Search results for: optimization/inverse mapping
4290 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data
Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour
Abstract:
Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.Keywords: geothermal exploration, image enhancement, minerals, spectral mapping
Procedia PDF Downloads 3634289 Shadows and Symbols: The Tri-Level Importance of Memory in Jane Yolen's 'the Devil's Arithmetic' and Soon-To-Be-Published 'Mapping the Bones'
Authors: Kirsten A. Bartels
Abstract:
'Never again' and 'Lest we forget' have long been messages associated with the events of the Shoah. Yet as we attempt to learn from the past, we must find new ways to engage with its memories. The preservation of the culture and the value of tradition are critical factors in Jane Yolen's works of Holocaust fiction, The Devil's Arithmetic and Mapping the Bones, emphasized through the importance of remembering. That word, in its multitude of forms (remember, remembering, memories), occurs no less than ten times in the first four pages and over one hundred times in the one hundred and sixty-four-page narrative The Devil’s Arithmetic. While Yolen takes a different approach to showcasing the importance of memory in Mapping the Bones, it is of equal import in this work and arguably to the future of Holocaust knowing. The idea of remembering, the desire to remember, and the ability to remember, are explored in three divergent ways in The Devil’s Arithmetic. First, in the importance to remember a past which is not her own – to understand history or acquired memories. Second, in the protagonist's actual or initial memories, those of her life in modern-day New York. Third, in a reverse mode of forgetting and trying to reacquire that which has been lost -- as Hannah is processed in the camp and she forgets everything, all worlds prior to the camp are lost to her. As numbers replace names, Yolen stresses the importance of self-identity or owned memories. In addition, the importance of relaying memory, the transitions of memory from perspective, and the ideas of reflective telling are explored in Mapping the Bones -- through the telling of the story through the lens of one of the twins as the events are unfolding; and then the through the reflective telling from the lens of the other twin. Parallel to the exploration of the intersemiosis of memory is the discussion of literary shadows (foreshadowing, backshadowing, and side-shadowing) and their impact on the reader's experience with Yolen's narrative. For in this type of exploration, one cannot look at the events described in Yolen's work and not also contemplate the figurative shadows cast.Keywords: holocaust literature, memory, narrative, Yolen
Procedia PDF Downloads 2374288 Predictive Spectral Lithological Mapping, Geomorphology and Geospatial Correlation of Structural Lineaments in Bornu Basin, Northeast Nigeria
Authors: Aminu Abdullahi Isyaku
Abstract:
Semi-arid Bornu basin in northeast Nigeria is characterised with flat topography, thick cover sediments and lack of continuous bedrock outcrops discernible for field geology. This paper presents the methodology for the characterisation of neotectonic surface structures and surface lithology in the north-eastern Bornu basin in northeast Nigeria as an alternative approach to field geological mapping using free multispectral Landsat 7 ETM+, SRTM DEM and ASAR Earth Observation datasets. Spectral lithological mapping herein developed utilised spectral discrimination of the surface features identified on Landsat 7 ETM+ images to infer on the lithology using four steps including; computations of band combination images; band ratio images; supervised image classification and inferences of the lithological compositions. Two complementary approaches to lineament mapping are carried out in this study involving manual digitization and automatic lineament extraction to validate the structural lineaments extracted from the Landsat 7 ETM+ image mosaic covering the study. A comparison between the mapped surface lineaments and lineament zones show good geospatial correlation and identified the predominant NE-SW and NW-SE structural trends in the basin. Topographic profiles across different parts of the Bama Beach Ridge palaeoshorelines in the basin appear to show different elevations across the feature. It is determined that most of the drainage systems in the northeastern Bornu basin are structurally controlled with drainage lines terminating against the paleo-lake border and emptying into the Lake Chad mainly arising from the extensive topographic high-stand Bama Beach Ridge palaeoshoreline.Keywords: Bornu Basin, lineaments, spectral lithology, tectonics
Procedia PDF Downloads 1394287 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 1094286 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.Keywords: parameterization, response surface, structure optimization, pressure hull
Procedia PDF Downloads 2334285 Grid Computing for Multi-Objective Optimization Problems
Authors: Aouaouche Elmaouhab, Hassina Beggar
Abstract:
