as many items within a category as possible in one minute. Oral productions were tape-recorded and transcribed for further analysis. Both error types and error frequency were calculated. Statistical analysis was further conducted to examine these error types and frequency made by CSL learners. Additionally, category effects, pictorial effects and L2 proficiency were discussed. Findings in the present study helped characterize the lexical-semantic process of Chinese naming in CSL learners of different Chinese proficiency levels and made contributions to Chinese vocabulary teaching and learning in the future.

Keywords: lexical-semantic processing, Mandarin Chinese, naming, category effects

Procedia PDF Downloads 462
7989 The Influence of Thomson Effect on the Performance of N-Type Skutterudite Thermoelement

Authors: Anbang Liu, Huaqing Xie, Zihua Wu, Xiaoxiao Yu, Yuanyuan Wang

Abstract:

Due to the temperature-dependence and mutual coupling of thermoelectric parameters, the Thomson effect always exists, which is derived from temperature gradients during thermoelectric conversion. The synergistic effect between the Thomson effect and non-equilibrium heat transport of charge carriers leads to local heat absorption or release in thermoelements, thereby affecting its power generation performance and conversion efficiency. This study verified and analyzed the influence and mechanism of the Thomson effect on N-type skutterudite thermoelement through quasi-steady state testing under approximate vacuum conditions. The results indicate the temperature rise/fall of N-type thermoelement at any position is affected by Thomson heat release/absorption. Correspondingly, the Thomson effect also contributes advantageously/disadvantageously to the output power of N-type skutterudite thermoelement when the Thomson coefficients are positive/negative. In this work, the output power can be promoted or decreased maximally by more than 27% due to the presence of Thomson heat when the absolute value of the Thomson coefficient is around 36 μV/℃.

Keywords: Thomson effect, heat transport, thermoelectric conversion, numerical simulation

Procedia PDF Downloads 67
7988 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine

Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy

Abstract:

This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.

Keywords: CFD model, combustion, engine, simulation

Procedia PDF Downloads 361
7987 Position and Speed Tracking of DC Motor Based on Experimental Analysis in LabVIEW

Authors: Muhammad Ilyas, Awais Khan, Syed Ali Raza Shah

Abstract:

DC motors are widely used in industries to provide mechanical power in speed and torque. The position and speed control of DC motors is getting the interest of the scientific community in robotics, especially in the robotic arm, a flexible joint manipulator. The current research work is based on position control of DC motors using experimental investigations in LabVIEW. The linear control strategy is applied to track the position and speed of the DC motor with comparative analysis in the LabVIEW platform and simulation analysis in MATLAB. The tracking error in hardware setup based on LabVIEW programming is slightly greater than simulation analysis in MATLAB due to the inertial load of the motor during steady-state conditions. The controller output shows the input voltage applied to the dc motor varies between 0-8V to ensure minimal steady error while tracking the position and speed of the DC motor.

Keywords: DC motor, labview, proportional integral derivative control, position tracking, speed tracking

Procedia PDF Downloads 106
7986 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge transform

Procedia PDF Downloads 128
7985 Signal Processing Techniques for Adaptive Beamforming with Robustness

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.

Keywords: adaptive beamforming, robustness, signal blocking, steering angle error

Procedia PDF Downloads 124
7984 Prevalence of Metabolic Syndrome among Adult Obese Type 2 Diabetic Subjects

Authors: Mehwish Azam, Muhammad Imran, Humaira Jabeen, Sumreen Begum, Rashida Qasim

Abstract:

Background: Metabolic syndrome is a cluster of metabolic risk factors including obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. Metabolic syndrome in obese and type 2 diabetic subjects increases the risk of cardiovascular diseases (CVD). Globally, the prevalence of metabolic syndrome ranges from 10%-50% and in Pakistan ranges from 18%-46%. The objective of the present study is to estimate the prevalence of metabolic syndrome (MS) in obese type 2 diabetic subjects by using International Diabetes Federation (IDF) and National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) definitions. Methods: Obese type 2 diabetic subjects and normal healthy subjects of both genders were selected from diabetic clinics and hospitals of various localities of Karachi, Pakistan. The frequency of metabolic syndrome was estimated by the proposed definitions of IDF and NCEP-ATP III. Results: The prevalence of metabolic syndrome using International Diabetes Federation (IDF) definition in obese type 2 diabetic subjects was 85.7%. It is significantly higher (p<0.05) in females (47.1%) as compared to males (38.6%). While, using National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) definition the overall prevalence of metabolic syndrome in obese type 2 diabetic subjects was 75.7%, the prevalence is significantly higher (p<0.05) in females (45.7%) than males (30.0%). Conclusion: It is concluded that, the overall prevalence of metabolic syndrome is increasing significantly in obese type 2 diabetic subjects by using IDF and NCEP–ATP III definitions. Therefore, it is need to initiate the preventive measures by arranging public awareness programmes to highlight the significance of a healthy lifestyle and emphasis should be given to reduce weight, increase physical activity, and increase intake of healthy low-glycemic-index foods.

