Search results for: thermal shock test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12502

Search results for: thermal shock test

12022 Effect of Extracorporeal Shock Wave Therapy on Post Burn Scars

Authors: Mahmoud S. Zaghloul, Mohammed M. Khalaf, Wael N. Thabet, Haidy N. Asham

Abstract:

Background. Hypertrophic scarring is a difficult problem for burn patients, and scar management is an essential aspect of outpatient burn therapy. Post-burn pathologic scars involve functional and aesthetic limitations that have a dramatic influence on the patient’s quality of life. The aim was to investigate the use of extracorporeal shock wave therapy (ESWT), which targets the fibroblasts in scar tissue, as an effective modality for scar treatment in burn patients. Subjects and methods: forty patients with post-burn scars were assigned randomly into two equal groups; their ages ranged from 20-45 years. The study group received ESWT and traditional physical therapy program (deep friction massage, stretching exercises). The control group received traditional physical therapy program (deep friction massage, stretching exercises). All groups received two sessions per week for six successful weeks. The data were collected before and after the same period of treatment for both groups. Evaluation procedures were carried out to measure scar thickness using ultrasonography and Vancouver Scar Scale (VSS) was completed before and after treatment. Results: Post-treatment results showed that there was a significant improvement difference in scar thickness in both groups in favor of the study group. Percentage of improvement in scar thickness in the study group was 42.55%, while it was 12.15% in the control group. There was also a significant improvement difference between results obtained using VSS in both groups in favor of the study group. Conclusion: ESWT is effective in management of pathologic post burn scars.

Keywords: extracorporeal shock wave therapy, post-burn scars, ultrasonography, Vancouver scar scale

Procedia PDF Downloads 239
12021 An Investigation of Differential Item and Test Functioning of Scholastic Aptitude Test 2011 (SWUSAT 2011)

Authors: Ruangdech Sirikit

Abstract:

The purposes of this study were analyzed differential item functioning and differential test functioning of SWUSAT aptitude test classification by sex variable. The data used in this research is the secondary data from Srinakharinwirot University Scholastic Aptitude Test 2011 (SWUSAT 2011) SWUSAT test consists of four subjects. There are verbal ability test, number ability test, reasoning ability test and spatial ability test. The data analysis was carried out in 2 steps. The first step was analyzing descriptive statistics. In the second step were analyzed differential item functioning (DIF) and differential test functioning (DTF) by using the DIFAS program. The research results were as follows: The results of data analysis for all 10 tests in year 2011. Sex was the characteristic that found DIF all 10 tests. The percentage of item number that found DIF was between 10% - 46.67%. There are 4 tests that most of items favors female group. There are 3 tests that most of items favors male group and there are 3 tests that the number of items favors female group equal favors male group. For Differential test functioning (DTF), there are 8 tests that have small DIF effect variance.

Keywords: differential item functioning, differential test functioning, SWUSAT, aptitude test

Procedia PDF Downloads 591
12020 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 93
12019 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 368
12018 Thermal Performance of Plate-Fin Heat Sink with Lateral Perforation

Authors: Sakkarin Chingulpitak, Somchai Wongwises

Abstract:

Over the past several decades, the development of electronic devices has led to higher performance. Therefore, an electronic cooling system is important for the electronic device. A heat sink which is a part of the electronic cooling system is continuously studied in the research field to enhance the heat transfer. To author’s best knowledge, there have been only a few articles which reported the thermal performance of plate-fin heat sink with perforation. This research aims to study on the flow and heat transfer characteristics of the solid-fin heat sink (SFHS) and laterally perforated plate-fin heat sink (LAP-PFHS). The SFHS and LAP-PFHSs are investigated on the same fin dimensions. The LAP-PFHSs are performed with a 27 perforation number and two different diameters of circular perforation (3 mm and 5 mm). The experimental study is conducted under various Reynolds numbers from 900 to 2,000 and the heat input of 50W. The experimental results show that the LAP-PFHS with perforation diameter of 5 mm gives the minimum thermal resistance about 25% lower than SFHS. The thermal performance factor which takes into account the ratio of the Nusselt number and ratio of friction factor is used to find the suitable design parameters. The experimental results show that the LAP-PFHS with the perforation diameter of 3 mm provides the thermal performance of 15% greater than SFHS. In addition, the simulation study is presented to investigate the effect of the air flow behavior inside the perforation on the thermal performance of LAP-PFHS.