Solving multi-objective discrete optimization applications has always been limited by the resources of one machine: By computing power or by memory, most often both. To speed up the calculations, the grid computing represents a primary solution for the treatment of these applications through the parallelization of these resolution methods. In this work, we are interested in the study of some methods for solving multiple objective integer linear programming problem based on Branch-and-Bound and the study of grid computing technology. This study allowed us to propose an implementation of the method of Abbas and Al on the grid by reducing the execution time. To enhance our contribution, the main results are presented.Keywords: multi-objective optimization, integer linear programming, grid computing, parallel computing
Procedia PDF Downloads 4864284 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 1124283 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 1714282 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity
Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib
Abstract:
Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function
Procedia PDF Downloads 1354281 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable
Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim
Abstract:
Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable
Procedia PDF Downloads 1864280 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 4184279 Future Optimization of the Xin’anjiang Hydropower
Authors: Muhammad Zaman, Guohua Fang, Muhammad Saifullah,
Abstract:
The presented study emphasize at an optimal model to compare past and future optimal hydropower generation. In order to get maximum benefits from the Xin’anjiang hydropower station a model is developed. A Particle Swarm Optimization (PSO) has purposed and past and future water flow is used to get the maximum benefits from future water resources in this study. The results revealed that the future hydropower generation is more than the past generation. This paper gives us idea that what could we get in the past using optimal method of electricity generation and what can we get in the future using this technique.Keywords: PSO, future water resources, optimization, Xin’anjiang,
Procedia PDF Downloads 4444278 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.Keywords: ANOVA, DOE, inconel, machining, optimization
Procedia PDF Downloads 2054277 Optimization of Hybrid off Grid Energy Station
Authors: Yehya Abdellatif, Iyad M. Muslih, Azzah Alkhalailah, Abdallah Muslih
Abstract:
Hybrid Optimization Model for Electric Renewable (HOMER) software was utilized to find the optimum design of a hybrid off-Grid system, by choosing the optimal solution depending on the cost analysis of energy based on different capacity shortage percentages. A complete study for the site conditions and load profile was done to optimize the design and implementation of a hybrid off-grid power station. In addition, the solution takes into consecration the ambient temperature effect on the efficiency of the power generation and the economical aspects of selection depending on real market price. From the analysis of the HOMER model results, the optimum hybrid power station was suggested, based on wind speed, and solar conditions. The optimization function objective is to minimize the Net Price Cost (NPC) and the Cost of Energy (COE) with zero and 10 percentage of capacity shortage.Keywords: energy modeling, HOMER, off-grid system, optimization
Procedia PDF Downloads 5634276 The Use of TRIZ to Map the Evolutive Pattern of Products
Authors: Fernando C. Labouriau, Ricardo M. Naveiro
Abstract:
This paper presents a model for mapping the evolutive pattern of products in order to generate new ideas, to perceive emerging technologies and to manage product’s portfolios in new product development (NPD). According to the proposed model, the information extracted from the patent system is filtered and analyzed with TRIZ tools to produce the input information to the NPD process. The authors acknowledge that the NPD process is well integrated within the enterprises business strategic planning and that new products are vital in the competitive market nowadays. In the other hand, it has been observed the proactive use of patent information in some methodologies for selecting projects, mapping technological change and generating product concepts. And one of these methodologies is TRIZ, a theory created to favor innovation and to improve product design that provided the analytical framework for the model. Initially, it is presented an introduction to TRIZ mainly focused on the patterns of evolution of technical systems and its strategic uses, a brief and absolutely non-comprehensive description as the theory has several others tools being widely employed in technical and business applications. Then, it is introduced the model for mapping the products evolutive pattern with its three basic pillars, namely patent information, TRIZ and NPD, and the methodology for implementation. Following, a case study of a Brazilian bike manufacturing is presented to proceed the mapping of a product evolutive pattern by decomposing and analyzing one of its assemblies along ten evolution lines in order to envision opportunities for further product development. Some of these lines are illustrated in more details to evaluate the features of the product in relation to the TRIZ concepts using a comparison perspective with patents in the state of the art to validate the product’s evolutionary potential. As a result, the case study provided several opportunities for a product improvement development program in different project categories, identifying technical and business impacts as well as indicating the lines of evolution that can mostly benefit from each opportunity.Keywords: product development, patents, product strategy, systems evolution
