Search results for: near-zero poisson’s ratio
4254 Catalytic Study of Methanol-to-Propylene Conversion over Nano-Sized HZSM-5
Authors: Jianwen Li, Hongfang Ma, Weixin Qian, Haitao Zhang, Weiyong Ying
Abstract:
Methanol-to-propylene conversion was carried out in a continuous-flow fixed-bed reactor over nano-sized HZSM-5 zeolites. The HZSM-5 catalysts were synthesized with different Si/Al ratio and silicon sources, and treated with NaOH. The structural property, morphology, and acidity of catalysts were measured by XRD, N2 adsorption, FE-SEM, TEM, and NH3-TPD. The results indicate that the increment of Si/Al ratio decreased the acidity of catalysts and then improved propylene selectivity, while silicon sources had slight impact on the acidity but affected the product distribution. The desilication after alkali treatment could increase intracrystalline mesopores and enhance propylene selectivity.Keywords: alkali treatment, HZSM-5, methanol-to-propylene, synthesis condition
Procedia PDF Downloads 2224253 CFD Simulations to Study the Cooling Effects of Different Greening Modifications
Authors: An-Shik Yang, Chih-Yung Wen, Chiang-Ho Cheng, Yu-Hsuan Juan
Abstract:
The objective of this study is to conduct computational fluid dynamic (CFD) simulations for evaluating the cooling efficacy from vegetation implanted in a public park in the Taipei, Taiwan. To probe the impacts of park renewal by means of adding three pavilions and supplementary green areas on urban microclimates, the simulated results have revealed that the park having a higher percentage of green coverage ratio (GCR) tended to experience a better cooling effect. These findings can be used to explore the effects of different greening modifications on urban environments for achieving an effective thermal comfort in urban public spaces.Keywords: CFD simulations, Green Coverage Ratio, Urban heat island, Urban Public Park
Procedia PDF Downloads 4984252 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle
Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes
Abstract:
Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.Keywords: blended wing body, low Reynolds number, panel method, UAV
Procedia PDF Downloads 5904251 Effect of In-Season Linear Sprint Training on Sprint Kinematics of Amateur Soccer Players
Authors: Avinash Kharel
Abstract:
Background: - Linear sprint training is one possible approach to developing sprint performance, a crucial skill to focus on in soccer. Numerous methods, including various on-field training options, can be employed to attain this goal. However, the effect of In-season linear sprint training on sprint performance and related kinetics changes are unknown in a professional setting. The study aimed to investigate the effect of in-season linear sprint training on the sprint kinematics of amateur soccer players. Methods: - After familiarization, a 4-week training protocol was completed with sprint performance and Force Velocity (FV) profiles was compared before and after the training. Eighteen amateur soccer male players (Age 22 ± 2 years: Height: 178 ± 7cm; body-mass: 74 ± 8 Kg, 30-m split-time: 4.398 ± s) participated in the study. Sprint kinematics variables, including maximum Sprint Velocity (V0), Theoretical Maximum Force (F0), Maximum Force Output per kilogram of body weight (N/KG), Maximum Velocity (V(0)), Maximum Power Output (P MAX (W)), Ratio of Force to Velocity (FV), and Ratio of Force to Velocity at Peak power were measured. Results: - Results showed significant improvements in Maximum Sprint Velocity (p<0.01, ES=0.89), Theoretical Maximum Force (p<0.05, ES=0.50), Maximum Force Output per kilogram of body weight (p<0.05, ES=0.42), Maximum Power Output (p<0.05, ES=0.52), and Ratio of Force to Velocity at Peak Power (RF PEAK) (p<0.05, ES=0.44) post-training. There were no significant changes in the ratio of Force to Velocity (FV) and Maximum Velocity V (0) post-training (p>0.05). Conclusion: - These findings suggest that In-season linear sprint training can effectively improve certain sprint kinematics variables in amateur soccer players. Coaches and players should consider incorporating linear sprint training into their in-season training programs to improve sprint performance.Keywords: sprint performance, training intervention, soccer, kinematics
Procedia PDF Downloads 774250 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation
Authors: Nguyen Thu Huong, Nguyen Quang Bau
Abstract:
The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values.Keywords: hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation
Procedia PDF Downloads 4904249 Fluidised Bed Gasification of Multiple Agricultural Biomass-Derived Briquettes
Authors: Rukayya Ibrahim Muazu, Aiduan Li Borrion, Julia A. Stegemann
Abstract:
Biomass briquette gasification is regarded as a promising route for efficient briquette use in energy generation, fuels and other useful chemicals, however, previous research work has focused on briquette gasification in fixed bed gasifiers such as updraft and downdraft gasifiers. Fluidised bed gasifier has the potential to be effectively sized for medium or large scale. This study investigated the use of fuel briquettes produced from blends of rice husks and corn cobs biomass residues, in a bubbling fluidised bed gasifier. The study adopted a combination of numerical equations and Aspen Plus simulation software to predict the product gas (syngas) composition based on briquette's density and biomass composition (blend ratio of rice husks to corn cobs). The Aspen Plus model was based on an experimentally validated model from the literature. The results based on a briquette size of 32 mm diameter and relaxed density range of 500 to 650 kg/m3 indicated that fluidisation air required in the gasifier increased with an increase in briquette density, and the fluidisation air showed to be the controlling factor compared with the actual air required for gasification of the biomass briquettes. The mass flowrate of CO2 in the predicted syngas composition, increased with an increase in the air flow rate, while CO production decreased and H2 was almost constant. The H2/CO ratio for various blends of rice husks and corn cobs did not significantly change at the designed process air, but a significant difference of 1.0 for H2/CO ratio was observed at higher air flow rate, and between 10/90 to 90/10 blend ratio of rice husks to corn cobs. This implies the need for further understanding of biomass variability and hydrodynamic parameters on syngas composition in biomass briquette gasification.Keywords: aspen plus, briquettes, fluidised bed, gasification, syngas
Procedia PDF Downloads 4674248 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.Keywords: deflection curves, foamed concrete (FC), load-strain relationships, precast foamed concrete sandwich panel (PFCSP), slenderness ratio, vertical in-plane shear strength capacity
Procedia PDF Downloads 2274247 Meat Potential Indicators of Red Sokoto, Sahel and West African Dwarf Goat Based on Morphometrical Measurements
Authors: Ozioma Beauty Nwaodu, Adebowale E Salako, Omolara Mabel Akinyemi, Nkechi Uche, Isuama Isu, Uchechi Jane Elechi
Abstract:
Goats form an integral part of livestock production in the tropics. Meat potential is determined subjectively by resource poor livestock keepers, using hand to measure the rump width (RW). Objective evaluation of meat potential in different breads of goats can overcome problems associated with subjective evaluation. Hence, the objectives were to predict meatiness in Red Sokoto (RS), Sahel and the West African Dwarf (WAD) goats, using product of the body length (BL), wither height (WH) and (RW) and to indicate the inherent size of each breed, using WH: BL ratio. These three parameters were used because they are less environmentally sensitive. A total of 2849 goats were sampled purposefully from the Akinyele and Oranyan markets in Ibadan, Oyo State Nigeria. RS showed no significant difference for BL and WH but different from the RW of both sexes (p < 0.01). Similarly WAD showed no significant difference for the BL and WH, but differed (p < 0.01) between sexes for RW. Using the ANOVA, BL:WH ratio showed no significant difference between the breeds. WAD goats have the highest mean for BL:WH ratio. Western meat livestock is primarily identified using BL:WH. The combinations of these body parameters as indicator for meat type in meat animals showed that WAD goat has more potential to lay down meat, than RS and Sahel.Keywords: quantitative, morphologial traits, descriptive analysis, goats
Procedia PDF Downloads 1894246 All-Optical Function Based on Self-Similar Spectral Broadening for 2R Regeneration in High-Bit-Rate Optical Transmission Systems
Authors: Leila Graini
Abstract:
In this paper, we demonstrate basic all-optical functions for 2R regeneration (Re-amplification and Re-shaping) based on self-similar spectral broadening in low normal dispersion and highly nonlinear fiber (ND-HNLF) to regenerate the signal through optical filtering including the transfer function characteristics, and output extinction ratio. Our approach of all-optical 2R regeneration is based on those of Mamyshev. The numerical study reveals the self-similar spectral broadening very effective for 2R all-optical regeneration; the proposed design presents high stability compared to a conventional regenerator using SPM broadening with reduction of the intensity fluctuations and improvement of the extinction ratio.Keywords: all-optical function, 2R optical regeneration, self-similar broadening, Mamyshev regenerator
Procedia PDF Downloads 1894245 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions
Authors: Rajai Al-Rousan
Abstract:
This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites
Procedia PDF Downloads 2324244 Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study
