Search results for: rotor shape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2402

Search results for: rotor shape

2402 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 202
2401 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 284
2400 Numerical Study for Structural Design of Composite Rotor with Crack Initiation

Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.

Keywords: rotor, composite, damage, finite element, numerical

Procedia PDF Downloads 453
2399 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves

Authors: Yingchen Yang

Abstract:

Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.

Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction

Procedia PDF Downloads 139
2398 Dynamic Analysis and Instability of a Rotating Composite Rotor

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, the dynamic response for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade is developed. The use of the composite material for the rotor, offers a good stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.

Keywords: rotor, composite, damage, finite element, numerical

Procedia PDF Downloads 494
2397 Condition Monitoring for Controlling the Stability of the Rotating Machinery

Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir

Abstract:

In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor are developed. Numerical calculations on the model develop of three dimensions prove that the defects effect has a negative effect on the stability of the rotor. Experimentally, the study of the rotor in the transient system allowed to determine the vibratory responses due to the unbalances and various excitations.

Keywords: rotor, frequency, finite element, specter

Procedia PDF Downloads 342
2396 Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions

Authors: Mohammad Hadi Jalali, Behrooz Shahriari, Mostafa Ghayour, Saeed Ziaei-Rad, Shahram Yousefi

Abstract:

Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions.

Keywords: finite element method, Timoshenko beam elements, operational deflection shape, unbalance response

Procedia PDF Downloads 380
2395 Numerical and Experimental Analysis of Rotor Dynamic Stability

Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, A. Bouderba, H. Kebir

Abstract:

The study of the rotor dynamic in transient system allowed to determine the vibratory responses due to various excitations. This work presents a coupled gyroscopic effect in the defects of a rotor under dynamic loading. Calculations of different energies and virtual work from the various elements of the rotor are developed. To treat real systems a model of finite element was developed. This model of the rotor makes it possible to extract the frequencies and modal deformed, and to calculate the stresses in the critical zone. The study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances, crack and various excitations.

Keywords: rotor, defect, finite element, numerical

Procedia PDF Downloads 429
2394 Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density

Authors: Suyong Kim

Abstract:

Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density.

Keywords: motor, BLDC, spoke, ferrite

Procedia PDF Downloads 532
2393 A Study on the Effect of Rib Structure in Spoke-Type PMSM

Authors: Hyun-Soo Seol, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Rotor of Spoke-Type PMSM is divided into permanent magnet and rotor core. Moreover, rotor core is composed of pole-piece, Bridge and rib. Piece between the permanent magnet N and S poles is pole-piece. Bridge and rib hold pole-piece. In the case of pole-piece and bridge, it is essential structure of Spoke-Type PMSM. However, Rib can be selected by the designer depending on the operating conditions and constraints. If rib is present in the rotor, rib which acts in the leak path generates a leakage flux. Although the leakage flux reduces the torque in low speed, it expands speed range in high speed. So, there is a relationship of trade off. Viewed from the standpoint of permanent magnet demagnetization, since the magnetic flux by the stator winding leaks to the rib, it is an advantage. In addition, rib affects the safety factor of the rotor. For application required high speed operation, since the securing the safety factor of the rotor is important, rib structure is advantageous. On the other hand, in the case of the application that does not require high speed operation, it is desirable to increase the output power by designing without rib. In this paper, Effects on rib structure is analyzed in detail and this paper provides designer with information about rotor design of spoke-type PMSM according to rib structure.

Keywords: spoke-Type PMSM, rotor shape, rib, operation range

Procedia PDF Downloads 389
2392 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method

Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee

Abstract:

This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.

Keywords: PMSM, optimal design, rotor design, voltage-inductance map

Procedia PDF Downloads 642
2391 The Lateral and Torsional Vibration Analysis of a Rotor-Bearing System Using Transfer Matrix Method

Authors: Mohammad Hadi Jalali, Mostafa Ghayour, Saeed Ziaei-Rad, Behrooz Shahriari

Abstract:

The vibration problems that can be occurred in the operational conditions of rotating machines may cause damage to the machine or even failure of the machine completely. Therefore, dynamic analysis of rotors is vital in the design and development stages of the rotating machines. In this study, the uncoupled torsional and lateral vibration analysis of a rotor-bearing system is carried out using transfer matrix method. The Campbell diagram, critical speed and the mode shape corresponding to the critical speed are obtained in order to evaluate the dynamic behavior of the rotor.

