Search results for: product optimization
6293 Optimal Price Points in Differential Pricing
Authors: Katerina Kormusheva
Abstract:
Pricing plays a pivotal role in the marketing discipline as it directly influences consumer perceptions, purchase decisions, and overall market positioning of a product or service. This paper seeks to expand current knowledge in the area of discriminatory and differential pricing, a main area of marketing research. The methodology includes developing a framework and a model for determining how many price points to implement in differential pricing. We focus on choosing the levels of differentiation, derive a function form of the model framework proposed, and lastly, test it empirically with data from a large-scale marketing pricing experiment of services in telecommunications.Keywords: marketing, differential pricing, price points, optimization
Procedia PDF Downloads 936292 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria
Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi
Abstract:
In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1326291 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization
Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.
Abstract:
We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability
Procedia PDF Downloads 5946290 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen
Abstract:
In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence
Procedia PDF Downloads 6566289 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0
Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang
Abstract:
This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.Keywords: drift, electrical, and cooling calculation, integrated field, magnetic field gradient, multipole errors, quadrupole
Procedia PDF Downloads 1466288 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization
Authors: Anam Gopi
Abstract:
The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.Keywords: teaching learning based optimization, direct torque control, PI controller
Procedia PDF Downloads 5856287 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function
Procedia PDF Downloads 1486286 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distributionKeywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution
Procedia PDF Downloads 2556285 User-Driven Product Line Engineering for Assembling Large Families of Software
Authors: Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore
Abstract:
Traditional software engineering allows engineers to propose to their clients multiple specialized software distributions assembled from a shared set of software assets. The management of these assets however requires a trade-off between client satisfaction and software engineering process. Clients have more and more difficult to find a distribution or components based on their needs from all of distributed repositories. This paper proposes a software engineering for a user-driven software product line in which engineers define a feature model but users drive the actual software distribution on demand. This approach makes the user become final actor as a release manager in software engineering process, increasing user product satisfaction and simplifying user operations to find required components. In addition, it provides a way for engineers to manage and assembly large software families. As a proof of concept, a user-driven software product line is implemented for eclipse, an integrated development environment. An eclipse feature model is defined, which is exposed to users on a cloud-based built platform from which clients can download individualized Eclipse distributions.Keywords: software product line, model-driven development, reverse engineering and refactoring, agile method
Procedia PDF Downloads 4336284 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants
Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin
Abstract:
The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment
Procedia PDF Downloads 3876283 Optimal Selling Prices for Small Sized Poultry Farmers
Authors: Hidefumi Kawakatsu, Dong Li, Kosuke Kato
Abstract:
In Japan, meat-type chickens are mainly classified into three categories: (1) Broilers, (2) Branded chickens, and (3) Jidori (Free-range local traditional pedigree chickens). The Jidori chickens are certified by the Japanese Ministry of Agriculture, whilst, for the Branded chickens, there is no regulation with respect to their breed (genotype) or methods for rearing them. It is, therefore, relatively easy for poultry farmers to introduce Branded than Jidori chickens. The Branded chickens are normally fed a low-calorie diet with ingredients such as herbs, which lengthens their breeding period (compared with that of the Broilers) and increases their market value. In the field of inventory management, fast-growing animals such as broilers are categorised as ameliorating items. To the best of our knowledge, there are no previous studies that have explicitly considered smaller sized poultry farmers with limited breeding areas. This study develops an inventory model for a small sized poultry farmer that produces both the Broilers (Product 1) and the Branded chickens (Product 2) with different amelioration rates. The poultry farmer’s total profit per unit of time is formulated as a function of selling prices by using a price-dependent demand function. The existence of a unique optimal selling price for each product, which maximises the total profit, established. It has also been confirmed through numerical examples that, when the breeding area is fixed, the total profit could increase if the poultry farmer reduced the product quantity of Product 1 to introduce Product 2.Keywords: amelioration, deterioration, small sized poultry farmers, optimal price
