Search results for: storage meals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2177

Search results for: storage meals

1697 Preparation and Functional Properties of Synbiotic Yogurt Fermented with Lactobacillus brevis PML1 Derived from a Fermented Cereal-Dairy Product

Authors: Farideh Tabatabei-Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Nowadays, production of functional foods has become very essential. Inulin is one of the most functional hydrocolloid compounds used in such products. In the present study, the production of a synbiotic yogurt containing 1, 2.5, and 5% (w/v) inulin has been investigated. The yogurt was fermented with Lactobacillus brevis PML1 derived from Tarkhineh, an Iranian cereal-dairy fermented food. Furthermore, the physicochemical properties, antioxidant activity, sensory attributes, and microbial viability properties were investigated on the 0th, 7th, and 14th days of storage after fermentation. The viable cells of L. brevis PML1 reached 108 CFU/g, and the product resisted to simulated digestive juices. Moreover, the synbiotic yogurt impressively increased the production of antimicrobial compounds and had the most profound antimicrobial effect on S. typhimurium. The physiochemical properties were in the normal range, and the fat content of the synbiotic yogurt was reduced remarkably. The antioxidant capacity of the fermented yogurt was significantly increased (p<0:05), which was equal to those of DPPH (69:18±1:00%) and BHA (89:16±2:00%). The viability of L. brevis PML1 was increased during storage. Sensory analysis showed that there were significant differences in terms of the impressive parameters between the samples and the control (p<0:05). Addition of 2.5% inulin not only improved the physical properties but also retained the viability of the probiotic after 14 days of storage, in addition to the viability of L. brevis with a viability count above 6 log CFU/g in the yogurt. Therefore, a novel synbiotic product containing L. brevis PML1, which can exert the desired properties, can be used as a suitable carrier for the delivery of the probiotic strain, exerting its beneficial health effects.

Keywords: functional food, lactobacillus brevis, symbiotic yogurt, physiochemical properties

Procedia PDF Downloads 91
1696 Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS

Authors: Young-Su Ryu, Won-Gi Jeon, Byoung-Chul Song, Jae-Hong Park, Ki-Won Kwon

Abstract:

In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS.

Keywords: energy storage system (ESS), open framework, profile, photovoltaic (PV), uninterruptible power supply (UPS)

Procedia PDF Downloads 473
1695 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 32
1694 Microplastic Migration from Food Packaging on Cured Meat Products

Authors: Klytaimnistra Katsara, George Kenanakis, Eleftherios Alissandrakis, Vassilis M. Papadakis

Abstract:

In recent decades, microplastics (MPs) attracted the interest of the research community as the level of environmental plastic pollution has increased over the years. Through air inhalation and food consumption, MPs enter the human body, creating a series of possible health issues. The majority of MPs enter through the digestive tract; they migrate from the plastic packaging of the foodstuffs. Several plastics, such as Polyethylene (PE), are commonly used as food packaging material due to their preservation and storage capabilities. In this work, the surfaces of three different cured meat products with varied fat compositions were studied (bacon, mortadella, and salami) to determine the migration of MPs from plastic packaging. Micro-Raman spectroscopic measurements were performed in an experimental set lasting 28 days, where the meat samples were stored in vacuum-sealed low-density polyethylene (LDPE) pouches under refrigeration conditions at 4°C. Specific measurement days (0, 3, 9, 12, 15, and 28 days of storage) were chosen to obtain comparative results. Raman micro-spectroscopy was used to monitor the MPs migration, where the Raman spectral profile of LDPE first appeared on day 9 in Bacon, day 15 in Salami, and finally, on day 28 in Mortadella. All the meat samples on day 28 were tainted because a layer of bacterial outgrowth had developed on their surface. In conclusion, MP migration from food packaging to the surface of the cured meat samples was proven. To minimize the consumption of MPs in cured meat products that are stored in plastic packaging, a short period of storage time under refrigeration conditions is advised.

Keywords: cured meat, food packaging, low-density polyethylene, microplastic migration, micro-Raman spectroscopy

Procedia PDF Downloads 73
1693 Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control

Authors: Ruben Lopez-Rodriguez

Abstract:

In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy.