Keywords: transfer matrix method, rotor-bearing system, campbell diagram, critical speed

Procedia PDF Downloads 459
2390 Vibration Control of a Horizontally Supported Rotor System by Using a Radial Active Magnetic Bearing

Authors: Vishnu A., Ashesh Saha

Abstract:

The operation of high-speed rotating machinery in industries is accompanied by rotor vibrations due to many factors. One of the primary instability mechanisms in a rotor system is the centrifugal force induced due to the eccentricity of the center of mass away from the center of rotation. These unwanted vibrations may lead to catastrophic fatigue failure. So, there is a need to control these rotor vibrations. In this work, control of rotor vibrations by using a 4-pole Radial Active Magnetic Bearing (RAMB) as an actuator is analysed. A continuous rotor system model is considered for the analysis. Several important factors, like the gyroscopic effect and rotary inertia of the shaft and disc, are incorporated into this model. The large deflection of the shaft and the restriction to axial motion of the shaft at the bearings result in nonlinearities in the system governing equation. The rotor system is modeled in such a way that the system dynamics can be related to the geometric and material properties of the shaft and disc. The mathematical model of the rotor system is developed by incorporating the control forces generated by the RAMB. A simple PD controller is used for the attenuation of system vibrations. An analytical expression for the amplitude and phase equations is derived using the Method of Multiple Scales (MMS). Analytical results are verified with the numerical results obtained using an ‘ode’ solver in-built into MATLAB Software. The control force is found to be effective in attenuating the system vibrations. The multi-valued solutions leading to the jump phenomenon are also eliminated with a proper choice of control gains. Most interestingly, the shape of the backbone curves can also be altered for certain values of control parameters.

Keywords: rotor dynamics, continuous rotor system model, active magnetic bearing, PD controller, method of multiple scales, backbone curve

Procedia PDF Downloads 46
2389 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies

Keywords: rotor, crack, rubbing, axial force, non linear

Procedia PDF Downloads 359
2388 Environmental Impacts on the Appearance of Disbonds in Metal Rotor Blades of Mi-2 Helicopters

Authors: Piotr Synaszko, Michał Sałaciński, Andrzej Leski

Abstract:

This paper describes the analysis of construction Mi-2 helicopter rotor blades in order to determine the causes of appearance disbonds. Authors describe construction of rotor blade with impact on bonded joins and areas of water migration. They also made analysis which determines possibility of disbond between critical parts of rotor blades based on more than one hundred non-destructive inspections results. They showed which parts of the blades most likely to damage. The main source of damage is water presence.

Keywords: disbonds, environmental effect, helicopter rotor blades, service life extension

Procedia PDF Downloads 274
2387 Dynamic Modeling of an Unmanned Aerial Vehicle with Petro-Engine

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

In the following article, we present the dynamic simulation of an unmanned aerial vehicle with main fuel engine in the middle to carry most of the weight. This configuration will increase the flight time of the vehicle for a given payload size as opposed to the traditional quad rotor, where only DC motors are used. A parametric study to investigate the effect of the propellers ratio (main rotor propeller diameter to secondary rotor propeller diameter), the angle of incidence of the main rotor and the twist angle of the main rotor blades on selected performance criteria is presented.

Keywords: unmanned aerial vehicle (UAV), quadrotor, petrol quadcopter, flying robot

Procedia PDF Downloads 415
2386 Behavior Fatigue Life of Wind Turbine Rotor with Longitudinal Crack Growth

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Tchina, H. Kebir

Abstract:

This study concerned the dynamic behavior of the wind turbine rotor. Before all, we have studied the loads applied to the rotor, which allows the knowledge their effect on the fatigue. We also studied the movement of the longitudinal cracked rotor in order to determine stress, strain and displacement. Moreover, to study the issues of cracks in the critical zone ABAQUS software is used, which based to the finite element to give the results. In the first we compared the first six modes shapes between cracking and uncracking of HAWT rotor. In the second part, we show the evolution of six first naturals frequencies with longitudinal crack propagation. Finally, we conclude that the residual change in the naturals frequencies can be used as in shaft crack diagnosis predictive maintenance.

Keywords: wind turbine rotor, natural frequencies, longitudinal crack growth, life time

Procedia PDF Downloads 548
2385 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings

Authors: Abdurrahim Dal, Tuncay Karaçay

Abstract:

Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.