Authors: Reza Ziaie Moayed, Maedeh Akhavan Tavakkoli
Abstract:
This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs).Keywords: liquefaction, cyclic resistance ratio, SPT test, clay soil, cohesion soils
Procedia PDF Downloads 1094243 The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost
Authors: Waleed S. Alwaneen
Abstract:
Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure.Keywords: fruit beetle, tiger worms, waxworms, control
Procedia PDF Downloads 1374242 Matching Law in Autoshaped Choice in Neural Networks
Authors: Giselle Maggie Fer Castañeda, Diego Iván González
Abstract:
The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.Keywords: matching law, neural networks, computational models, behavioral sciences
Procedia PDF Downloads 844241 Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension
Authors: San-Yih Lin, Hsien-Hao Teng
Abstract:
In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated.Keywords: LEX, lift/drag ratio, pitch moment, vortex burst
Procedia PDF Downloads 3284240 Study on Ratio of Binder Compounds in Thai Northern Style Sausages
Authors: Wipharat Saimo, Benjawan Thumthanaruk, Panida Banjongsinsiri, Nowwapan Noojuy
Abstract:
Thai northern style sausage (sai-ou) is originally cuisine made of chili paste, pork, and lard. It always serves with curry paste, vegetable, and rice. The meat and lard ingredients used can be substituted by Shiitake mushroom (Lentinus edodes) and King oyster (Pleurotus eryngii) mushroom (50:50 w/w) which is suitable for all people, especially vegetarians. However, the texture of mushroom type sai-ou had no homogenous texture due to no adhesiveness property of mushroom. Therefore, this research aimed to study the ratio of hydrocolloids (konjac flour (0-100%), konjac gel (0-100%) and Citri-fi®100 FG (0-2%)) on the physicochemical properties mushroom type sai-ou. The mixture design was applied by using Minitab 16 software. Nine formula were designed for the test. The values of moisture content and water activity of nine formula were ranged from 66.25-72.17% and 0.96-0.97. The pH values were 5.44-5.89. The optimal ratio of konjac flour, konjac gel and Citri-fi®100 FG (74.75:24.75:0.5 (w/w)) yielded the highest texture profiles (hardness, springiness, cohesiveness, gumminess and chewiness) as well as color parameters (L*, a* and b*). Sensory results showed had higher acceptability scores in term of overall liking with the level of ‘like moderately’ (5.9 on 7 pointed scale). The mushroom type sai-ou sausage could be an alternative food for health-conscious consumers.Keywords: Citri-fi® 100 FG, konjac flour, konjac gel, Thai northern style sausages
Procedia PDF Downloads 2304239 Shear Behavior of Ultra High Strength Concrete Beams
Authors: Ghada Diaa, Enas A. Khattab
Abstract:
Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results.Keywords: ultra high strength, shear strength, diagonal, cracking, steel fibers
Procedia PDF Downloads 6244238 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid
Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan
Abstract:
In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.Keywords: acid treatment, chemical extraction, sludge, waste management
Procedia PDF Downloads 2004237 Thermal Performance of Reheat, Regenerative, Inter-Cooled Gas Turbine Cycle
Authors: Milind S. Patil, Purushottam S. Desale, Eknath R. Deore
Abstract:
Thermal analysis of reheat, regenerative, inter-cooled gas turbine cycle is presented. Specific work output, thermal efficiency and SFC is simulated with respect to operating conditions. Analytical formulas were developed taking into account the effect of operational parameters like ambient temperature, compression ratio, compressor efficiency, turbine efficiency, regenerator effectiveness, pressure loss in inter cooling, reheating and regenerator. Calculations were made for wide range of parameters using engineering equation solver and the results were presented here. For pressure ratio of 12, regenerator effectiveness 0.95, and maximum turbine inlet temperature 1200 K, thermal efficiency decreases by 27% with increase in ambient temperature (278 K to 328 K). With decrease in regenerator effectiveness thermal efficiency decreases linearly. With increase in ambient temperature (278 K to 328 K) for the same maximum temperature and regenerator effectiveness SFC decreases up to a pressure ratio of 10 and then increases. Sharp rise in SFC is noted for higher ambient temperature. With increase in isentropic efficiency of compressor and turbine, thermal efficiency increases by about 40% for low ambient temperature (278 K to 298 K) however, for higher ambient temperature (308 K to 328 K) thermal efficiency increases by about 70%.Keywords: gas turbine, reheating, regeneration, inter-cooled, thermal analysis