Keywords: microgrids, mixed logical dynamical systems, mixed-integer optimization, model predictive control

Procedia PDF Downloads 53
1692 Effect of Whey Protein-Rice Bran Oil Incorporated Zataria multiflora Extract Edible Coating on Chemical, Physical and Microbial Quality of Chicken Egg

Authors: Majid Javanmard

Abstract:

In this study, the effects of coating with whey protein concentrate (7.5% w/v) alone and/or in combination with rice bran oil (0.2, 0.4, 0.6 g in 100 ml coating solution) and Zataria multiflora extract (1 and 2 μL in 100 ml coating solution) on the quality attributes and egg shelf life were carefully observed and analyzed. Weight loss, Haugh index, yolk index, pH, air cell depth, shell strength and the impact of this coating on the microbial load of the eggs surface were studied at the end of each week (during the 4 weeks of storage in a room environment temperature and humidity). After 4 weeks of storage, it was observed that the weight loss in all of the treated eggs with whey protein concentrate and 0.2 gr of rice bran oil (experimental group) was significantly lower than that of the control group(P < 0/05). With regard to Haugh index and yolk index, egg shelf life increased about 4 weeks compared with the control samples. Haugh Index changes revealed that the coated samples remained at grade A after 3 weeks of storage, while the control samples were relegated from grade AA to B after one week. Haugh and yolk Indices in all coated eggs were more than those of the control group. In the coated groups, Haugh and yolk indices of the coated samples with whey protein concentrate and 0.2 g rice bran oil and with whey protein concentrate and 0.2g of rice bran oil and 1 micro liter of Zataria multiflora extract were more than those of the other coated eggs and the control group eggs. PH values of the control group were higher than those of the coated groups during the storage of the eggs. The shell strength of the coated group was more than that of the control group (uncoated) and in coated samples, whey protein concentrate and 0.2 gr of rice bran oil coated samples had high shell strength. In the other treatments, no significant differences were observed. The depth of the air cell of the coated groups was determined to be less than that of the control group during the storage period. The minimum inhibitory concentration was 1 μL of Zataria multiflora extract. The results showed that 1 μL concentration of Zataria multiflora extract reduces the microbial load of the egg shell surface to 87% and 2 μL reduced total bacterial load to zero. In sensory evaluation, from evaluator point of view, the coated eggs had more overall acceptance than the uncoated group (control), and in the treatment group coated eggs, those containing a low percentage of rice bran oil had higher overall acceptability. In conclusion, coating as a practical and cost effective method can maintain the quality parameters of eggs and lead to durability of supply conditions in addition to the product marketability.

Keywords: edible coating, chicken egg, whey protein concentrate, rice bran oil, Zataria multiflora extract, shelf life

Procedia PDF Downloads 302
1691 The Effect of Chloride Dioxide and High Concentration of CO2 Gas Injection on the Quality and Shelf-Life for Exporting Strawberry 'Maehyang' in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Mohammad Zahirul Islam, Jun Pill Baek, Ho-Min Kang

Abstract:

