Search results for: neural progentor cells
4447 Effect of a Synthetic Platinum-Based Complex on Autophagy Induction in Leydig TM3 Cells
Authors: Ezzati Givi M., Hoveizi E., Nezhad Marani N.
Abstract:
Platinum-based anticancer therapeutics are the most widely used drugs in clinical chemotherapy but have major limitations and various side effects in clinical applications. Gonadotoxicity and sterility is one of the most common complications for cancer survivors, which seem to be drug-specific and dose-related. Therefore, many efforts have been dedicated to discovering a new structure of platinum-based anticancer agents with improved therapeutic index, fewer side effects. In this regard, new Pt(II)-phosphane complexes containing heterocyclic thionate ligands (PCTL) have been synthesized, which show more potent antitumor activities in comparison to cisplatin. Cisplatin, the best leading metal-based antitumor drug in the field, induces testicular toxicity on Leydig and Sertoli cells leading to serious side effects such as azoospermia and infertility. Therefore in the present study, we aimed to investigate the cytotoxicity effect of PCTL on mice TM4 Sertoli cells with particular emphasis on the role of autophagy in comparison to cisplatin. In this study, an MTT assay was performed to evaluate the IC50 of PCTL and to analyze the TM3 Leydig cell's viability. Cells morphology was evaluated via invert microscope and Changing in morphology for nuclei swelling or autophagic vacuoles formation were assessed by DAPI and MDC staining. Testosterone production in the culture medium was measured using an ELISA kit. Finally, the expression of Autophagy-related genes, Atg5, Beclin1 and p62, were analyzed by qPCR. Based on the obtained results by MTT, the IC50 value of PCTL was 50 μM in TM3 cells and cytotoxic effects was in a dose- and time-dependent manner. Cells morphological changes investigated by inverted microscopy, DAPI, and MDC staining which showed the cytotoxic concentrations of PCTL was significantly higher than cisplatin in the treated TM3 Leydig cells. The results of PCR showed a lack of expression of the p62, Atg5 and Beclin1 gene in TM3 cells treated with PCTL in comparison to cisplatin and control groups. It should be noted that the effects of 25 μM PCTL concentration on TM3 cells have been associated with increased testosterone production and secretion, which requires further study to explain the possible causes and involved molecular mechanisms. The results of the study showed that the PCTL had less-lethal effects on TM3 cells in comparison to cisplatin and probably did not induce autophagy in TM3 cells.Keywords: platinum-based anticancer agents, cisplatin, Leydig TM3 cells, autophagy
Procedia PDF Downloads 1284446 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3274445 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells
Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari
Abstract:
Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.Keywords: ultrasound, mechanical index, modeling, stem cell
Procedia PDF Downloads 3344444 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN
Procedia PDF Downloads 5324443 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 5664442 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension
Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto
Abstract:
In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor
Procedia PDF Downloads 2654441 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network
Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh
Abstract:
The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging
Procedia PDF Downloads 1474440 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 5834439 Artificial Neural Network in FIRST Robotics Team-Based Prediction System
Authors: Cedric Leong, Parth Desai, Parth Patel
Abstract:
The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)
Procedia PDF Downloads 5134438 Comparison of the Effectiveness between Exosomes from Different Origins in Reversing Skin Aging
Authors: Iannello G., Coppa F., Pennisi S., Giuffrida G., Lo Faro R., Cartelli S., Ferruggia G., Brundo M. V.
Abstract:
Skin is the largest multifunctional human organ and possesses a complex, multilayered structure with the ability to regenerate and renew. The key role in skin regeneration is played by fibroblasts, which also occupy an important role in the wound healing process. Different methods, including dynamic light scattering, scanning electron microscopy, ELISA, and MTT assay, were employed to evaluate on fibroblasts the in vitro effects of plant-derived nanovesicles and cord blood stem cells‐derived exosomes. We compared the results with those of cells exposed to a technology called AMPLEX PLUS, containing a mixture of 20 different biologically active factors (GF20) and exosomes isolated and purified from bovine colostrum. AMPLEX PLUS was able to significantly enhance the cell proliferation status of cells at both 24 and 48 hours compared to untreated cells (control). The obtained results suggest how AMPLEX PLUS could be potentially effective in treating skin rejuvenation.Keywords: AMPLEX PLUS, cell vitality, colostrum, nanovesicles
Procedia PDF Downloads 394437 Photovoltaic Cells Characteristics Measurement Systems
Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.