Keywords: heat sink, parallel flow, circular perforation, non-bypass flow

Procedia PDF Downloads 131
12017 Wally Feelings Test: Validity and Reliability Study

Authors: Gökhan Kayili, Ramazan Ari

Abstract:

In this research, it is aimed to be adapted Wally Feelings Test to Turkish children and performed the reliability and validity analysis of the test. The sampling of the research was composed of three to five year-old 699 Turkish preschoolers who are attending official and private nursery school. The schools selected with simple random sampling method by considering different socio economic conditions and different central district in Konya. In order to determine reliability of Wally Feelings Test, internal consistency coefficients (KR-20), split-half reliability and test- retest reliability analysis have been performed. During validation process construct validity, content/scope validity and concurrent/criterion validity were used. When validity and reliability of the test examined, it is seen that Wally Feelings Test is a valid and reliable instrument to evaluate three to five year old Turkish children’s understanding feeling skills.

Keywords: reliability, validity, wally feelings test, social sciences

Procedia PDF Downloads 519
12016 Extracorporeal Shock Wave Therapy versus Functional Electrical Stimulation on Spasticity, Function and Gait Parameters in Hemiplegic Cerebral Palsy

Authors: Mohamed A. Eid, Sobhy M. Aly

Abstract:

Background: About 75% of children with spastic hemiplegic cerebral palsy walk independently, but most still show abnormal gait patterns because of contractures across the joints and muscle spasticity. Objective: The purpose of this study was to investigate and compare the effects of extracorporeal shock wave therapy (ESWT) versus functional electrical stimulation (FES) on spasticity, function, and gait parameters in children with hemiplegic cerebral palsy (CP). Methods: A randomized controlled trail was conducted for 45 children with hemiplegic CP ranging in age from 6 to 9 years. They were assigned randomly using opaque envelopes into three groups. Physical Therapy (PT) group consisted of 15 children and received the conventional physical therapy program (CPTP) in addition to ankle foot orthosis (AFO). ESWT group consisted of 15 children and received the CPTP, AFO in addition to ESWT. FES group also consisted of 15 children and received the CPTP, AFO in addition to FES. All groups received the program of treatment 3 days/week for 12 weeks. Evaluation of spasticity by using the Modified Ashworth Scale (MAS), function by using the Pediatric Evaluation Disability Inventory (PEDI) and gait parameters by using the 3-D gait analysis was conducted at baseline and after 12 weeks of the treatment program. Results: Within groups, significant improvements in spasticity, function, and gait (P = 0.05) were observed in both ESWT and FES groups after treatment. While between groups, ESWT group showed significant improvements in all measured variables compared with FES and PT groups (P ˂ 0.05) after treatment. Conclusion: ESWT induced significant improvement than FES in decreasing spasticity and improving function and gait in children with hemiplegic CP. Therefore, ESWT should be included as an adjunctive therapy in the rehabilitation program of these children.

