Search results for: thermal gravimetric analysis (TGA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29422

Search results for: thermal gravimetric analysis (TGA)

28942 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE

Authors: A. Lakrim, D. Tahri

Abstract:

This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.

Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model

Procedia PDF Downloads 394
28941 Hot Corrosion Behavior of Calcium Zirconate Modified YSZ Coatings

Authors: Naveed Ejaz, Liaqat Ali, Amer Nusair

Abstract:

Thermal barrier coatings (TBCs) serve as thermal barriers against the high temperature of the hot regions of the aircraft turbine engines keeping the surface of the turbine blades, vanes and combustion chamber at comparatively lower temperature. The life of these coatings depends on many in-service environmental factors. Among these factors, the behavior of the bond coat as well as the top coat at high temperature aggravated by the corrosive environments having S, V, Na and Cl plays a key role. The incorporation of the 5-15% CaZrO3 in YSZ coatings was studied after hot corrosion in vanadium oxide environment. It was observed that the reactivity of the V gradually switched from Y to Ca making CaV2O4 instead of YVO4; the percentage of CaV2O4 increased with the increase of CaZrO3 in YSZ. It eventually prevented leaching out of the Y from YSZ leaving the YSZ without any harmful phase change. The thermal insulation was found to be improved in case of CaZrO3 incorporated YSZ coatings as compared to only YSZ coating.

Keywords: hot corrosion, thermal barrier coatings, yttria stabilized zirconia, calcium zirconate

Procedia PDF Downloads 391
28940 A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed.

Keywords: computational fluid dynamics (CFD), geothermal energy, ground-source heat pumps, phase change materials (PCM)

Procedia PDF Downloads 250
28939 Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature

Authors: Sakti Mandal

Abstract:

Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach.

Keywords: thermal critical values (TCV), thermally critical zonation (TCZ), land surface temperature (LST), Landsat 8, Kolkata Municipal Corporation (KMC)

Procedia PDF Downloads 180
28938 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 382
28937 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 94
28936 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 369
28935 Evaluation of Thermal Comfort and Energy Consumption in Classroom

Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa

Abstract:

Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.

Keywords: thermal comfort, PMV/PPD, air conditioner, TSV

Procedia PDF Downloads 8
28934 CFD Simulation for Thermo-Hydraulic Performance V-Shaped Discrete Ribs on the Absorber Plate of Solar Air Heater

Authors: J. L. Bhagoria, Ajeet Kumar Giri

Abstract:

A computational investigation of various flow characteristics with artificial roughness in the form of V-types discrete ribs, heated wall of rectangular duct for turbulent flow with Reynolds number range (3800-15000) and p/e (5 to 12) has been carried out with k-e turbulence model is selected by comparing the predictions of different turbulence models with experimental results available in literature. The current study evaluates thermal performance behavior, heat transfer and fluid flow behavior in a v shaped duct with discrete roughened ribs mounted on one of the principal wall (solar plate) by computational fluid dynamics software (Fluent 6.3.26 Solver). In this study, CFD has been carried out through designing 3-demensional model of experimental solar air heater model analysis has been used to perform a numerical simulation to enhance turbulent heat transfer and Reynolds-Averaged Navier–Stokes analysis is used as a numerical technique and the k-epsilon model with near-wall treatment as a turbulent model. The thermal efficiency enhancement because of selected roughness is found to be 16-24%. The result predicts a significant enhancement of heat transfer as compared to that of for a smooth surface with different P’ and various range of Reynolds number.

Keywords: CFD, solar collector, airheater, thermal efficiency

Procedia PDF Downloads 274
28933 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market

Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette

Abstract:

The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.

Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation

Procedia PDF Downloads 110
28932 Thermal Performance of Plate-Fin Heat Sink with Lateral Perforation

Authors: Sakkarin Chingulpitak, Somchai Wongwises

Abstract:

Over the past several decades, the development of electronic devices has led to higher performance. Therefore, an electronic cooling system is important for the electronic device. A heat sink which is a part of the electronic cooling system is continuously studied in the research field to enhance the heat transfer. To author’s best knowledge, there have been only a few articles which reported the thermal performance of plate-fin heat sink with perforation. This research aims to study on the flow and heat transfer characteristics of the solid-fin heat sink (SFHS) and laterally perforated plate-fin heat sink (LAP-PFHS). The SFHS and LAP-PFHSs are investigated on the same fin dimensions. The LAP-PFHSs are performed with a 27 perforation number and two different diameters of circular perforation (3 mm and 5 mm). The experimental study is conducted under various Reynolds numbers from 900 to 2,000 and the heat input of 50W. The experimental results show that the LAP-PFHS with perforation diameter of 5 mm gives the minimum thermal resistance about 25% lower than SFHS. The thermal performance factor which takes into account the ratio of the Nusselt number and ratio of friction factor is used to find the suitable design parameters. The experimental results show that the LAP-PFHS with the perforation diameter of 3 mm provides the thermal performance of 15% greater than SFHS. In addition, the simulation study is presented to investigate the effect of the air flow behavior inside the perforation on the thermal performance of LAP-PFHS.

Keywords: heat sink, parallel flow, circular perforation, non-bypass flow

Procedia PDF Downloads 133
28931 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 185
28930 Structural Behaviour of Concrete Energy Piles in Thermal Loadings

Authors: E. H. N. Gashti, M. Malaska, K. Kujala

Abstract:

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.

Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions

Procedia PDF Downloads 199
28929 High Power Thermal Energy Storage for Industrial Applications Using Phase Change Material Slurry

Authors: Anastasia Stamatiou, Markus Odermatt, Dominic Leemann, Ludger J. Fischer, Joerg Worlitschek

Abstract:

The successful integration of thermal energy storage in industrial processes is expected to play an important role in the energy turnaround. Latent heat storage technologies can offer more compact thermal storage at a constant temperature level, in comparison to conventional, sensible thermal storage technologies. The focus of this study is the development of latent heat storage solutions based on the Phase Change Slurry (PCS) concept. Such systems promise higher energy densities both as refrigerants and as storage media while presenting better heat transfer characteristics than conventional latent heat storage technologies. This technology is expected to deliver high thermal power and high-temperature stability which makes it ideal for storage of process heat. An evaluation of important batch processes in industrial applications set the focus on materials with a melting point in the range of 55 - 90 °C. Aluminium ammonium sulfate dodecahydrate (NH₄Al(SO₄)₂·12H₂O) was chosen as the first interesting PCM for the next steps of this study. The ability of this material to produce slurries at the relevant temperatures was demonstrated in a continuous mode in a laboratory test-rig. Critical operational and design parameters were identified.

Keywords: esters, latent heat storage, phase change materials, thermal properties

Procedia PDF Downloads 280
28928 Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃

Authors: Rafiuddin

Abstract:

Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV.

Keywords: polymer solid electrolytes, XRD, DTA, electrical conductivity, impedance spectroscopy

Procedia PDF Downloads 280
28927 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors

Authors: Ravindra Raju, Vidhu Kampurath

Abstract:

For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.

Keywords: ANSYS, clutch, composite materials, creo

Procedia PDF Downloads 273
28926 Micromechanical Investigation on the Influence of Thermal Stress on Elastic Properties of Fiber-Reinforced Composites

Authors: Arber Sejdiji, Jan Schmitz-Huebsch, Christian Mittelstedt

Abstract:

Due to its use in a broad range of temperatures, the prediction of elastic properties of fiber composite materials under thermal load is significant. Especially the transversal stiffness dominates the potential of use for fiber-reinforced composites (FRC). A numerical study on the influence of thermal stress on transversal stiffness of fiber-reinforced composites is presented. In the numerical study, a representative volume element (RVE) is used to estimate the elastic properties of a unidirectional ply with finite element method (FEM). For the investigation, periodic boundary conditions are applied to the RVE. Firstly, the elastic properties under pure mechanical load are derived numerically and compared to results, which are obtained by analytical methods. Thereupon thermo-mechanical load is implemented into the model to investigate the influence of temperature change with low temperature as a key aspect. Regarding low temperatures, the transversal stiffness increases intensely, especially when thermal stress is dominant over mechanical stress. This paper outlines the employed numerical methods as well as the derived results.