Abstract:
Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition
Procedia PDF Downloads 4614436 Singularization: A Technique for Protecting Neural Networks
Authors: Robert Poenaru, Mihail Pleşa
Abstract:
In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.Keywords: machine learning, ANE, CNN, security
Procedia PDF Downloads 144435 HLA-G, a Neglected Immunosuppressive Checkpoint for Breast Cancer Immunotherapy
Authors: Xian-Peng Jiang, Catherine C. Baucom, Toby Jiang, Robert L. Elliott
Abstract:
HLA-G binds to the inhibitory receptors of uterine NK cells and plays an important role in protection of fetal cells from maternal NK lysis. HLA-G also mediates tumor escape, but the immunosuppressive role is often neglected. These studies have focused on the examination of HLA-G expression in human breast carcinoma and HLA-G immunosuppressive role in NK cytolysis. We examined HLA-G expression in breast cell lines by real time PCR, ELISA and immunofluorescent staining. We treated the breast cancer cell lines with anti-human HLA-G antibody or progesterone. Then, NK cytolysis was measured by using MTT assay. We find that breast carcinoma cell lines increase the expression of HLA-G mRNA and protein, compared to normal cells. Blocking HLA-G of the breast cancer cells by the antibody increases NK cytolysis. Progesterone upregulates HLA-G mRNA and protein of human breast cancer cell lines. The increased HLA-G expression suppresses NK cytolysis. In summary, human breast carcinoma overexpress HLA-G immunosuppressive molecules. Blocking HLA-G protein by antibody improves NK cytolysis. In contrast, upregulation of HLA-G expression by progesterone impairs NK cytolytic function. Thus, HLA-G is a new immunosuppressive checkpoint and potential cancer immunotherapeutic target.Keywords: HLA-G, Breast carcinoma, NK cells, Immunosuppressive checkpoint
Procedia PDF Downloads 884434 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body
Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi
Abstract:
The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.Keywords: Accu-Check, diabetes, neural network, pattern recognition
Procedia PDF Downloads 1474433 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction
Authors: William Whiteley, Jens Gregor
Abstract:
In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography
Procedia PDF Downloads 1114432 Characterization of Retinal Pigmented Cell Epithelium Cell Sheet Cultivated on Synthetic Scaffold
Authors: Tan Yong Sheng Edgar, Yeong Wai Yee
Abstract:
Age-related macular degeneration (AMD) is one of the leading cause of blindness. It can cause severe visual loss due to damaged retinal pigment epithelium (RPE). RPE is an important component of the retinal tissue. It functions as a transducing boundary for visual perception making it an essential factor for sight. The RPE also functions as a metabolically complex and functional cell layer that is responsible for the local homeostasis and maintenance of the extra photoreceptor environment. Thus one of the suggested method of treating such diseases would be regenerating these RPE cells. As such, we intend to grow these cells using a synthetic scaffold to provide a stable environment that reduces the batch effects found in natural scaffolds. Stiffness of the scaffold will also be investigated to determine the optimal Young’s modulus for cultivating these cells. The cells will be generated into a monolayer cell sheet and their functions such as formation of tight junctions and gene expression patterns will be assessed to evaluate the cell sheet quality compared to a native RPE tissue.Keywords: RPE, scaffold, characterization, biomaterials, colloids and nanomedicine
Procedia PDF Downloads 4354431 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9544430 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4084429 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks
Authors: Shahzad Yousaf, Imran Shafi
Abstract:
This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions
Procedia PDF Downloads 3894428 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks
Authors: L. Parisi
Abstract:
Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.Keywords: kinetics, kinematics, cyclograms, neural networks, transtibial amputation
Procedia PDF Downloads 4434427 The Effect of Manggong Bamboo Leaves Extract (Gigantochloa manggong) on Rat (Rattus novergicus) Blood Profile
Authors: Sri Rahayu, Supriyatin, Yuli Rahma Dini
Abstract:
One of the consequences of excess physical activity is the oxidative stress which resulted in damage to blood cells. Oxidative stress condition can be reduced by an exogenous antioxidant. The natural exogenous antioxidant can be extracted from Manggong bamboo (Gigantochloa manggong). This research was aim to evaluate the effect of physical exercise and Manggong bamboo (Gigantochloa manggong) leaf extract on blood profile of rats. This research was conducted in July 2013 to May 2014 using experimental method with completely randomized design (CRD) with two factors, physical exercise and Manggong bamboo leaf extract. The rats blood profile to be measured were the level of erythrocyte cells, leucocyte cells and hemoglobin. Data were analyzed with parametric statistical 2-way ANOVA test (α = 0.05). Manggong bamboo leaf extract was non toxic and contained flavonoid, triterpenoid, saponin and alkaloid. There was an effect of physical exercise and manggong bamboo leaf extract on blood profile of rats. Data obtained on physical activity, giving erythrocyte cells (2.5 million/µl) and hemoglobin (12,42g/dL) declined compared to the number of leucocyte cells increases (6,500cells/L). Extract treatment was increased the erythrocytes (5,13 million/µl) and hemoglobin level (14,72 g/dL.) while the leukocytes level were decreased (1.591,67 cells/L). The extract and physical activity treatment showed an increase in erythrocytes (2,96 million/µl) and hemoglobin (14,3 g/dL) but decrease the number of leukocytes (1.291,67 cells/L). The conclusion was that physical activity and Manggong bamboo leafs extract gaves effect on the blood profile of white rat.Keywords: antioxidant, blood profile of rats, Manggong bamboo leaf extract, leukocytes
Procedia PDF Downloads 2904426 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions
Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park
Abstract:
In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges
Procedia PDF Downloads 4424425 Neural Network Analysis Applied to Risk Prediction of Early Neonatal Death
Authors: Amanda R. R. Oliveira, Caio F. F. C. Cunha, Juan C. L. Junior, Amorim H. P. Junior
Abstract:
Children deaths are traumatic events that most often can be prevented. The technology of prevention and intervention in cases of infant deaths is available at low cost and with solid evidence and favorable results, however, with low access cover. Weight is one of the main factors related to death in the neonatal period, so the newborns of low birth weight are a population at high risk of death in the neonatal period, especially early neonatal period. This paper describes the development of a model based in neural network analysis to predict the mortality risk rating in the early neonatal period for newborns of low birth weight to identify the individuals of this population with increased risk of death. The neural network applied was trained with a set of newborns data obtained from Brazilian health system. The resulting network presented great success rate in identifying newborns with high chances of death, which demonstrates the potential for using this tool in an integrated manner to the health system, in order to direct specific actions for improving prognosis of newborns.Keywords: low birth weight, neonatal death risk, neural network, newborn
Procedia PDF Downloads 4484424 Aerobic Bioprocess Control Using Artificial Intelligence Techniques
Authors: M. Caramihai, Irina Severin
Abstract:
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques
Procedia PDF Downloads 4214423 The Abnormality of Blood Cells Parasitized by Plasmodium vivax
Authors: Manas Kotepui, Kwuntida Uthaisar, Phiman Thirarattanasunthon, Bhukdee PhunPhuech, Nuoil Phiwklam
Abstract:
Introduction: Malaria due to Plasmodium vivax has placed huge burdens on the health, longevity, and general prosperity of large sections of the human population. This study aimed at prospectively collecting information on the clinical profile of Plasmodium vivax from subjects acutely infected with P. vivax residing in some of the highest malaria transmission regions in Thailand. Methods: A retrospective study of malaria cases, hospitalized between 2013 and 2015 was performed. Clinical characteristics, diagnosis, and parasitological results on admission, age, and gender were mined from medical records at Phop Phra Hospital located in endemic areas of Tak Province, Thailand. Venous blood samples were collected at the time of admission to the hospital to determine the present of parasite and also parasite count by thick and thin film examination, and also Complete blood count (CBC) parameters. Results: Results showed that patients infected with Plasmodium vivax (276 cases) had a high monocyte count (mean=390 cells/µL) during initial stage of infection and continuously lower