Keywords: cerebral palsy, extracorporeal shock wave therapy, functional electrical stimulation, function, gait, spasticity

Procedia PDF Downloads 117
12015 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 21
12014 An Experimental Study of the External Thermal Insulation System’s (ETICS) Efficiency in Buildings during Spring Conditions

Authors: Carmen Viñas Arrebola, Antonio Rodriguez Sanchez, Sheila Varela Lujan, Mariano Gonzalez Cortina, Cesar Porras Amores

Abstract:

The research group TEMA from the School of Building (UPM) is working in the line of energy efficiency and comfort in building. The need to reduce energy consumption in the building construction implies designing new constructive systems. These systems help to reduce both consumption and energy losses in order to achieve adequate thermal comfort for people in any type of building. In existing buildings the best option is the rehabilitation focused on thermal insulation. The aim of this paper is to design, monitor and analyze the first results of thermal behavior of the ETICS system in façades. This retrofitting solution consists of adding thermal insulation on the outside of the building, helping to create a continuous envelope on the façades. The analysis is done by comparing a rehabilitated part of the building with ETICS system and another part which has not been rehabilitated, and it is taken as reference. Both of them have the same characteristics. Temperature measurements were taken with type K thermocouples according to the previous design of the monitoring and in the same period of time. The pilot building of the study is situated in Benimamet Street, in San Cristobal de Los Ángeles, in the south of Madrid. It was built in the late 50s. The 51st entrance hall, which is restored, and the 47th entrance hall, in original conditions, have been studied.

Keywords: comfort in building, energy efficiency in building, ETICS, thermal properties

Procedia PDF Downloads 298
12013 Micromechanical Investigation on the Influence of Thermal Stress on Elastic Properties of Fiber-Reinforced Composites

Authors: Arber Sejdiji, Jan Schmitz-Huebsch, Christian Mittelstedt

Abstract:

Due to its use in a broad range of temperatures, the prediction of elastic properties of fiber composite materials under thermal load is significant. Especially the transversal stiffness dominates the potential of use for fiber-reinforced composites (FRC). A numerical study on the influence of thermal stress on transversal stiffness of fiber-reinforced composites is presented. In the numerical study, a representative volume element (RVE) is used to estimate the elastic properties of a unidirectional ply with finite element method (FEM). For the investigation, periodic boundary conditions are applied to the RVE. Firstly, the elastic properties under pure mechanical load are derived numerically and compared to results, which are obtained by analytical methods. Thereupon thermo-mechanical load is implemented into the model to investigate the influence of temperature change with low temperature as a key aspect. Regarding low temperatures, the transversal stiffness increases intensely, especially when thermal stress is dominant over mechanical stress. This paper outlines the employed numerical methods as well as the derived results.

Keywords: elastic properties, micromechanics, thermal stress, representative volume element

Procedia PDF Downloads 90
12012 3D Codes for Unsteady Interaction Problems of Continuous Mechanics in Euler Variables

Authors: M. Abuziarov

Abstract:

The designed complex is intended for the numerical simulation of fast dynamic processes of interaction of heterogeneous environments susceptible to the significant formability. The main challenges in solving such problems are associated with the construction of the numerical meshes. Currently, there are two basic approaches to solve this problem. One is using of Lagrangian or Lagrangian Eulerian grid associated with the boundaries of media and the second is associated with the fixed Eulerian mesh, boundary cells of which cut boundaries of the environment medium and requires the calculation of these cut volumes. Both approaches require the complex grid generators and significant time for preparing the code’s data for simulation. In this codes these problems are solved using two grids, regular fixed and mobile local Euler Lagrange - Eulerian (ALE approach) accompanying the contact and free boundaries, the surfaces of shock waves and phase transitions, and other possible features of solutions, with mutual interpolation of integrated parameters. For modeling of both liquids and gases, and deformable solids the Godunov scheme of increased accuracy is used in Lagrangian - Eulerian variables, the same for the Euler equations and for the Euler- Cauchy, describing the deformation of the solid. The increased accuracy of the scheme is achieved by using 3D spatial time dependent solution of the discontinuity problem (3D space time dependent Riemann's Problem solver). The same solution is used to calculate the interaction at the liquid-solid surface (Fluid Structure Interaction problem). The codes does not require complex 3D mesh generators, only the surfaces of the calculating objects as the STL files created by means of engineering graphics are given by the user, which greatly simplifies the preparing the task and makes it convenient to use directly by the designer at the design stage. The results of the test solutions and applications related to the generation and extension of the detonation and shock waves, loading the constructions are presented.