Keywords: metabolic syndrome, diabetes mellitus, obesity, IDF, NCEP-ATP III

Procedia PDF Downloads 572
7983 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks

Authors: Emad A. Mohammed

Abstract:

The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.

Keywords: permeability, hydraulic flow units, artificial intelligence, correlation

Procedia PDF Downloads 136
7982 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 408
7981 Performance of Photovoltaic Thermal Greenhouse Dryer in Composite Climate of India

Authors: G. N. Tiwari, Shyam

Abstract:

Photovoltaic thermal (PVT) roof type greenhouse dryer installed above the wind tower of SODHA BERS COMPLEX, Varanasi has been analyzed for all types of weather conditions. The product to be dried has been kept at three different trays. The upper tray receives energy from the PV cover while the bottom tray receives thermal energy from the hot air of the wind tower. The annual energy estimation has been done for the all types of weather condition of composite climate of northern India. It has been found that maximum energy saving is observed for c type of weather condition whereas minimum energy saving is observed for a type of weather condition. The energy saving on overall thermal energy basis and exergy basis are 1206.8 kWh and 360 kWh respectively for c type of weather condition. The energy saving from all types of weather condition are found to be 3175.3 kWh and 957.6 kWh on overall thermal energy and overall exergy basis respectively.

Keywords: exergy, greenhouse, photovoltaic thermal, solar dryer

Procedia PDF Downloads 408
7980 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 273
7979 Anomalies of Visual Perceptual Skills Amongst School Children in Foundation Phase in Olievenhoutbosch, Gauteng Province, South Africa

Authors: Maria Bonolo Mathevula

Abstract:

Background: Children are important members of communities playing major role in the future of any given country (Pera, Fails, Gelsomini, &Garzotto, 2018). Visual Perceptual Skills (VPSs) in children are important health aspect of early childhood development through the Foundation Phases in school. Subsequently, children should undergo visual screening before commencement of schooling for early diagnosis ofVPSs anomalies because the primary role of VPSs is to capacitate children with academic performance in general. Aim : The aim of this study was to determine the anomalies of visual VPSs amongst school children in Foundation Phase. The study’s objectives were to determine the prevalence of VPSs anomalies amongst school children in Foundation Phase; Determine the relationship between children’s academic and VPSs anomalies; and to investigate the relationship between VPSs anomalies and refractive error. Methodology: This study was a mixed method whereby triangulated qualitative (interviews) and quantitative (questionnaire and clinical data) was used. This was, therefore, descriptive by nature. The study’s target population was school children in Foundation Phase. The study followed purposive sampling method. School children in Foundation Phase were purposively sampled to form part of this study provided their parents have given a signed the consent. Data was collected by the use of standardized interviews; questionnaire; clinical data card, and TVPS standard data card. Results: Although the study is still ongoing, the preliminary study outcome based on data collected from one of the Foundation Phases have suggested the following:While VPSs anomalies is not prevalent, it, however, have indirect relationship with children’s academic performance in Foundation phase; Notably, VPSs anomalies and refractive error are directly related since majority of children with refractive error, specifically compound hyperopic astigmatism, failed most subtests of TVPS standard tests. Conclusion: Based on the study’s preliminary findings, it was clear that optometrists still have a lot to do in as far as researching on VPSs is concerned. Furthermore, the researcher recommends that optometrist, as the primary healthcare professionals, should also conduct the school-readiness pre-assessment on children before commencement of their grades in Foundation phase.