The strawberry ‘Maehyang’ cultivated in South Korea has been increased to export to Southeast Asia. The degradation of quality often occurs in strawberries during short export period. Botrytis cinerea has been known to cause major damage to the export strawberries and the disease was caused during shipping and distribution. This study was conducted to find out the sterilized effect of chlorine dioxide(ClO2) gas and high concentration of CO2 gas injection for ‘Maehyang’ strawberry and it was packaged with oxygen transmission rate (OTR) films. The strawberry was harvested at 80% color changed stage and packaged with OTR film and perforated film (control). The treatments were a MAP used by with 20,000 cc·m-2·day·atm OTR film and gas injection in packages. The gas type of ClO2 and CO2 were injected into OTR film packages, and treatments were 6 mg/L ClO2, 15% CO2, and they were combined. The treated strawberries were stored at 3℃ for 30 days. Fresh weight loss rate was less than 1% in all OTR film packages but it was more than 15% in a perforated film treatment that showed severe deterioration of visual quality during storage. Carbon dioxide concentration within a package showed approximately 15% of the maximum CO2 concentration in all treatments except control until the 21st day, it was the tolerated range of maximum CO2 concentration of strawberry in recommended CA or MA conditions. But, it increased to almost 50% on the 30th day. Oxygen concentration showed a decrease down to approximately 0% in all treatments except control for 25 days. Ethylene concentration was shown to be steady until the 17th day, but it quickly increased on the 17th day and dropped down on the final storage day (30th day). All treatments did not show any significant differences in gas treatments. Firmness increased in CO2 (15%) and ClO2 (6mg/L) + CO2 (15%) treatments during storage. It might be the effect of high concentration CO2 known by reducing decay and cell wall degradation. The soluble solid decreased in all treatments during storage. These results were caused to use up the sugar by the increase of respiration during storage. The titratable acidity showed a similarity in all treatments. Incidence of fungi was 0% in CO2 (15%) and ClO2 (6mg/L)+ CO2 (15%), but was more than 20% in a perforated film treatment. Consequently, The result indicates that Chloride Dioxide(ClO2) and high concentration of CO2 inhibited fungi growth. Due to the fact that fresh weight loss rate and incidence of fungi were lower, the ClO2(6mg/L)+ CO2(15%) prove to be most efficient in sterilization. These results suggest that Chloride Dioxide (ClO2) and high concentration of CO2 gas injection treatments were an effective decontamination technique for improving the safety of strawberries.

Keywords: chloride dioxide, high concentration of CO2, modified atmosphere condition, oxygen transmission rate films

Procedia PDF Downloads 339
1690 Analyzing the Ergonomic Design of Manual Material Handling in Chemical Industry: Case Study of Activity Task Weigh Liquid Catalyst to the Container Storage

Authors: Yayan Harry Yadi, L. Meily Kurniawidjaja

Abstract:

Work activities for MMH (Manual Material Handling) in the storage of liquid catalyst raw material workstations in chemical industries identify high-risk MSDs (Musculoskeletal Disorders). Their work is often performed frequently requires an awkward body posture, twisting, bending because of physical space limited, cold, slippery, and limited tools for transfer container and weighing the liquid chemistry of the catalyst into the container. This study aims to develop an ergonomic work system design on the transfer and weighing process of liquid catalyst raw materials at the storage warehouse. A triangulation method through an interview, observation, and detail study team with assessing the level of risk work posture and complaints. Work postures were analyzed using the RULA method, through the support of CATIA software. The study concludes that ergonomic design can make reduce 3 levels of risk scores awkward posture. CATIA Software simulation provided a comprehensive solution for a better posture of manual material handling at task weigh. An addition of manual material handling tools such as adjustable conveyors, trolley and modification tools semi-mechanical weighing with techniques based on rule ergonomic design can reduce the hazard of chemical fluid spills.

Keywords: ergonomic design, MSDs, CATIA software, RULA, chemical industry

Procedia PDF Downloads 164
1689 Predictive Analysis of Personnel Relationship in Graph Database

Authors: Kay Thi Yar, Khin Mar Lar Tun

Abstract:

Nowadays, social networks are so popular and widely used in all over the world. In addition, searching personal information of each person and searching connection between them (peoples’ relation in real world) becomes interesting issue in our society. In this paper, we propose a framework with three portions for exploring peoples’ relations from their connected information. The first portion focuses on the Graph database structure to store the connected data of peoples’ information. The second one proposes the graph database searching algorithm, the Modified-SoS-ACO (Sense of Smell-Ant Colony Optimization). The last portion proposes the Deductive Reasoning Algorithm to define two persons’ relationship. This study reveals the proper storage structure for connected information, graph searching algorithm and deductive reasoning algorithm to predict and analyze the personnel relationship from peoples’ relation in their connected information.