Procedia PDF Downloads 3414236 Production Potential and Economic Returns of Bed Planted Chickpea (Cicer arietinum L.) As Influenced by Different Intercropping Systems
Authors: Priya M. V., Thakar Singh
Abstract:
A field experiment was carried out during the rabi season of 2017 and 2018 to evaluate the productivity and economic viability of bed-planted chickpea-based intercropping systems. The experiment was laid out in a randomized block design consisting of four replications with thirteen treatments. Results showed that sole chickpea recorded the highest seed yield, and it was statistically at par with seed yield obtained under chickpea + oats fodder (2:1), chickpea + oats fodder (4:1), and chickpea + linseed (4:1) intercropping systems. However, oilseed rape and barley as intercrops showed an adverse effect on yield and yield attributes of chickpea. Chickpea + oats fodder in 2:1 row ratio recorded the highest chickpea equivalent yield of 24.07 and 24.77 q/ha during 2017 and 2018, respectively. Higher net returns (Rs. 63098 and 70924/ha) and benefit-cost ratio (1.47 and 1.63) were also recorded in chickpea + oats fodder (2:1) intercropping system over sole chickpea (Rs. 44862 and 53769/ha and 1.21 and 1.41) during both the years. Chickpea + oats fodder (4:1), chickpea + linseed (2:1), and chickpea + linseed (4:1) also recorded significantly higher chickpea equivalent yield, net returns, and benefit-cost ratio as compared to sole chickpea.Keywords: bed planted chickpea, chickpea equivalent yield, economic returns, intercropping system, productivity
Procedia PDF Downloads 2064235 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance
Authors: Aadila Cayenne, Hinrich Uellendahl
Abstract:
Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima
Procedia PDF Downloads 1594234 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine
Authors: Hany El Said Fawaz
Abstract:
This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length
Procedia PDF Downloads 2494233 Optimization of Double-Layered Microchannel Heat Sinks
Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang
Abstract:
This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance
Procedia PDF Downloads 4954232 Effect of Acute Dose of Mobile Phone Radiation on Life Cycle of the Mosquito, Culex univittatus
Authors: Fatma H. Galal, Alaaeddeen M. Seufi
Abstract:
Due to the increasing usage of mobile phone, experiments were designed to investigate the effect of acute dose exposure on the mosquito life cycle. 50 tubes (5 ml size) containing 3 ml water and a first instar larva of the mosquito, Culex univittatus were put between two mobile cell phones switched on talking mode for 4 continuous hours. A control group of tubes (unexposed to radiation) were used. Larval and pupal durations were calculated. Furthermore, adult emergence and sex ratio were observed for both treated and control larvae. Results indicated that the employed dose of radiation reduced total larval duration to about half the value of control. 1st, 2nd, 3rd and 4th larval durations were reduced significantly by mobile radiation when compared to controls. Meanwhile pupal duration was elongated significantly by mobile radiation when compared to control. Sex ratio was significantly shifted in favor of females in the case of radiated mosquitoes. Successful adult emergence was decreased significantly in the case of radiated insects when compared to controls. Molecular studies to investigate the effects of mobile radiation on insects and other model organisms are going on.Keywords: mosquito, mobilr radiation, larval and pupal durations, sex ratio
Procedia PDF Downloads 1884231 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling
Authors: A. Falsafi, M. Dadkhah, S. Shahidi
Abstract:
The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack
Procedia PDF Downloads 1404230 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction
Procedia PDF Downloads 1534229 Clinical Evaluation of Neutrophil to Lymphocytes Ratio and Platelets to Lymphocytes Ratio in Immune Thrombocytopenic Purpura
Authors: Aisha Arshad, Samina Naz Mukry, Tahir Shamsi
Abstract:
Background: Immune thrombocytopenia (ITP) is an autoimmune disorder. Besides platelets counts, immature platelets fraction (IPF) can be used as tool to predict megakaryocytic activity in ITP patients. The clinical biomarkers like Neutrophils to lymphocytes ratio (NLR) and platelet to lymphocytes ratio(PLR) predicts inflammation and can be used as prognostic markers.The present study was planned to assess the ratios in ITP and their utility in predicting prognosis after treatment. Methods: A total of 111 patients of ITP with same number of healthy individuals were included in this case control study during the period of January 2015 to December 2017.All the ITP patients were grouped according to guidelines of International working group of ITP. A 3cc blood was collected in EDTA tube and blood parameters were evaluated using Sysmex 1000 analyzer.The