Keywords: foundation phase, visual perceptual skills, school children, refractive error

Procedia PDF Downloads 102
7978 An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product

Authors: Rameshwar Singh Seema

Abstract:

In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials.

Keywords: type 2 diabetes, LGG, L.casei NCDC19, food science

Procedia PDF Downloads 417
7977 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 180
7976 Accuracy/Precision Evaluation of Excalibur I: A Neurosurgery-Specific Haptic Hand Controller

Authors: Hamidreza Hoshyarmanesh, Benjamin Durante, Alex Irwin, Sanju Lama, Kourosh Zareinia, Garnette R. Sutherland

Abstract:

This study reports on a proposed method to evaluate the accuracy and precision of Excalibur I, a neurosurgery-specific haptic hand controller, designed and developed at Project neuroArm. Having an efficient and successful robot-assisted telesurgery is considerably contingent on how accurate and precise a haptic hand controller (master/local robot) would be able to interpret the kinematic indices of motion, i.e., position and orientation, from the surgeon’s upper limp to the slave/remote robot. A proposed test rig is designed and manufactured according to standard ASTM F2554-10 to determine the accuracy and precision range of Excalibur I at four different locations within its workspace: central workspace, extreme forward, far left and far right. The test rig is metrologically characterized by a coordinate measuring machine (accuracy and repeatability < ± 5 µm). Only the serial linkage of the haptic device is examined due to the use of the Structural Length Index (SLI). The results indicate that accuracy decreases by moving from the workspace central area towards the borders of the workspace. In a comparative study, Excalibur I performs on par with the PHANToM PremiumTM 3.0 and more accurate/precise than the PHANToM PremiumTM 1.5. The error in Cartesian coordinate system shows a dominant component in one direction (δx, δy or δz) for the movements on horizontal, vertical and inclined surfaces. The average error magnitude of three attempts is recorded, considering all three error components. This research is the first promising step to quantify the kinematic performance of Excalibur I.

Keywords: accuracy, advanced metrology, hand controller, precision, robot-assisted surgery, tele-operation, workspace

Procedia PDF Downloads 336
7975 Antidiabetic Potential of Pseuduvaria monticola Bark Extract on the Pancreatic Cells, NIT-1 and Type 2 Diabetic Rat Model

Authors: Hairin Taha, Aditya Arya, M. A. Hapipah, A. M. Mustafa

Abstract:

Plants have been an important source of medicine since ancient times. Pseuduvaria monticola is a rare montane forest species from the Annonaceae family. Traditionally, the plant was used to cure symptoms of fever, inflammation, stomach-ache and also to reduce the elevated levels of blood glucose. Scientifically, we have evaluated the antidiabetic potential of the Pseuduvaria monticola bark methanolic extract on certain in vitro cell based assays, followed by in vivo study. Results from in vitro models displayed PMm upregulated glucose uptake and insulin secretion in mouse pancreatic β-cells. In vivo study demonstrated the PMm down-regulated hyperglycaemia, oxidative stress and elevated levels of pro-inflammatory cytokines in type 2 diabetic rat models. Altogether, the study revealed that Pseuduvaria monticola might be used as a potential candidate for the management of type 2 diabetes and its related complications.

Keywords: type 2 diabetes, Pseuduvaria monticola, insulin secretion, glucose uptake

Procedia PDF Downloads 439
7974 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network

Authors: Biruhi Tesfaye, Avinash M. Potdar

Abstract:

The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.

Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC

Procedia PDF Downloads 190
7973 The Study of Formal and Semantic Errors of Lexis by Persian EFL Learners

Authors: Mohammad J. Rezai, Fereshteh Davarpanah

Abstract:

Producing a text in a language which is not one’s mother tongue can be a demanding task for language learners. Examining lexical errors committed by EFL learners is a challenging area of investigation which can shed light on the process of second language acquisition. Despite the considerable number of investigations into grammatical errors, few studies have tackled formal and semantic errors of lexis committed by EFL learners. The current study aimed at examining Persian learners’ formal and semantic errors of lexis in English. To this end, 60 students at three different proficiency levels were asked to write on 10 different topics in 10 separate sessions. Finally, 600 essays written by Persian EFL learners were collected, acting as the corpus of the study. An error taxonomy comprising formal and semantic errors was selected to analyze the corpus. The formal category covered misselection and misformation errors, while the semantic errors were classified into lexical, collocational and lexicogrammatical categories. Each category was further classified into subcategories depending on the identified errors. The results showed that there were 2583 errors in the corpus of 9600 words, among which, 2030 formal errors and 553 semantic errors were identified. The most frequent errors in the corpus included formal error commitment (78.6%), which were more prevalent at the advanced level (42.4%). The semantic errors (21.4%) were more frequent at the low intermediate level (40.5%). Among formal errors of lexis, the highest number of errors was devoted to misformation errors (98%), while misselection errors constituted 2% of the errors. Additionally, no significant differences were observed among the three semantic error subcategories, namely collocational, lexical choice and lexicogrammatical. The results of the study can shed light on the challenges faced by EFL learners in the second language acquisition process.

