Search results for: nickel powder
864 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel
Authors: Bijit Kalita, R. Jayaganthan
Abstract:
Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing
Procedia PDF Downloads 117863 Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve
Authors: Krzysztof Gwozdzinski, Janusz Mazur
Abstract:
Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve.Keywords: Bory Tucholskie Biosphere Reserve, Bory Tucholskie National Park, heavy metals, lakes
Procedia PDF Downloads 122862 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal
Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth
Abstract:
This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 µm) and structured US–Y catalyst film (Si/Al = 8, thickness 23µm) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.Keywords: FeCrAlloy, structured catalyst, zeolite Y, zeolite ZSM-5
Procedia PDF Downloads 381861 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate
Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud
Abstract:
This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.Keywords: arc spray, coating, composite, erosion
Procedia PDF Downloads 451860 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics
Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair
Abstract:
A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics
Procedia PDF Downloads 77859 Corrosion Resistance Performance of Epoxy/Polyamidoamine Coating Due to Incorporation of Nano Aluminium Powder
Authors: Asiful Hossain Seikh, Mohammad Asif Alam, Ubair Abdus Samad, Jabair A. Mohammed, S. M. Al-Zahrani, El-Sayed M. Sherif
Abstract:
In this current investigation, aliphatic amine-cured diglycidyl ether of bisphenol-A (DGEBA) based epoxy coating was mixed with certain weight % hardener polyaminoamide (1:2) and was coated on carbon steel panels with and without 1% nano crystalline Al powder. The corrosion behavior of the coated samples were investigated by exposing them in the salt spray chamber, for 500 hours. According to ASTM-B-117, the bath was kept at 35 °C and 5% NaCl containing mist was sprayed at 1.3 bars pressure. Composition of coatings was confirmed using Fourier-transform infrared spectroscopy (FTIR). Electrochemical characterization of the coated samples was also performed using potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS) technique. All the experiments were done in 3.5% NaCl solution. The nano Al coated sample shows good corrosion resistance property compared to bare Al sample. In fact after salt spray exposure no pitting or local damage was observed for nano coated sample and the coating gloss was negligibly affected. The surface morphology of coated and corroded samples was studied using scanning electron microscopy (SEM).Keywords: epoxy, nano aluminium, potentiodynamic polarization, salt spray, electrochemical impedence spectroscopy
Procedia PDF Downloads 168858 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium
Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin
Abstract:
The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen
Procedia PDF Downloads 386857 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures
Authors: S. Mohajeri
Abstract:
Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating
Procedia PDF Downloads 249856 A Review on New Additives in Deep Soil Mixing Method
Authors: Meysam Mousakhani, Reza Ziaie Moayed
Abstract:
Considering the population growth and the needs of society, the improvement of problematic soils and the study of the application of different improvement methods have been considered. One of these methods is deep soil mixing, which has been developed in the past decade, especially in soft soils due to economic efficiency, simple implementation, and other benefits. The use of cement is criticized for its cost and the damaging environmental effects, so these factors lead us to use other additives along with cement in the deep soil mixing. Additives that are used today include fly ash, blast-furnace slag, glass powder, and potassium hydroxide. The present study provides a literature review on the application of different additives in deep soil mixing so that the best additives can be introduced from strength, economic, environmental and other perspectives. The results show that by replacing fly ash and slag with about 40 to 50% of cement, not only economic and environmental benefits but also a long-term strength comparable to cement would be achieved. The use of glass powder, especially in 3% mixing, results in desirable strength. In addition to the other benefits of these additives, potassium hydroxide can also be transported over longer distances, leading to wider soil improvement. Finally, this paper suggests further studies in terms of using other additives such as nanomaterials and zeolite, with different ratios, in different conditions and soils (silty sand, clayey sand, carbonate sand, sandy clay and etc.) in the deep mixing method.Keywords: deep soil mix, soil stabilization, fly ash, ground improvement