Keywords: personnel information, graph storage structure, graph searching algorithm, deductive reasoning algorithm

Procedia PDF Downloads 450
1688 CO₂/CH₄ Exchange Studies on Shales to Assess the Potential for CO₂ Storage and Enhanced Shale Gas Recovery

Authors: Mateusz Kudasik, Katarzyna Kozieł

Abstract:

The work included detailed studies of CO₂/CH₄ exchange on a shale core from the Lewino-1G2 well (Poland) from a depth of 3408 m. The sample permeability coefficients were determined under conditions of confining pressure from 5 MPa to 35 MPa. These studies showed that at a confining pressure of 35 MPa – corresponding to a depth of about 1000 m, the shale core was impermeable in the direction perpendicular to the bedding, and in the direction parallel to the bedding, the sample had very low permeability (k∞=0.001 mD). The sorption tests performed showed low sorption capacities, which amounted to a maximum of 1.28 cm³/g in relation to CO₂ and 0.87 cm³/g to CH₄ at a pressure of 1.4 MPa. The most important study used to assess the possibilities of CO₂ storage and gas recovery from shale rocks were the CO₂/CH₄ exchange experiments, which were carried out under confining pressure conditions of 5 MPa and 30 MPa. These experiments were carried out on a unique apparatus, which makes it possible to apply a confining pressure corresponding to in situ conditions. The obtained results made it possible to carry out a comprehensive balance of gas exchange during the injection of CO₂ into the shale sample, with simultaneous recovery of CH₄. Based on the conducted sorption and gas exchange studies on the core sample under confining pressure conditions, it was found that in situ conditions, at the depths of shale gas occurrence in Poland of 3000-4000 m, where the confining pressure can be about 100 MPa: (i) poorly developed pore structure, (ii) very low permeability, and (iii) low sorption properties, make shale rocks poorly predisposed to the application of CO₂ storage technology with simultaneous recovery of CH₄. Without the stimulation of CO₂/CH₄ exchange rates through fracturing processes, the effectiveness of CO₂-ESGR technology on shale rock is very low. The research presented in this work is extremely important from the point of view of precise assessment of the potential of CO₂-ESGR technology.

Keywords: shale gas, shale rocks, CO₂/CH₄ exchange, permeability, sorption, CO₂, CH₄

Procedia PDF Downloads 10
1687 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 415
1686 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 167
1685 Occurrence and Levels of Mycotoxins in On-Farm Stored Sesame in Major-Growing Districts of Ethiopia

Authors: S. Alemayehu, F. A. Abera, K. M. Ayimut, R. Mahroof, J. Harvey, B. Subramanyam

Abstract:

The occurrence of mycotoxins in sesame seeds poses a significant threat to food safety and the economy in Ethiopia. This study aimed to determine the levels and occurrence of mycotoxins in on-farm stored sesame seeds in major-growing districts of Ethiopia. A total of 470 sesame seed samples were collected from randomly selected farmers' storage structures in five major-growing districts using purposive sampling techniques. An enzyme-linked immunosorbent assay (ELISA) was used to analyze the collected samples for the presence of four mycotoxins: total aflatoxins (AFT), ochratoxin A (OTA), total fumonisins (FUM), and deoxynivalenol (DON). The study found that all samples contained varying levels of mycotoxins, with AFT and DON being the most prevalent. AFT concentrations in detected samples ranged from 2.5 to 27.8 parts per billion (ppb), with a mean concentration of 13.8 ppb. OTA levels ranged from 5.0 ppb to 9.7 ppb, with a mean level of 7.1 ppb. Total fumonisin concentrations ranged from 300 to 1300 ppb in all samples, with a mean of 800 ppb. DON concentrations ranged from 560 to 700 ppb in the analyzed samples. The majority (96.8%) of the samples were safe from AFT, FUM, and DON mean levels when compared to the Federal Drug Administration maximum limit. AFT-OTA, DON-OTA, AFT-FUM, FUM-DON, and FUM-OTA, respectively, had co-occurrence rates of 44.0, 38.3, 33.8, 30.2, 29.8 and 26.0% for mycotoxins. On average, 37.2% of the sesame samples had fungal infection, and seed germination rates ranged from 66.8% to 91.1%. The Limmu district had higher levels of total aflatoxins, kernel infection, and lower germination rates than other districts. The Wollega variety of sesame had higher kernel infection, total aflatoxins concentration, and lower germination rates than other varieties. Grain age had a statistically significant (p<0.05) effect on both kernel infection and germination. The storage methods used for sesame in major-growing districts of Ethiopia favor mycotoxin-producing fungi. As the levels of mycotoxins in sesame are of public health significance, stakeholders should come together to identify secure and suitable storage technologies to maintain the quantity and quality of sesame at the level of smallholder farmers. This study suggests the need for suitable storage technologies to maintain the quality of sesame and reduce the risk of mycotoxin contamination.