Keywords: collocational errors, lexical errors, Persian EFL learners, semantic errors

Procedia PDF Downloads 142
7972 Continuous Wave Interference Effects on Global Position System Signal Quality

Authors: Fang Ye, Han Yu, Yibing Li

Abstract:

Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.

Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo

Procedia PDF Downloads 259
7971 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error

Procedia PDF Downloads 323
7970 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm

Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao

Abstract:

In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.

Keywords: SEDREAMS, GCI, SBC, GOI

Procedia PDF Downloads 356
7969 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach

Authors: Uyi Kizito Ehigiamusoe

Abstract:

The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.

Keywords: economic growth, investments, money market, money market challenges, money market instruments

Procedia PDF Downloads 344
7968 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)

Authors: Anil Kawan, Soon Jae Yu, Jong Min Park

Abstract:

GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.

Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet

Procedia PDF Downloads 426
7967 C-Reactive Protein in Patients with Type 2 Diabetes Mellitus

Authors: Athar Hussain Memon

Abstract:

Objectives: We tried to determine the frequency of raised C-reactive protein (CRP) in patients with type 2 diabetes mellitus. Patients and Methods: This cross-sectional descriptive study of six months study was conducted at Liaquat University Hospital Hyderabad from March 2013 to August 2013. All diabetic patients of ≥35 years age of either gender for >01 year duration visited at OPD were evaluated for C-reactive protein and their glycemic status by hemoglobin A1c. The data was analyzed in SPSS and the frequency and percentage were calculated. Results: During six month study period, total 100 diabetic patients were evaluated for C-reactive protein. The majority of patients were from urban areas 75/100 (75%). The mean ±SD for age of patients with diabetes mellitus was 51.63±7.82. The mean age ±SD of patient with raised CRP was 53±7.21. The mean ±SD for HbA1c in patients with raised CRP is 9.55±1.73. The mean random blood sugar level in patients with raised CRP was 247.42 ± 6.62. The majority of subjects were of 50-69 years of age group with female predominance (p=0.01) while the CRP was raised in 70 (70%) patients in relation to age (p=0.02) and gender (p=0.01), respectively. Both HbA1c and CRP were raised in 64.9% (p=0.04) in patients with type 2 diabetes mellitus. The mean ±SD of CRP was 5.8±1.21 while for male and female individuals with raised CRP was 3.52±1.22 and 5.7±1.63, respectively. Conclusions: The raised CRP was observed in patients with type 2 diabetes mellitus.

Keywords: diabetes mellitus, C-reactive protein, hemoglobin A1c, diabetes and metabolism

Procedia PDF Downloads 414
7966 Modernization of the Economic Price Adjustment Software

Authors: Roger L. Goodwin

Abstract:

The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. In mid to late 1990, much research went into changes to the CPI by a Congressional Advisory Committee. One thing can be said from the research is that, aside from there are alternative estimators for the CPI; any fundamental change to the CPI will affect many government programs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for long-term contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.

Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures

Procedia PDF Downloads 317
7965 Soil Stress State under Tractive Tire and Compaction Model

Authors: Prathuang Usaborisut, Dithaporn Thungsotanon

Abstract:

Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.