Procedia PDF Downloads 148855 Development and Validation of a Rapid Turbidimetric Assay to Determine the Potency of Cefepime Hydrochloride in Powder Injectable Solution
Authors: Danilo F. Rodrigues, Hérida Regina N. Salgado
Abstract:
Introduction: The emergence of resistant microorganisms to a large number of clinically approved antimicrobials has been increasing, which restrict the options for the treatment of bacterial infections. As a strategy, drugs with high antimicrobial activities are in evidence. Stands out a class of antimicrobial, the cephalosporins, having as fourth generation cefepime (CEF) a semi-synthetic product which has activity against various Gram-positive bacteria (e.g. oxacillin resistant Staphylococcus aureus) and Gram-negative (e.g. Pseudomonas aeruginosa) aerobic. There are few studies in the literature regarding the development of microbiological methodologies for the analysis of this antimicrobial, so researches in this area are highly relevant to optimize the analysis of this drug in the industry and ensure the quality of the marketed product. The development of microbiological methods for the analysis of antimicrobials has gained strength in recent years and has been highlighted in relation to physicochemical methods, especially because they make possible to determine the bioactivity of the drug against a microorganism. In this context, the aim of this work was the development and validation of a microbiological method for quantitative analysis of CEF in powder lyophilized for injectable solution by turbidimetric assay. Method: For performing the method, Staphylococcus aureus ATCC 6538 IAL 2082 was used as the test microorganism and the culture medium chosen was the Casoy broth. The test was performed using temperature control (35.0 °C ± 2.0 °C) and incubated for 4 hours in shaker. The readings of the results were made at a wavelength of 530 nm through a spectrophotometer. The turbidimetric microbiological method was validated by determining the following parameters: linearity, precision (repeatability and intermediate precision), accuracy and robustness, according to ICH guidelines. Results and discussion: Among the parameters evaluated for method validation, the linearity showed results suitable for both statistical analyses as the correlation coefficients (r) that went 0.9990 for CEF reference standard and 0.9997 for CEF sample. The precision presented the following values 1.86% (intraday), 0.84% (interday) and 0.71% (between analyst). The accuracy of the method has been proven through the recovery test where the mean value obtained was 99.92%. The robustness was verified by the parameters changing volume of culture medium, brand of culture medium, incubation time in shaker and wavelength. The potency of CEF present in the samples of lyophilized powder for injectable solution was 102.46%. Conclusion: The turbidimetric microbiological method proposed for quantification of CEF in lyophilized powder for solution for injectable showed being fast, linear, precise, accurate and robust, being in accordance with all the requirements, which can be used in routine analysis of quality control in the pharmaceutical industry as an option for microbiological analysis.Keywords: cefepime hydrochloride, quality control, turbidimetric assay, validation
Procedia PDF Downloads 362854 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization
Procedia PDF Downloads 134853 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor
Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi
Abstract:
Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching
Procedia PDF Downloads 229852 Synthesis of Antibacterial Bone Cement from Re-Cycle Biowaste Containing Methylmethacrylate (MMA) Matrix
Authors: Sungging Pintowantoro, Yuli Setiyorini, Rochman Rochim, Agung Purniawan
Abstract:
The bacterial infections are frequent and undesired occurrences after bone fracture treatment. One approach to reduce the incidence of bone fracture infection is the additional of microbial agents into bone cement. In this study, the synthesis of bone cement from re-cycles biowaste was successfully conducted completed with anti-bacterial function. The re-cycle of biowaste using microwave assisted was done in our previous studies in order to produce some of powder (calcium carbonate, carbonated-hydroxyapatite and chitosan). The ratio of these powder combined with methylmethacrylate (MMA) as the matrix in bone cement were investigated using XRD, FTIR, SEM-EDX, hardness test and anti-bacterial test, respectively. From the XRD, FTIR and EDX were resulted the formation of carbonated-hydroxyapatite, calcium carbonate and chitosan. The morphology was revealed porous structure both C2H3K1L and C2H1K3L, respectively. The antibacterial activity was tested against Staphylococcus aureus (S. aureus) for 24 hours. The inhibition of S. aureus was clearly shown, the hollow zone was resulted in various distance 14.2mm, 7.5mm, and 7.7mm, respectively. The hardness test was depicted in various results, however, C2H1K3L can be achived 36.84HV which is closed to dry cancelous bone 35HV. In general, this study results was promising materials to use as bone cement materials.Keywords: biomaterials, biowaste recycling, materials processing, microwave processing
Procedia PDF Downloads 352851 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions
Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji
Abstract:
Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.Keywords: solid lubricant, graphite, minimum quantity lubrication (MQL), nano–particles
Procedia PDF Downloads 270850 Evaluation of the Phenolic Composition of Curcumin from Different Turmeric (Curcuma longa L.) Extracts: A Comprehensive Study Based on Chemical Turmeric Extract, Turmeric Tea and Fresh Turmeric Juice
Authors: Beyza Sukran Isik, Gokce Altin, Ipek Yalcinkaya, Evren Demircan, Asli Can Karaca, Beraat Ozcelik
Abstract:
Turmeric (Curcuma longa L.), is used as a food additive (spice), preservative and coloring agent in Asian countries, including China and South East Asia. It is also considered as a medicinal plant. Traditional Indian medicine evaluates turmeric powder for the treatment of biliary disorders, rheumatism, and sinusitis. It has rich polyphenol content. Turmeric has yellow color mainly because of the presence of three major pigments; curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione), demethoxy-curcumin and bis demothoxy-curcumin. These curcuminoids are recognized to have high antioxidant activities. Curcumin is the major constituent of Curcuma species. Method: To prepare turmeric tea, 0.5 gram of turmeric powder was brewed with 250 ml of water at 90°C, 10 minutes. 500 grams of fresh turmeric washed and shelled prior to squeezing. Both turmeric tea and turmeric juice pass through 45 lm filters and stored at -20°C in the dark for further analyses. Curcumin was extracted from 20 grams of turmeric powder by 70 ml ethanol solution (95:5 ethanol/water v/v) in a water bath at 80°C, 6 hours. Extraction was contributed for 2 hours at the end of 6 hours by addition of 30 ml ethanol. Ethanol was removed by rotary evaporator. Remained extract stored at -20°C in the dark. Total phenolic content and phenolic profile were determined by spectrophotometric analysis and ultra-fast liquid chromatography (UFLC), respectively. Results: The total phenolic content of ethanolic extract of turmeric, turmeric juice, and turmeric tea were determined 50.72, 31.76 and 29.68 ppt, respectively. The ethanolic extract of turmeric, turmeric juice, and turmeric tea have been injected into UFLC and analyzed for curcumin contents. The curcumin content in ethanolic extract of turmeric, turmeric juice, and turmeric tea were 4067.4, 156.7 ppm and 1.1 ppm, respectively. Significance: Turmeric is known as a good source of curcumin. According to the results, it can be stated that its tea is not sufficient way for curcumin consumption. Turmeric juice can be preferred to turmeric tea for higher curcumin content. Ethanolic extract of turmeric showed the highest content of turmeric in both spectrophotometric and chromatographic analyses. Nonpolar solvents and carriers which have polar binding sites have to be considered for curcumin consumption due to its nonpolar nature.Keywords: phenolic compounds, spectrophotometry, turmeric, UFLC
Procedia PDF Downloads 200849 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel
Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi
Abstract:
Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray
Procedia PDF Downloads 434848 The Effect of Parameters on Production of NİO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique
Authors: F. Sevim, E. Sevimli, F. Demir, T. Çalban
Abstract:
For the first time, nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters of 500 nm could be successfully obtained. The fibers were characterized by TG/DTA, FT-IR, XRD and SEM analyses.Keywords: nano fibers, NiO/Al2O3/B2O3/SiO2 composite, sol-gel processing, electro spinning
Procedia PDF Downloads 337847 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth
Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey
Abstract:
Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.Keywords: nanoparticles, seed germination, seed soaking, wheat
Procedia PDF Downloads 227846 C-Coordinated Chitosan Metal Complexes: Design, Synthesis and Antifungal Properties
Authors: Weixiang Liu, Yukun Qin, Song Liu, Pengcheng Li
Abstract:
Plant diseases can cause the death of crops with great economic losses. Particularly, those diseases are usually caused by pathogenic fungi. Metal fungicides are a type of pesticide that has advantages of a low-cost, broad antimicrobial spectrum and strong sterilization effect. However, the frequent and wide application of traditional metal fungicides has caused serious problems such as environmental pollution, the outbreak of mites and phytotoxicity. Therefore, it is critically necessary to discover new organic metal fungicides alternatives that have a low metal content, low toxicity, and little influence on mites. Chitosan, the second most abundant natural polysaccharide next to cellulose, was proved to have broad-spectrum antifungal activity against a variety of fungi. However, the use of chitosan was limited due to its poor solubility and weaker antifungal activity compared with commercial fungicide. Therefore, in order to improve the water solubility and antifungal activity, many researchers grafted the active groups onto chitosan. The present work was to combine free metal ions with chitosan, to prepare more potent antifungal chitosan derivatives, thus, based on condensation reaction, chitosan derivative bearing amino pyridine group was prepared and subsequently followed by coordination with cupric ions, zinc ions and nickel ions to synthesize chitosan metal complexes. The calculations by density functional theory (DFT) show that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and all of them are coordinated by the carbon atom in the p-π conjugate group and the oxygen atoms in the acetate ion. The antifungal properties of chitosan metal complexes against Phytophthora capsici (P. capsici), Gibberella zeae (G. zeae), Fusarium oxysporum (F. oxysporum) and Botrytis cinerea (B. cinerea) were also assayed. In addition, a plant toxicity experiment was carried out. The experiments indicated that the derivatives have significantly enhanced antifungal activity after metal ions complexation compared with the original chitosan. It was shown that 0.20 mg/mL of O-CSPX-Cu can 100% inhibit the growth of P. capsici and 0.20 mg/mL of O-CSPX-Ni can 87.5% inhibit the growth of B. cinerea. In general, their activities are better than the positive control oligosaccharides. The combination of the pyridine formyl groups seems to favor biological activity. Additionally, the ligand fashion was precisely analyzed, and the results revealed that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and the carbon atoms of the p-π conjugate group and the oxygen atoms of acetate ion are involved in the coordination of metal ions. The phytotoxicity assay of O-CSPX-M was also conducted, unlike the traditional metal fungicides, the metal complexes were not significantly toxic to the leaves of wheat. O-CSPX-Zn can even increase chlorophyll content in wheat leaves at 0.40 mg/mL. This is mainly because chitosan itself promotes plant growth and counteracts the phytotoxicity of metal ions. The chitosan derivative described here may lend themselves to future applicative studies in crop protection.Keywords: coordination, chitosan, metal complex, antifungal properties
Procedia PDF Downloads 316845 Evaluation of Botanical Plant Powders against Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in Stored Local Common Bean Varieties
Authors: Fikadu Kifle Hailegeorgis
Abstract:
Common bean is one of the most important sources of protein in Ethiopia and other developing countries. However, the Mexican bean weevil, Zabrotes subfasciatus (Boheman), is a major factor in the storage of common beans that causes losses. Studies were conducted to evaluate the efficacy of botanical powders of Jatropha curcas (L.), Neem/Azadrachta indica, and Parthenium hysterophorus (L) on local common bean varieties against Z subfasciatus at Melkassa Agriculture Research Center. Twenty local common bean varieties were evaluated twice against Z. Subfasciatus in a completely randomized design in three replications at the rate of 0.2g/250g of seed for each experiment. Malathion and untreated were used as standard checks. The result indicated that RAZ White and Round Yellow showed high resistance variety in experiments while Batu and Black showed high susceptible variety in experiments. Jatropha seed powder was the most effective against Z. subfasciatus. Parthenium seed powders and neem leaf powders also indicate promising results. Common beans treated with botanicals significantly (p<0.05) had a higher germination percentage than that of the untreated seed. In general, the results obtained indicated that using bean varieties (RAZ white and Round yellow) and botanicals (Jatropha) seed powder gave the best control of Z. subfasciatus.Keywords: botanicals, malathion, resistant varieties, Z. subfasciatus