Procedia PDF Downloads 2146282 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.Keywords: composite material, crashworthiness, finite element analysis, optimization
Procedia PDF Downloads 2566281 Cross-Linked Amyloglucosidase Aggregates: A New Carrier Free Immobilization Strategy for Continuous Saccharification of Starch
Authors: Sidra Pervez, Afsheen Aman, Shah Ali Ul Qader
Abstract:
The importance of attaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. Cross-linked enzyme aggregate (CLEAs) is a new approach for immobilization of enzymes using carrier free strategy. This method is exquisitely simple (involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules) and amenable to rapid optimization. Among many industrial enzymes, amyloglucosidase is an important amylolytic enzyme that hydrolyzes alpha (1→4) and alpha (1→6) glycosidic bonds in starch molecule and produce glucose as a sole end product. Glucose liberated by amyloglucosidase can be used for the production of ethanol and glucose syrups. Besides this amyloglucosidase can be widely used in various food and pharmaceuticals industries. For production of amyloglucosidase on commercial scale, filamentous fungi of genera Aspergillus are mostly used because they secrete large amount of enzymes extracellularly. The current investigation was based on isolation and identification of filamentous fungi from genus Aspergillus for the production of amyloglucosidase in submerged fermentation and optimization of cultivation parameters for starch saccharification. Natural isolates were identified as Aspergillus niger KIBGE-IB36, Aspergillus fumigatus KIBGE-IB33, Aspergillus flavus KIBGE-IB34 and Aspergillus terreus KIBGE-IB35 on taxonomical basis and 18S rDNA analysis and their sequence were submitted to GenBank. Among them, Aspergillus fumigatus KIBGE-IB33 was selected on the basis of maximum enzyme production. After optimization of fermentation conditions enzyme was immobilized on CLEA. Different parameters were optimized for maximum immobilization of amyloglucosidase. Data of enzyme stability (thermal and Storage) and reusability suggested the applicability of immobilized amyloglucosidase for continuous saccharification of starch in industrial processes.Keywords: aspergillus, immobilization, industrial processes, starch saccharification
Procedia PDF Downloads 4976280 Synthesis and Characterization of Anti-Psychotic Drugs Based DNA Aptamers
Authors: Shringika Soni, Utkarsh Jain, Nidhi Chauhan
Abstract:
Aptamers are recently discovered ~80-100 bp long artificial oligonucleotides that not only demonstrated their applications in therapeutics; it is tremendously used in diagnostic and sensing application to detect different biomarkers and drugs. Synthesizing aptamers for proteins or genomic template is comparatively feasible in laboratory, but drugs or other chemical target based aptamers require major specification and proper optimization and validation. One has to optimize all selection, amplification, and characterization steps of the end product, which is extremely time-consuming. Therefore, we performed asymmetric PCR (polymerase chain reaction) for random oligonucleotides pool synthesis, and further use them in Systematic evolution of ligands by exponential enrichment (SELEX) for anti-psychotic drugs based aptamers synthesis. Anti-psychotic drugs are major tranquilizers to control psychosis for proper cognitive functions. Though their low medical use, their misuse may lead to severe medical condition as addiction and can promote crime in social and economical impact. In this work, we have approached the in-vitro SELEX method for ssDNA synthesis for anti-psychotic drugs (in this case ‘target’) based aptamer synthesis. The study was performed in three stages, where first stage included synthesis of random oligonucleotides pool via asymmetric PCR where end product was analyzed with electrophoresis and purified for further stages. The purified oligonucleotide pool was incubated in SELEX buffer, and further partition was performed in the next stage to obtain target specific aptamers. The isolated oligonucleotides are characterized and quantified after each round of partition, and significant results were obtained. After the repetitive partition and amplification steps of target-specific oligonucleotides, final stage included sequencing of end product. We can confirm the specific sequence for anti-psychoactive drugs, which will be further used in diagnostic application in clinical and forensic set-up.Keywords: anti-psychotic drugs, aptamer, biosensor, ssDNA, SELEX
Procedia PDF Downloads 1356279 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 1316278 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram
Abstract:
The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems
Procedia PDF Downloads 3576277 Deployment of a Product Lifecyle Management (PLM) Solution Towards Digital Transformation
Authors: Asmae Chraibi, Rachid Lghoul, Nabil Rhiati
Abstract:
In the era of Industry 4.0, enterprises are increasingly employing digital technologies in order to improve their product development processes. This research focuses on the strategic deployment of Product Lifecycle Management (PLM) solutions during production as a key tracker of traceability and digital transformation activities. The study explores the integration of PLM within a larger organizational framework, examining its impact on product lifecycle efficiency, corporation, and innovation. Through a comprehensive analysis of a real case study from the automotive industry, this project evaluates the critical success factors and challenges associated with implementing PLM solutions for digital transformation. Moreover, it explores the synergic relationship between PLM and emerging technologies such as 3D experience and SOLIDWORKS, elucidating their combined potential in optimizing production workflows and enabling data-driven decision-making. The study's findings provide global approaches for firms looking to embark on a digital transformation journey by implementing PLM technologies. This research contributes to a better understanding of how PLM can be effectively used to foster innovation and competitiveness in the changing landscape of modern industry by shining light on best practices, critical considerations, and potential obstacles.Keywords: product lifecyle management (PLM), industry 4.0, traceability, digital transformation, solution, innovation, 3D experience, SOLIDWORKS
Procedia PDF Downloads 736276 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example
Authors: Yue Huang, Yiheng Feng
Abstract:
Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing
Procedia PDF Downloads 936275 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA
Authors: Mohammad Ali Farrokhpour
Abstract:
In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the modelKeywords: route planning, scooter sharing, public transportation, sharing system
Procedia PDF Downloads 866274 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks
Authors: Younghyun Jeon, Seungjoo Maeng
Abstract:
In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power
Procedia PDF Downloads 3996273 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads
Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza
Abstract:
This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.Keywords: divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver
Procedia PDF Downloads 4646272 The Marketing Strategies of Five-Star Rated Herbal Businesses of One Tambon One Product (OTOP) Entrepreneurs in Songkhla Province, Thailand
Authors: S. Lungtae, C. Noknoi
Abstract:
The main purpose of this research is to analyze the marketing strategies of the various five-star rated herbal businesses of One Tambon One Product (OTOP) entrepreneurs in Songkhla province, Thailand. This includes the targeting, positioning and marketing mix in order to develop marketing strategies for OTOP entrepreneurs. The data were collected from the presidents of herbal-product enterprises in Songkhla province. The products of all these enterprises were selected as five-star herbal products for the OTOP project in 2012. In-depth interviews were conducted, and content analysis was used to analyze the data. The research found that the community enterprises should 1) increase the range of product sizes offered, 2) increase their distribution channels, 3) publicize more to inform consumers about their identities and products, 4) undertake promotional activities during the festival, and 5) choose salespeople who are knowledgeable about the features of their products.Keywords: marketing mix, market positioning, marketing strategies, target market.
Procedia PDF Downloads 2966271 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization
Procedia PDF Downloads 3686270 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites
Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy
Abstract:
In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM
Procedia PDF Downloads 5826269 An Improved Many Worlds Quantum Genetic Algorithm
Authors: Li Dan, Zhao Junsuo, Zhang Wenjun
Abstract:
Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm.Keywords: quantum genetic algorithm, many worlds, quantum training operator, combinatorial optimization operator
Procedia PDF Downloads 7456268 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade
Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim
Abstract:
Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade
Procedia PDF Downloads 2246267 Application of Additive Manufacturing for Production of Optimum Topologies
Authors: Mahdi Mottahedi, Peter Zahn, Armin Lechler, Alexander Verl
Abstract:
Optimal topology of components leads to the maximum stiffness with the minimum material use. For the generation of these topologies, normally algorithms are employed, which tackle manufacturing limitations, at the cost of the optimal result. The global optimum result with penalty factor one, however, cannot be fabricated with conventional methods. In this article, an additive manufacturing method is introduced, in order to enable the production of global topology optimization results. For a benchmark, topology optimization with higher and lower penalty factors are performed. Different algorithms are employed in order to interpret the results of topology optimization with lower factors in many microstructure layers. These layers are then joined to form the final geometry. The algorithms’ benefits are then compared experimentally and numerically for the best interpretation. The findings demonstrate that by implementation of the selected algorithm, the stiffness of the components produced with this method is higher than what could have been produced by conventional techniques.Keywords: topology optimization, additive manufacturing, 3D-printer, laminated object manufacturing
Procedia PDF Downloads 3406266 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures
Procedia PDF Downloads 3756265 Investigation of the GFR2400 Reactivity Control System
Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban
Abstract:
The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity
Procedia PDF Downloads 4376264 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System
Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky
Abstract:
Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion
Procedia PDF Downloads 233