Keywords: draft force, soil compaction model, stress state, tractive tire

Procedia PDF Downloads 352
7964 Efficacy of Comprehensive Diabetic Care Program with the Reduction of HbA1c in Overweight Type II Diabetes Mellitus Patients: A Retrospective Study

Authors: Rohit Sane, Pravin Ghadigaonkar, Purvi Ahuja, Suvarna Tirmare, Archana Kelhe, Kranti Shinde, Rahul Mandole

Abstract:

To evaluate the efficacy of Comprehensive Diabetic Care Program with the reduction of HbA1c in overweight Diabetes Mellitus Type II patients retrospectively. Methods: Retrospective study was carried out on 34 overweight type II diabetic patients (Mean Age = 54.58 ±11.38 yrs). A total of 34 patients were enrolled after screening of 68 patients (HbA1c 7-10%). The patients were on concomitant drugs namely insulin (11.76%), DPP-4 inhibitor (17.64%), Biguanide (55.88%), Sulfonylurea (52.94%), thiazolidinedione (11.76%), other medications (20.58%) and no allopathic medications (14.70%). The patients were given Comprehensive Diabetic Care Program consisting of panchkarma procedures namely snehana (external oleation), swedana (passive heat therapy) and basti (enema), which was completed in 15 sittings. During the therapy and next 90 days, the patients followed low carbohydrate and moderate protein & fat diet. The primary endpoint of this study was the evaluation of reduction in HbA1c at the end of the follow-up after 90 days. Results: Thirty-four overweight type II diabetic patients (mean age: 54.58[±11.38], HbA1c[7-10%], 67.64% male and 32.35% female) were enrolled in the study. A significant reduction was observed in HbA1c levels (14.30%, p<0.05) at the end of the 90 days follow-up as compared to baseline. Also, BMI was reduced by 5.87%. There was reduction in the usage of the concomitant drugs namely insulin (2.94%), DPP-4 inhibitor (2.94%), Biguanide (32.35%), Sulfonylurea (35.29%), thiazolidinedione (5.88%), other medications(17.64%) and no allopathic medications (32.35%). Conclusion: The results of the study highlight not only in the reduction of HbA1c, but also in BMI and drug tapering of the CDC program in the overweight type II diabetic patients with HbA1c (7-10%).

Keywords: HbA1c, low carb diet, Panchakarma therapy, Type II Diabetes

Procedia PDF Downloads 280
7963 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
7962 Comparison of Statins Dose Intensity on HbA1c Control in Outpatients with Type 2 Diabetes: A Prospective Cohort Study

Authors: Mohamed A. Hammad, Dzul Azri Mohamed Noor, Syed Azhar Syed Sulaiman, Ahmed A. Khamis, Abeer Kharshid, Nor Azizah Aziz

Abstract:

The effect of statins dose intensity (SDI) on glycemic control in patients with existing diabetes is unclear. Also, there are many contradictory findings were reported in the literature; thus, it is limiting the possibility to draw conclusions. This project was designed to compare the effect of SDI on glycated hemoglobin (HbA1c%) control in outpatients with Type 2 diabetes in the endocrine clinic at Hospital Pulau Pinang, Malaysia, between July 2015 and August 2016. A prospective cohort study was conducted, where records of 345 patients with Type 2 diabetes (Moderate-SDI group 289 patients and high-SDI cohort 56 patients) were reviewed to identify demographics and laboratory tests. The target of glycemic control (HbA1c < 7% for patient < 65 years, and < 8% for patient ≥ 65 years) was estimated, and the results were presented as descriptive statistics. From 289 moderate-SDI cohorts with a mean age of 57.3 ± 12.4 years, only 86 (29.8%) cases were shown to have controlled glycemia, while there were 203 (70.2%) cases with uncontrolled glycemia with confidence interval (CI) of 95% (6.2–10.8). On the other hand, the high-SDI group of 56 patients with Type 2 diabetes with a mean age 57.7±12.4 years is distributed among 11 (19.6%) patients with controlled diabetes, and 45 (80.4%) of them had uncontrolled glycemia, CI: 95% (7.1–11.9). The study has demonstrated that the relative risk (RR) of uncontrolled glycemia in patients with Type 2 diabetes that used high-SDI is 1.15, and the excessive relative risk (ERR) is 15%. The absolute risk (AR) is 10.2%, and the number needed to harm (NNH) is 10. Outpatients with Type 2 diabetes who use high-SDI of statin have a higher risk of uncontrolled glycemia than outpatients who had been treated with a moderate-SDI.

Keywords: cohort study, diabetes control, dose intensity, HbA1c, Malaysia, statin, type 2 diabetes mellitus, uncontrolled glycemia

Procedia PDF Downloads 306