Procedia PDF Downloads 59844 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova
Authors: Abadou Yacine, Faid Hayette
Abstract:
Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding
Procedia PDF Downloads 59843 Focus on the Bactericidal Efficacies of Alkaline Agents in Solid and the Required Time for Bacterial Inactivation
Authors: Hakimullah Hakim, Chiharu Toyofuku, Mari Ota, Mayuko Suzuki, Miyuki Komura, Masashi Yamada, Md. Shahin Alam, Natthanan Sangsriratanakul, Dany Shoham, Kazuaki Takehara
Abstract:
Disinfectants and their application are essential part of infection control strategies and enhancement of biosecurity at farms, worldwide. Alkaline agents are well known for their strong and long term antimicrobial capacities and most frequently are applied at farms for control and prevention of biological hazards. However, inadequate information regarding such materials’ capacities to inactivate pathogens and their improper applications fail farmers to achieve the mentioned goal. Thus, this requires attention to further evaluate their efficacies, under different conditions and in different ways. Here in this study we evaluated bactericidal efficacies of food additive grade of calcium hydroxide (FdCa(OH)2) powder derived from natural calcium carbonates obtained from limestone (Fine Co., Ltd., Tokyo, Japan), and bioceramic powder (BCX) derived from chicken feces at pH 13 (NMG environmental development Co., Ltd., Tokyo, Japan), for their efficacies to inactivate bacteria in feces. [Materials & Methods] Chicken feces were inoculated by 100 µl Escherichia coli and Salmonella Infantis in falcon tubes, individually, then FdCa(OH)2 or BCX powders were individually added to make final concentration of 0, 5, 10, 20 and 30% (w/w) in total weight of 0.5g, followed by properly mixing and incubating at room temperature for certain periods of time, in a dark place. Afterwards, 10 ml 1M Tris-HCl (pH 7.2) was added onto them to reduce their pH, in order to stop powders’ activities and to harvest the remained viable bacteria, whereas using normal medium or dW2 to recover bacteria increases the mixture pH, and as a result bacteria would be inactivated soon; therefore, the latter practice brings about incorrect and misleading results. Samples were then inoculated on DHL agar plates in order to calculate colony forming units (CFU)/ml of viable bacteria. [Results and Discussion] FdCa(OH)2 powder at 10% and 5% required 3 hr and 6 hr exposure times, respectively, while BCX powder at 20% concentrations required 6 hr exposure time to kill the mentioned bacteria in feces down to lower than detectable level (≤ 3.6 log10 CFU/ml). This study confirmed capacities of FdCa(OH)2 and BCX powders to inactivate bacteria in feces, and both materials are environment friendly materials, with no risk to human or animal’s health. This finding helps farmers to properly apply alkaline agents in appropriate concentrations and exposure times in their farms, in order to prevent and control infectious diseases outbreaks and to enhance biosecurity. Finally, this finding may help farmers to implement better strategies for infections control in their livestock farms.Keywords: bacterial inactivation, bioceramic, biosecurity at livestock farms, chicken feces
Procedia PDF Downloads 440842 Design, Synthesis, and Catalytic Applications of Functionalized Metal Complexes and Nanomaterials for Selective Oxidation and Coupling Reactions
Authors: Roghaye Behroozi
Abstract:
The development of functionalized metal complexes and nanomaterials has gained significant attention due to their potential in catalyzing selective oxidation and coupling reactions. These catalysts play a crucial role in various industrial and pharmaceutical processes, enhancing the efficiency, selectivity, and sustainability of chemical reactions. This research aims to design and synthesize new functionalized metal complexes and nanomaterials to explore their catalytic applications in the selective oxidation of alcohols and coupling reactions, focusing on improving yield, selectivity, and catalyst reusability. The study involves the synthesis of a nickel Schiff base complex stabilized within 41-MCM as a heterogeneous catalyst. A Schiff base ligand derived from glycine was used to create a tin (IV) metal complex characterized through spectroscopic techniques