Keywords: fluid structure interaction, Riemann's solver, Euler variables, 3D codes

Procedia PDF Downloads 422
12011 Organic Thin-Film Transistors with High Thermal Stability

Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk

Abstract:

Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.

Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology

Procedia PDF Downloads 330
12010 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors

Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li

Abstract:

Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.

Keywords: cross v-shape, performance, solar air collector, thermal efficiency

Procedia PDF Downloads 295
12009 Examining the Relationship between Chi-Square Test Statistics and Skewness of Weibull Distribution: Simulation Study

Authors: Rafida M. Elobaid

Abstract:

Most of the literature on goodness-of-fit test try to provide a theoretical basis for studying empirical distribution functions. Such goodness-of-fit tests are Kolmogorove-Simirnov and Crumer-Von Mises Type tests. However, it is likely that most of literature has not focused in details on the relationship of the values of the test statistics and skewness or kurtosis. The aim of this study is to investigate the behavior of the values of the χ2 test statistic with the variation of the skewness of right skewed distribution. A simulation study is conducted to generate random numbers from Weibull distribution. For a fixed sample sizes, different levels of skewness are considered, and the corresponding values of the χ2 test statistic are calculated. Using different sample sizes, the results show an inverse relationship between the value of χ2 test and the level of skewness for Wiebull distribution, i.e the value of χ2 test statistic decreases as the value of skewness increases. The research results also show that with large values of skewness we are more confident that the data follows the assumed distribution. Nonparametric Kendall τ test is used to confirm these results.

Keywords: goodness-of-fit test, chi-square test, simulation, continuous right skewed distributions

Procedia PDF Downloads 393
12008 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 287
12007 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 127
12006 Comparison of Processing Conditions for Plasticized PVC and PVB

Authors: Michael Tupý, Jaroslav Císař, Pavel Mokrejš, Dagmar Měřínská, Alice Tesaříková-Svobodová

Abstract:

The worldwide problem is that the recycled PVB is wildly stored in landfills. However, PVB have very similar chemical properties such as PVC. Moreover, both of them are used in plasticized form. Thus, the thermal properties of plasticized PVC obtained from primary production and the PVB was obtained by recycling of windshields are compared. It is carried out in order to find degradable conditions and decide if blend of PVB/PVC can be processable together. Tested PVC contained 38 % of plasticizer diisononyl phthalate (DINP) and PVB was plasticized with 28 % of triethylene glycol, bis(2-ethylhexanoate) (3GO). Thermal and thermo-oxidative decomposition of both vinyl polymers are compared such as DSC and OOT analysis. The tensile strength analysis is added.

Keywords: polyvinyl chloride, polyvinyl butyral, recycling, reprocessing, thermal analysis, decomposition

Procedia PDF Downloads 493
12005 End To End Process to Automate Batch Application

Authors: Nagmani Lnu

Abstract:

Often, Quality Engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a Batch Application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a Batch application from a Financial Industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in Test Creation and Test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.

Keywords: batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing

Procedia PDF Downloads 35
12004 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 133
12003 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 390
12002 A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor

Authors: Youn-Sung Kim, Mi-Sung Kim, Jae-Kun Lee

Abstract:

This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample.

Keywords: accelerated life cycle test, motor reliability test, motor for washing machine, BLDC motor

Procedia PDF Downloads 615
12001 Finding the English Competency for Developing Public Health Village Volunteers at Ban Prasukchai in Chumpuang District, Nakhon Ratchasima Province in Thailand

Authors: Kittivate Boonyopakorn

Abstract:

The purposes of this study were to find the English competence of the public health volunteers and to develop the use of their English. The samples for the study were 41 public health village volunteers at Ban Prasukchai, in Thailand. The findings showed that the sum of all scores for the pre-test was 452, while the score for the post-test was 1,080. Therefore, the results of the experiment confirm that the post-test scores (1,080) significantly are higher than the pre-test (452). The mean score (N=41) for the pre-test was 11.02 while the mean score (N=41) for the post-test was 18.10. The standard deviation for the pre-test was 2.734; however, for the post-test it was 1.934. In addition to the experts-evaluated research tools, the results of the evaluation for the structured interviews (IOC) were 1 in value. The evaluation of congruence for the content with learning objectives (IOC) were 0.66 to 1.00 in value. The evaluation of congruence for the pre and post-test with learning objectives (IOC) are 1 in value.