Keywords: air bearing, internal pressure, Reynold’s equation, rotor

Procedia PDF Downloads 390
2384 Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults

Authors: Muhammad Asghar Saqib, Saad Saleem Khan, Syed Abdul Rahman Kashif

Abstract:

In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors.

Keywords: switched reluctance motor, finite element analysis, cracked rotor, 3-D modelling of a srm

Procedia PDF Downloads 621
2383 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.

Keywords: MATLAB/Simulink, rotor resistance method, slip power recovery method, wound rotor induction motor

Procedia PDF Downloads 331
2382 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.

Keywords: permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor

Procedia PDF Downloads 297
2381 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms

Authors: Prabhakar Sathujoda

Abstract:

Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.

Keywords: Continuous Wavelet Transform, Flexible Coupling, Rotor System, Sub Critical Speed

Procedia PDF Downloads 117
2380 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: darrieus wind turbine, VAWT, NACA airfoil, performance

Procedia PDF Downloads 336
2379 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis

Procedia PDF Downloads 273
2378 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 102
2377 Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

In electric power steering (EPS), spoke type brushless ac (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. This paper deals with the shape optimization of spoke type BLAC motor, in order to reduce cogging torque. This paper examines 3 steps skewing rotor angle, optimizing rotor core edge and rotor overlap length for reducing cogging torque in spoke type BLAC motor. The methods were applied to existing machine designs and their performance was calculated using finite- element analysis (FEA). Prototypes of the machine designs were constructed and experimental results obtained. It is shown that the FEA predicted the cogging torque to be nearly reduce using those methods.

Keywords: EPS, 3-Step skewing, spoke type BLAC, cogging torque, FEA, optimization

Procedia PDF Downloads 459
2376 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 97
2375 PID Control of Quad-Rotor Unnamed Vehicle Based on Lagrange Approach Modelling

Authors: A. Benbouali, H. Saidi, A. Derrouazin, T. Bessaad

Abstract:

Aerial robotics is a very exciting research field dealing with a variety of subjects, including the attitude control. This paper deals with the control of a four rotor vertical take-off and landing (VTOL) Unmanned Aerial Vehicle. The paper presents a mathematical model based on the approach of Lagrange for the flight control of an autonomous quad-rotor. It also describes the controller architecture which is based on PID regulators. The control method has been simulated in closed loop in different situations. All the calculation stages and the simulation results have been detailed.

Keywords: quad-rotor, lagrange approach, proportional integral derivate (PID) controller, Matlab/Simulink

Procedia PDF Downloads 360
2374 Optimization of Three Phase Squirrel Cage Induction Motor

Authors: Tunahan Sapmaz, Harun Etçi, İbrahim Şenol, Yasemin Öner

Abstract:

Rotor bar dimensions have a great influence on the air-gap magnetic flux density. Therefore, poor selection of this parameter during the machine design phase causes the air-gap magnetic flux density to be distorted. Thus, it causes noise, torque fluctuation, and losses in the induction motor. On the other hand, the change in rotor bar dimensions will change the resistance of the conductor, so the current will be affected. Therefore, the increase and decrease of rotor bar current affect operation, starting torque, and efficiency. The aim of this study is to examine the effect of rotor bar dimensions on the electromagnetic performance criteria of the induction motor. Modeling of the induction motor is done by the finite element method (FEM), which is a very powerful tool. In FEM, the results generally focus on performance criteria such as torque, torque fluctuation, efficiency, and current.

Keywords: induction motor, finite element method, optimization, rotor bar

Procedia PDF Downloads 90
2373 Analysis Rotor Bearing System Dynamic Interaction with Bearing Supports

Authors: V. T. Ngo, D. M. Xie

Abstract:

Frequently, in the design of machines, some of parameters that directly affect the rotor dynamics of the machines are not accurately known. In particular, bearing stiffness support is one such parameter. One of the most basic principles to grasp in rotor dynamics is the influence of the bearing stiffness on the critical speeds and mode shapes associated with a rotor-bearing system. Taking a rig shafting as an example, this paper studies the lateral vibration of the rotor with multi-degree-of-freedom by using Finite Element Method (FEM). The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes. Then critical speeds and mode shapes are analyzed by set bearing stiffness changes. The model permitted to identify the critical speeds and bearings that have an important influence on the vibration behavior.

Keywords: lateral vibration, finite element method, rig shafting, critical speed

Procedia PDF Downloads 304