and computational analysis. Additionally, iron-based magnetic nanoparticles functionalized with melamine were synthesized for catalytic evaluation. Lastly, a palladium (IV) complex was prepared, and its oxidative stability was analyzed. The nickel Schiff base catalyst showed high selectivity in converting primary and secondary alcohols to aldehydes and ketones, with yields ranging from 73% to 90%. The tin (IV) complex demonstrated accurate structural and electronic properties, with consistent results between experimental and computational data. The melamine-functionalized iron nanoparticles exhibited efficient catalytic activity in producing triazoles, with enhanced reaction speed and reusability. The palladium (IV) complex displayed remarkable stability and low reactivity towards C–C bond formation due to its symmetrical structure. The synthesized metal complexes and nanomaterials demonstrated significant potential as efficient, selective, and reusable catalysts for oxidation and coupling reactions. These findings pave the way for developing environmentally friendly and cost-effective catalytic systems for industrial applications.Keywords: catalysts, Schiff base complexes, metal-organic frameworks, oxidation reactions, nanoparticles, reusability
Procedia PDF Downloads 15841 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites
Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying
Abstract:
Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.Keywords: butene, catalytic cracking, HZSM-5, modification
Procedia PDF Downloads 395840 Metallic and Semiconductor Thin Film and Nanoparticles for Novel Applications
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great interest over the past few years due to a wide range of important applications and their unusual properties compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: firstly, to describe the achievement of a closed loop recycling for producing cadmium sulphide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulphides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be applied to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferro-fluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Noble metal like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: assembling nanoparticles, liquid/liquid interface, thin film, core/shell, solar cells, recording media
Procedia PDF Downloads 301839 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study
Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.
Abstract:
Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧGKeywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation
Procedia PDF Downloads 148838 Effect of Microwave Radiations on Natural Dyes’ Application on Cotton
Authors: Rafia Asghar, Abdul Hafeez
Abstract:
The current research was related with natural dyes’ extraction from the powder of Neem (Azadirachta indica) bark and studied characterization of this dye under microwave radiation’s influence. Both cotton fabric and dyeing powder were exposed to microwave rays for different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) using conventional oven. Aqueous, 60% Methanol and Ethyl Acetate solubilized extracts obtained from Neem (Azadirachta indica) bark were also exposed to different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) of microwave rays exposure. Pre, meta and post mordanting with Alum (2%, 4%, 6%, 8%, and 10%) was done to improve color strength of the extracted dye. Exposure of Neem (Azadirachta indica) bark extract and cotton to microwave rays enhanced the extraction process and dyeing process by reducing extraction time, dyeing time and dyeing temperature. Microwave rays treatment had a very strong influence on color fastness and color strength properties of cotton that was dyes using Neem (Azadirachta indica) bark for 30 minutes and dyeing cotton with that Neem bark extract for 75 minutes at 30°C. Among pre, meta and post mordanting, results indicated that 5% concentration of Alum in meta mordanting exhibited maximum color strength.Keywords: dyes, natural dyeing, ecofriendly dyes, microwave treatment
Procedia PDF Downloads 690837 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization
Procedia PDF Downloads 301836 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies
Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim
Abstract:
Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton
Procedia PDF Downloads 59835 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries
Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi
Abstract:
Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.Keywords: critical raw materials, energy storage, sodium metal halide, battery
Procedia PDF Downloads 110