Keywords: districts, seed germination, kernel infection, moisture content, relative humidity, temperature

Procedia PDF Downloads 131
1684 Investigation on Development of Pv and Wind Power with Hydro Pumped Storage to Increase Renewable Energy Penetration: A Parallel Analysis of Taiwan and Greece

Authors: Robel Habtemariam

Abstract:

Globally, wind energy and photovoltaics (PV) solar energy are among the leading renewable energy sources (RES) in terms of installed capacity. In order to increase the contribution of RES to the power supply system, large scale energy integration is required, mainly due to wind energy and PV. In this paper, an investigation has been made on the electrical power supply systems of Taiwan and Greece in order to integrate high level of wind and photovoltaic (PV) to increase the penetration of renewable energy resources. Currently, both countries heavily depend on fossil fuels to meet the demand and to generate adequate electricity. Therefore, this study is carried out to look into the two cases power supply system by developing a methodology that includes major power units. To address the analysis, an approach for simulation of power systems is formulated and applied. The simulation is based on the non-dynamic analysis of the electrical system. This simulation results in calculating the energy contribution of different types of power units; namely the wind, PV, non-flexible and flexible power units. The calculation is done for three different scenarios (2020, 2030, & 2050), where the first two scenarios are based on national targets and scenario 2050 is a reflection of ambitious global targets. By 2030 in Taiwan, the input of the power units is evaluated as 4.3% (wind), 3.7% (PV), 65.2 (non-flexible), 25.3% (flexible), and 1.5% belongs to hydropower plants. In Greece, much higher renewable energy contribution is observed for the same scenario with 21.7% (wind), 14.3% (PV), 38.7% (non-flexible), 14.9% (flexible), and 10.3% (hydro). Moreover, it examines the ability of the power systems to deal with the variable nature of the wind and PV generation. For this reason, an investigation has also been done on the use of the combined wind power with pumped storage systems (WPS) to enable the system to exploit the curtailed wind energy & surplus PV and thus increase the wind and PV installed capacity and replace the peak supply by conventional power units. Results show that the feasibility of pumped storage can be justified in the high scenario (that is the scenario of 2050) of RES integration especially in the case of Greece.

Keywords: large scale energy integration, photovoltaics solar energy, pumped storage systems, renewable energy sources

Procedia PDF Downloads 277
1683 Carbon Storage in Natural Mangrove Biomass: Its Destruction and Potential Impact on Climate Change in the UAE

Authors: Hedaya Ali Al Ameri, Alya A. Arabi

Abstract:

Measuring the level of carbon storage in mangroves’ biomass has a potential impact in the climate change of UAE. Carbon dioxide is one of greenhouse gases. It is considered to be a main reason for global warming. Deforestation is a key source of the increase in carbon dioxide whereas forests such as mangroves assist in removing carbon dioxide from atmosphere by storing them in its biomass and soil. By using Kauffman and Donato methodology, above- and below-ground biomass and carbon stored in UAE’s natural mangroves were quantified. Carbon dioxide equivalent (CO2eq) released to the atmosphere was then estimated in case of mangroves deforestation in the UAE. The results show that the mean total biomass of mangroves in the UAE ranged from 15.75 Mg/ha to 3098.69 Mg/ha. The estimated CO2eq released upon deforestation in the UAE was found to have a minimal effect on the temperature increase and thus global warming.

Keywords: carbon stored in biomass, mangrove deforestation, temperature change, United Arab Emirate

Procedia PDF Downloads 396
1682 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode

Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum

Abstract:

Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.

Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient

Procedia PDF Downloads 154
1681 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple

Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 59
1680 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application

Authors: Mamta Bulla, Vinay Kumar

Abstract:

The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.

Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor

Procedia PDF Downloads 11
1679 High-performance Supercapacitors Enabled by Highly-porous Date Stone-derived Activated Carbon and Organic Redox Gel Electrolyte

Authors: Abubakar Dahiru Shuaibu, Atif Saeed Alzahrani, Md. Abdul Aziz

Abstract:

Construction of eco-benign, cost effective, and high-performance supercapacitors with improved electrolytes and hierarchical porous electrodes is necessary for effective energy storage. In this study, a gel type organic redox electrolyte made of polyvinyl alcohol (PVA)-H2SO4 and an organic redox molecule, anthraquinone (PVA-H2SO4-AQ), was prepared by simple solution casting method and was used to construct a symmetric supercapacitor (SSC) with a high BET surface area (1612 m²/g) using activated carbon made from date stones (DSAC). The DSAC was synthesized by simple carbonization method followed by activation with potassium hydroxide. The SSC exhibit a high specific capacitance of 126.5 F/g at 0.5 A/g, as well as a high energy density of 17.5 Wh/kg at a power density of 250 W/kg with high capacitance retention (87%) after 1000 GCD cycles. The present research suggests that adding anthraquinone to a PVA-H2SO4 gel electrolyte improves the performance of the fabricated device significantly as compared to using pristine PVA-H₂SO₄ or 1M H₂SO₄ electrolytes. The research also presents a promising approach for the development of sustainable and eco-benign materials for energy storage applications. The use of date stone waste as a precursor material for activated carbon electrodes presents an opportunity for cost-effective and sustainable energy storage. Overall, the findings of this research have important implications for the future design and fabrication of high-performance and cost-effective supercapacitors

Keywords: date stone, activated carbon, anthraquinone, redox gel-electrolyte, supercapacitor

Procedia PDF Downloads 81
1678 Addressing Food Grain Losses in India: Energy Trade-Offs and Nutrition Synergies

Authors: Matthew F. Gibson, Narasimha D. Rao, Raphael B. Slade, Joana Portugal Pereira, Joeri Rogelj

Abstract:

Globally, India’s population is among the most severely impacted by nutrient deficiency, yet millions of tonnes of food are lost before reaching consumers. Across food groups, grains represent the largest share of daily calories and overall losses by mass in India. If current losses remain unresolved and follow projected population rates, we estimate, by 2030, losses from grains for human consumption could increase by 1.3-1.8 million tonnes (Mt) per year against current levels of ~10 Mt per year. This study quantifies energy input to minimise storage losses across India, responsible for a quarter of grain supply chain losses. In doing so, we identify and explore a Sustainable Development Goal (SDG) triplet between SDG₂, SDG₇, and SDG₁₂ and provide insight for development of joined up agriculture and health policy in the country. Analyzing rice, wheat, maize, bajra, and sorghum, we quantify one route to reduce losses in supply chains, by modelling the energy input to maintain favorable climatic conditions in modern silo storage. We quantify key nutrients (calories, protein, zinc, iron, vitamin A) contained within these losses and calculate roughly how much deficiency in these dietary components could be reduced if grain losses were eliminated. Our modelling indicates, with appropriate uncertainty, maize has the highest energy input intensity for storage, at 110 kWh per tonne of grain (kWh/t), and wheat the lowest (72 kWh/t). This energy trade-off represents 8%-16% of the energy input required in grain production. We estimate if grain losses across the supply chain were saved and targeted to India’s nutritionally deficient population, average protein deficiency could reduce by 46%, calorie by 27%, zinc by 26%, and iron by 11%. This study offers insight for development of Indian agriculture, food, and health policy by first quantifying and then presenting benefits and trade-offs of tackling food grain losses.