Keywords: elastic properties, micromechanics, thermal stress, representative volume element

Procedia PDF Downloads 92
28925 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 115
28924 Organic Thin-Film Transistors with High Thermal Stability

Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk

Abstract:

Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.

Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology

Procedia PDF Downloads 330
28923 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors

Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li

Abstract:

Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.

Keywords: cross v-shape, performance, solar air collector, thermal efficiency

Procedia PDF Downloads 296
28922 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 288
28921 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 127
28920 Reduce the Fire Hazards of Epoxy Resin by a Zinc Stannate and Graphene Hybrids

Authors: Haibo Sheng, Yuan Hu

Abstract:

Spinel structure Zinc stannate (Zn2SnO4, ZS)/Graphene was successfully synthesized by a simple in situ hydrothermal route. Morphological study and structure analysis confirmed the homogenously loading of ZS on the graphene sheets. Then, the resulted ZS/graphene hybrids were incorporated into epoxy resin to form EP/ZS/graphene composites by a solvent dispersion method. Improved thermal stability was investigated by Thermogravimetric Analysis (TGA). Cone calorimeter result showed low peak heat release rate (PHRR). Toxical gases release during combustion was evaluated by a facile device organized in our lab. The results showed that the release of NOx, HCN decrease of about 55%. Also, TG-IR technology was used to investigate the gas release during the EP decomposition process. The CO release had decreased about 80%.The EP/G/ZS showed lowest hazards during combustion (including flame retardancy, thermal stability, lower toxical gases release and so on) than pure EP.

Keywords: fire hazards, zinc stannate, epoxy resin, toxical gas hazards

Procedia PDF Downloads 170
28919 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 134
28918 Influence of Exfoliated Graphene Nanoplatelets on Thermal Stability of Polypropylene Reinforced Hybrid Graphen-rice Husk Nanocomposites

Authors: Obinna Emmanuel Ezenkwa, Sani Amril Samsudin, Azman Hassan, Ede Anthony

Abstract:

A major challenge of polypropylene (PP) in high-heat application areas is its poor thermal stability. Under high temperature, PP burns readily with high degradation temperature and can self-ignite. In this study, PP is reinforced with hybrid filler of graphene (xGNP) and rice husk (RH) with RH at 15 wt%, and xGNP varied at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 parts per hundred (phr) of the composite. Compatibilizer MAPP was also added in each sample at 4phr of the composite. Sample formulations were melt-blended using twin screw extruder and injection moulding machine. At xGNP optimum content of 1.5 phr, hybrid PP/RH/G1.5/MAPP nanocomposite increased in thermal stability by 24 °C and 30 °C compared to pure PP and unhybridized PP/RH composite respectively; char residue increased by 513% compared to pure PP and degree of crystallization (Xc) increased from 35.4% to 36.4%. The observed thermal properties enhancement in the hybrid nanocomposites can be related to the high surface area, gap-filling effect and exfoliation characteristics of the graphene nanofiller which worked in synergy with rice husk fillers in reinforcing PP. This study therefore, shows that graphene nanofiller inclusion in polymer composites fabrication can enhance the thermal stability of polyolefins for high heat applications.

Keywords: polymer nanocomposites, thermal stability, exfoliation, hybrid fillers, polymer reinforcement

Procedia PDF Downloads 9
28917 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 23
28916 An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower

Authors: Hamed Djalal

Abstract:

The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower.

Keywords: evaporative cooling, cooling tower, air washer, humidification, moist air, heat, and mass transfer

Procedia PDF Downloads 83
28915 Soybean Oil Based Phase Change Material for Thermal Energy Storage

Authors: Emre Basturk, Memet Vezir Kahraman

Abstract:

In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.

Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing

Procedia PDF Downloads 359
28914 Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate

Authors: Alouaoui Redha, Ferhat Samira, Bouaziz Mohamed Najib

Abstract:

In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.

Keywords: MHD, micropolar fluid, thermal radiation, heat and mass transfer, boundary layer

Procedia PDF Downloads 434
28913 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit

Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek

Abstract:

In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.

Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage

Procedia PDF Downloads 253