Keywords: finding the English competency, developing public health, village volunteers

Procedia PDF Downloads 434
12000 Phytochemical and Antioxidant Activity Test of Water Fraction Extract of Sisik Naga (Drymoglossum piloselloides) Leaves

Authors: Afifah Nur Aini, Elsa Mega Suryani, Betty Lukiaty

Abstract:

Drymoglossum piloselloides or more commonly known as sisik naga fern is a member of Polipodiaceae Family that is abundant and widely distributed in nature. That being said, there hasn’t been many studies reporting about the benefits of this fern. The aim of this study was to find out the active compounds and antioxidant activity of water fraction extract of sisik naga leaves. The study will be able to optimize the use of this fern in the future. In this study, phytochemical test was done qualitatively by using Mayer, Dragendorff and Wagner reagent for alkaloid test; FeCl3 for phenolic test; Shinoda test for flavonoid; Liebermann-Burchard test for triterprnoid and Forth test for saponin. Antioxidant activity test was done by using 20D spectronic spectrophotometer to determine the percentage of DPPH free radical inhibition. The results showed that water fraction extract of sisik naga leaves contain phenolic and IC50 = 5.44 μg/ml. This means that sisik naga leaves can be used as an antioxidant.

Keywords: antioxidant activity test, dpph, phytochemical test, drymoglossum piloselloides

Procedia PDF Downloads 883
11999 Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate

Authors: Alouaoui Redha, Ferhat Samira, Bouaziz Mohamed Najib

Abstract:

In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.

Keywords: MHD, micropolar fluid, thermal radiation, heat and mass transfer, boundary layer

Procedia PDF Downloads 434
11998 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: bio-heat, boussinesq, conduction, convection, eye

Procedia PDF Downloads 323
11997 Effect of Realistic Lubricant Properties on Thermal Electrohydrodynamic Lubrication Behavior in Circular Contacts

Authors: Puneet Katyal, Punit Kumar

Abstract:

A great deal of efforts has been done in the field of thermal effects in electrohydrodynamic lubrication (TEHL) during the last five decades. The focus was primarily on the development of an efficient numerical scheme to deal with the computational challenges involved in the solution of TEHL model; however, some important aspects related to the accurate description of lubricant properties such as viscosity, rheology and thermal conductivity in EHL point contact analysis remain largely neglected. A few studies available in this regard are based upon highly complex mathematical models difficult to formulate and execute. Using a simplified thermal EHL model for point contacts, this work sheds some light on the importance of accurate characterization of the lubricant properties and demonstrates that the computed TEHL characteristics are highly sensitive to lubricant properties. It also emphasizes the use of appropriate mathematical models with experimentally determined parameters to account for correct lubricant behaviour.

Keywords: TEHL, shear thinning, rheology, conductivity

Procedia PDF Downloads 182
11996 Evaluate the Changes in Stress Level Using Facial Thermal Imaging

Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian

Abstract:

This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.

Keywords: stress, thermal imaging, face, SVM, polygraph

Procedia PDF Downloads 468
11995 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 242
11994 Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate

Authors: Yi-Yu Huang, Chien-Kuo Wang, Sreerag Chota Veettil, Hang Zhang, Hu Yike

Abstract:

Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime.

Keywords: thermal performance, extensive wetland green roof, Aquatic plant, Winter , Humid subtropical climate

Procedia PDF Downloads 153
11993 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency

Procedia PDF Downloads 434