during later stage (any stage with gametocyte, mean=230 cells/µL) of infection (P value=0.021) whereas, patients infected with Plasmodium vivax had a low basophil count (mean=20 cells/µL) during initial stage of infection and continuously higher during later stage of infection (mean at stage with gametocyte=70 cells/µL) (P value=0.033). In addition, patients with more than one stage infection tend to have lower lymphocyte count (mean=1180 cells/µL) than patients with only one stage infection (mean=1350 cells/µL)(P value=0.011) whereas, patients with more than one stage infection tend to have lower basophil count (mean=60 cells/µL) than patients with only one stage infection (mean=80 cells/µL) (P value=0.01). Conclusion: This study indicated that patients infected with Plasmodium vivax had high monocyte count and low basophil count during initial stage of infection which was continuously lower during later stage of infection. Patients with more than one stage infection tend to have lower lymphocyte count than patients with only one stage infection whereas, patients with more than one stage infection tend to have lower basophil count than patients with only one stage infection. This information contributes to better understanding of pathological characteristic of Plasmodium vivax infection.Keywords: plasmodium vivax, Thailand, asexual erythrocytic stages, hematological parameters
Procedia PDF Downloads 2124422 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function
Authors: Giselle Maggie-Fer Castañeda Lozano
Abstract:
The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks
Procedia PDF Downloads 714421 Supergranulation and Its Turbulent Convection
Authors: U. Paniveni
Abstract:
A few parameters of supergranular cells are studied using intensity patterns from the Kodaikanal Solar Observatory and Dopplergrams from SOHO. The turbulent aspect of the solar supergranulation is established by examining the interrelationships amongst the parameters characterizing a supergranular cell, namely size, lifetime, area, perimeter, fractal dimension, and horizontal flow velocity. The complexity of supergranular cells depicted by their fractal dimension is indicative of their non-laminar characteristics. The findings corroborate Kolmogorov’s theory of turbulence. Some parameters of supergranular cells also show a latitudinal dependence. Supergranulation is a synonym of convective phenomenon and hence can shed light on the physical conditions in the convection zone of the Sun. It plays a major role in the transport and dispersal of magnetic fields that may have a relation to the phases of the solar cycle.Keywords: sun, granulation, convection, turbulence
Procedia PDF Downloads 404420 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1444419 Calpain-Mediated, Cisplain-Induced Apoptosis in Breast Cancer Cells
Authors: Shadia Al-Bahlani, Khadija Al-Bulushi, Zuweina Al-Hadidi, Buthaina Al-Dhahl, Nadia Al-Abri
Abstract:
Breast cancer is the most common cancer in women worldwide. Triple-Negative Breast Cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. However, the role of calpain in cisplatin (CDDP)-induced apoptosis in TNBC cells is not fully understood. Here, TNBC (MDA-MB231) cells were treated with different concentration of CDDP (0, 20 & 40 µM) and calpain activation and apoptosis were measured by western blot and Hoechst Stain respectively. In addition, calpain modulation by either activation and/or inhibition and its effect on CDDP-induced apoptosis were assessed by the same above approaches. Our findings showed that CDDP induced endoplasmic reticulum stress and thus Calcium release and subsequently activate calpain α-fodrin cleavage indicated by the increase in GRP78 and Calmodulin protein expression and respectively in MDA-MB231 cells. It also induced apoptosis as measured by Hoechst stain and caspase-12 cleavage. Calpain activation by both Cyclopiazonic acid and Thapsigargin showed similar effect and enhanced the sensitivity of these cells to CDDP treatment. On the other hand, calpain inhibition by either specific siRNA and/or exogenous inhibitor (Calpeptin) had an adverse effect where it attenuated calpain activation and thus CDDP- induced apoptosis in these cells. Altogether, these findings suggested that calpain activation play an essential role in sensitizing the TNBC cells to CDDP-induced apoptosis. This might lead to the discovery of novel treatment to over this aggressive type of breast cancer.Keywords: calpain, cisplatin, apoptosis, breast cancer
Procedia PDF Downloads 3454418 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning
Procedia PDF Downloads 111