ratios were calculated by using absolute counts of Neutrophils,Lymphocytes and platelets.The significant (p=<0.05) difference between ITP patients and healthy control groups was determined by Kruskal wallis test, Dunn’s test and spearman’s correlation test was done using SPSS version 23. Results: The significantly raised total leucocytes counts (TLC) and IPF along with low platelets counts were observed in ITP patients as compared to healthy controls.In ITP groups,very low platelet count with median and IQR of 2(3.8)3x109/l with highest mean and IQR IPF 25.4(19.8)% was observed in newly diagnosed ITP group. The NLR was high with prognosis of disease as higher levels were observed in P-ITP. The PLR was significantly low in ND-ITP ,P-ITP, C-ITP, R-ITP and compared to controls with p=<0.001 as platelet were less in number in all ITP patients. Conclusion: The IPF can be used in evaluation of bone marrow response in ITP. The simple, reliable and calculated NLR and PLR ratios can be used in predicting prognosis and response to treatment in ITP and to some extend the severity of disease.Keywords: neutrophils, platelets, lymphocytes, infection
Procedia PDF Downloads 1014228 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate
Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin
Abstract:
This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness
Procedia PDF Downloads 3264227 Effect of Inductance Ratio on Operating Frequencies of a Hybrid Resonant Inverter
Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani
Abstract:
In this paper, the performance of a medium power (25 kW/25 kHz) hybrid inverter with a reactive transformer is investigated. To analyze the sensitivity of the inverster, the RSM technique is employed to manifest the effective factors in the inverter to minimize current passing through the Insulated Bipolar Gate Transistors (IGBTs) (current stress). It is revealed that the ratio of the axillary inductor to the effective inductance of resonant inverter (N), is the most effective parameter to minimize the current stress in this type of inverter. In practice, proper selection of N mitigates the current stress over IGBTs by five times. This reduction is very helpful to keep the IGBTs at normal temperatures.Keywords: analytical analysis, hybrid resonant inverter, reactive transformer, response surface method
Procedia PDF Downloads 2094226 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK
Authors: Usman Bawa
Abstract:
Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution
Procedia PDF Downloads 3504225 The Influence of Contextual Factors on Long-Term Contraceptive Use in East Java
Authors: Ni'mal Baroya, Andrei Ramani, Irma Prasetyowati
Abstract:
The access to reproduction health services, including with safe and effective contraception were human rights regardless of social stratum and residence. In addition to individual factors, family and contextual factors were also believed to be the cause in the use of contraceptive methods. This study aimed to assess the determinants of long-term contraceptive methods (LTCM) by considering all the factors at either the individual level or contextual level. Thereby, this study could provide basic information for program development of prevalence enhancement of MKJP in East Java. The research, which used cross-sectional design, utilized Riskesdas 2013 data, particularly in East Java Province for further analysis about multilevel modeling of MKJP application. The sample of this study consisted of 20.601 married women who were not in pregnant that were drawn by using probability sampling following the sampling technique of Riskesdas 2013. Variables in this study were including the independent variables at the individual level that consisted of education, age, occupation, access to family planning services (KB), economic status and residence. As independent variables in district level were the Human Development Index (HDI, henceforth as IPM) in each districts of East Java Province, the ratio of field officers, the ratio of midwives, the ratio of community health centers and the ratio of doctors. As for the dependent variable was the use of Long-Term Contraceptive Method (LTCM or MKJP). The data were analyzed by using chi-square test and Pearson product moment correlation. The multivariable analysis was using multilevel logistic regression with 95% of Confidence Interval (CI) at the significance level of p < 0.05 and 80% of strength test. The results showed a low CPR LTCM was concentrated in districts in Madura Island and the north coast. The women which were 25 to 35 or more than 35 years old, at least high school education, working, and middle-class social status were more likely to use LTCM or MKJP. The IPM and low PLKB ratio had implications for poor CPR LTCM / MKJP.Keywords: multilevel, long-term contraceptive methods, east java, contextual factor
Procedia PDF Downloads 252