Keywords: energy, food loss, grain storage, hunger, India, sustainable development goal, SDG

Procedia PDF Downloads 129
1677 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 374
1676 Durability Enhancement of CaSO4 in Repetitive Operation of Chemical Heat Pump

Authors: Y. Shiren, M. Masuzawa, H. Ohkura, T. Yamagata, Y. Aman, N. Kobayashi

Abstract:

An important problem for the CaSO4/CaSO4・1/2H2O Chemical heat pump (CHP) is that the material is deactivated through repetitive reaction between hydration and dehydration in which the crystal phase of the material is transformed from III-CaSO4 to II-CaSO4. We investigated suppression on the phase change by adding a sulfated compound. The most effective material was MgSO4. MgSO4 doping increased the durability of CaSO4 in the actual CHP repetitive cycle of hydration/dehydration to 3.6 times that of undoped CaSO4. The MgSO4-doped CaSO4 showed a higher phase transition temperature and activation energy for crystal transformation from III-CaSO4 to II-CaSO4. MgSO4 doping decreased the crystal lattice size of CaSO4・1/2H2O and II-CaSO4 to smaller than that of undoped CaSO4. Modification of the crystal structure is considered to be related to the durability change in CaSO4 resulting from MgSO4 doping.

Keywords: CaSO4, chemical heat pump, durability of chemical heat storage material, heat storage

Procedia PDF Downloads 579
1675 Internet of Things Based Battery Management System

Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat

Abstract:

The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.

Keywords: electric vehicles, internet of things, sensors, state of charge, state of health

Procedia PDF Downloads 197
1674 Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria

Authors: Edjere Oghenekohwiroro, Asibor Irabor Godwin, Uwem Bassey

Abstract:

This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them.

Keywords: phthalate esters, borehole, sachet water, sample extraction, gas chromatography, GC-MS

Procedia PDF Downloads 244
1673 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate

Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim

Abstract:

The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.

Keywords: micro grid, energy storage systems, ramp rate, control strategy

Procedia PDF Downloads 392
1672 Numerical Investigation of Oxy-Fuel Combustion in Gasoline Engine for Carbon Capture and Storage

Authors: Zhijun Peng, Xiang Li, Dayou Li, Raouf Mobasheri, Abdel Aitouche

Abstract:

To implement carbon capture and storage (CCS) for eliminating carbon dioxide (CO₂) emissions, this paper describes a study on oxy-fuel combustion (OFC) with an ethanol-gasoline dual-fuel spark ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads which was performed by 1D simulation. It is demonstrated that under OFC mode without other optimisation, brake mean effective pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to conventional air combustion (CAC) mode. Moreover, there is a considerable deterioration in brake specific fuel consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate water injection (WI) strategies.

Keywords: oxy-fuel combustion, dual-fuel spark ignition engine, ethanol, gasoline, computer simulation

Procedia PDF Downloads 91
1671 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection

Authors: Nikolaos Reppas, Yilin Gui

Abstract:

A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.

Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model

Procedia PDF Downloads 172
1670 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 117
1669 A Ti₃C₂O₂ Supported Single Atom, Trifunctional Catalyst for Electrochemical Reactions

Authors: Zhanzhao Fu, Chongyi Ling, Jinlan Wang

Abstract:

Water splitting and rechargeable air-based batteries are emerging as new renewable energy storage and conversion technologies. However, the discovery of suitable catalysts with high activity and low cost remains a great challenge. In this work, we report a single-atom trifunctional catalyst, namely Ti₃C₂O₂ supported single Pd atom (Pd1@Ti₃C₂O₂), for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This catalyst is selected from 12 candidates and possesses low overpotentials of 0.22 V, 0.31 V and 0.34 V for the HER, OER and ORR, respectively, making it an excellent electrocatalyst for both overall water splitting and rechargeable air-based batteries. The superior OER and ORR performance originates from the optimal d band center of the supported Pd atom. Moreover, the excellent activity can be maintained even if the single Pd atoms aggregate into small clusters. This work offers new opportunities for advancing the renewable energy storage and conversion technologies and paves a new way for the development of multifunctional electrocatalysts.

Keywords: DFT, SACs, OER, ORR, HER

Procedia PDF Downloads 76
1668 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates

Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić

Abstract:

Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.

Keywords: cherry pomace, microencapsulation, polyphenols, storage

Procedia PDF Downloads 368