Procedia PDF Downloads 5014275 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 4054274 Optimization of the Structural Design for an Irregular Building in High Seismicity Zone
Authors: Arias Fernando, Juan Bojórquez, Edén Bojórquez, Alfredo Reyes-Salazar, Fernando de J. Velarde, Robespierre Chávez, J. Martin Leal, Victor Baca
Abstract:
The present study focuses on the optimization of different structural systems employed in tall steel buildings, with a specific focus on the city of Acapulco, Guerrero, a region known for its high seismic activity. Using the spectral modal method, analyses were conducted to assess the ability of these buildings to withstand seismic forces and other external loads. After performing a detailed analysis of various models, the results were compared based on various engineering parameters, including maximum interstory drift, base shear, displacements, and the total weight of the structures, the latter being considered as an estimate of the cost of the proposed systems. The findings of this study indicate that steel frames stand out as a viable option for tall buildings in question. However, areas of potential improvement were identified, suggesting opportunities for further optimization of the design and seismic resistance of these structures. This study provides a deep and insightful perspective on the optimization of structural systems in tall steel buildings, offering valuable information for engineers and professionals in the field involved in similar projects.Keywords: high seismic zone, irregular buildings, optimization design, steel buildings
Procedia PDF Downloads 244273 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 6054272 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe
Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati
Abstract:
This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).Keywords: loop heat pipe, nanofluid, optimization, thermal resistance
Procedia PDF Downloads 4614271 Artificial Habitat Mapping in Adriatic Sea
Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi
Abstract:
The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder
Procedia PDF Downloads 2604270 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 5834269 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves
Authors: Reza Abbasi, Ahmad Hamidi Benam
Abstract:
Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm
Procedia PDF Downloads 2314268 Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-Parental Recombinant Inbred Lines in Pearl Millet
Authors: Tripti Singhal, C. Tara Satyavathi, S. P. Singh, Aruna Kumar, Mukesh Sankar S., C. Bhardwaj, Mallik M., Jayant Bhat, N. Anuradha, Nirupma Singh
Abstract:
Pearl millet is a climate-resilient nutritious crop. We report iron and zinc content QTLs from 3 divergent locations. The content of grain Fe in the RILs ranged between 36 and 114 mg/kg, and that of Zn from 20 to 106 mg/kg across the three years at over 3 locations (Delhi, Dharwad, and Jodhpur). We used SSRs to generate a linkage map using 210 F₆ RIL derived from the (PPMI 683 × PPMI 627) cross. The linkage map of 151 loci was 3403.6 cM in length. QTL analysis revealed a total of 22 QTLs for both traits at all locations. Inside QTLs, candidate genes were identified using bioinformatics approaches.Keywords: yield, pearl millet, QTL mapping, multi-environment, RILs
Procedia PDF Downloads 1404267 Optimization of Structures Subjected to Earthquake
Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei
Abstract:
To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.Keywords: optimization, genetic algorithm, neural networks, self-organizing map
Procedia PDF Downloads 3114266 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 864265 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization
Procedia PDF Downloads 3694264 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry
Authors: Mukhtiar Singh, Sumeet Nagar
Abstract:
Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem
Procedia PDF Downloads 3944263 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape
Authors: Moschos Vogiatzis, K. Perakis
Abstract:
Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.Keywords: classification, land use/land cover, mapping, random forest
Procedia PDF Downloads 1264262 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)
Authors: Ahmed E. Hodaib, Mohamed A. Hashem
Abstract:
In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization
Procedia PDF Downloads 2564261 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot
Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski
Abstract:
The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation
Procedia PDF Downloads 90