Search results for: milling operations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1868

Search results for: milling operations

1388 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials

Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie

Abstract:

The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.

Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT

Procedia PDF Downloads 50
1387 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 24
1386 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: aluminium, alumina, nano-particle reinforced composites, porosity

Procedia PDF Downloads 231
1385 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 128
1384 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 117
1383 A Survey of Dynamic QoS Methods in Sofware Defined Networking

Authors: Vikram Kalekar

Abstract:

Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.

Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay

Procedia PDF Downloads 178
1382 On the Zeros of the Degree Polynomial of a Graph

Authors: S. R. Nayaka, Putta Swamy

Abstract:

Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained.

Keywords: degree polynomial, regular graph, minimum and maximum degree, graph operations

Procedia PDF Downloads 225
1381 Characterizing Surface Machining-Induced Local Deformation Using Electron Backscatter Diffraction

Authors: Wenqian Zhang, Xuelin Wang, Yujin Hu, Siyang Wang

Abstract:

The subsurface layer of a component plays a significant role in its service performance. Any surface mechanical process during fabrication can introduce a deformed layer near the surface, which can be related to the microstructure alteration and strain hardening, and affects the mechanical properties and corrosion resistance of the material. However, there exists a great difficulty in determining the subsurface deformation induced by surface machining. In this study, electron backscatter diffraction (EBSD) was used to study the deformed layer of surface milled 316 stainless steel. The microstructure change was displayed by the EBSD maps and characterized by misorientation variation. The results revealed that the surface milling resulted in heavily nonuniform deformations in the subsurface layer and even in individual grains. The direction of the predominant grain deformation was about 30-60 deg to the machined surface. Moreover, a local deformation rate (LDR) was proposed to quantitatively evaluate the local deformation degree. Both of the average and maximum LDRs were utilized to characterize the deformation trend along the depth direction. It was revealed that the LDR had a strong correlation with the development of grain and sub-grain boundaries. In this work, a scan step size of 1.2 μm was chosen for the EBSD measurement. A LDR higher than 18 deg/μm indicated a newly developed grain boundary, while a LDR ranged from 2.4 to 18 deg/μm implied the generation of a sub-grain boundary. And a lower LDR than 2.4 deg/μm could only introduce a slighter deformation and no sub-grain boundary was produced. According to the LDR analysis with the evolution of grain or sub grain boundaries, the deformed layer could be classified into four zones: grain broken layer, seriously deformed layer, slightly deformed layer and non-deformed layer.

Keywords: surface machining, EBSD, subsurface layer, local deformation

Procedia PDF Downloads 318
1380 Operations Training Using Immersive Technologies: A Development Experience

Authors: A. Aman, S. M. Tang, F. H. Alharrassy

Abstract:

Omanisation was established to increase job opportunities for national employment in Sultanate of Oman. With half of the population below 25 years of age, the sultanate is striving to diversify the economy fast enough to meet the burgeoning number of jobseekers annually. On the other hand, training personnel to be competent oil and gas operators and technicians is a difficult task in a complex reservoir structures in Oman using highly advanced and sophisticated extracting processes. Coupled towards Omanisation which encourages nationals into the oil and gas sector so as to create sustainable employment for the local population, the challenge to churn out competent manpower became a daunting task. Immersive technologies provided the impetus to create a new digital media sector which provided job opportunities as well as the learning contents to enhance the competency-based training for the oil and gas sector in the Sultanate. This lead to a win-win-win collaboration amongst the government represented by the Information Technology Authority (ITA), private sector specialised company (represented by ASM Technologies), jobseekers and oil and gas organisations. This is also one of the first private-public partnership model in the Information Communication Technology (ICT) sector in Oman. A pilot phase was conducted for 8 months to develop four virtual applications for training in equipment and process engineering; oil rig familiarisation, Health Safety Environment (HSE) application, turbine application and the mechanical vapour compressor (MVC) water recycling plant in order to enhance the competency level of the trainees. The immersive applications were installed in operational settings which enabled new employees to practice and understand various processes and procedures regarding enhanced oil recovery. Existing employees used the application to review the working principles in order to carry out troubleshooting scenarios. Concurrently, these applications were also developed by local Omani resources within the country. This created job opportunities for job-seekers as well the establishment of a digital media sector. The purpose of this paper is to discuss how immersive technologies can enhance operational competencies, create job and establish a digital media sector in the Sultanate of Oman.

Keywords: immersive, virtual reality, operations training, Omanisation

Procedia PDF Downloads 213
1379 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems

Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell

Abstract:

Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.

Keywords: building information modeling, BIM, facilities management systems, interoperability, information management

Procedia PDF Downloads 98
1378 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine

Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof

Abstract:

Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.

Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine

Procedia PDF Downloads 58
1377 Rainwater Harvesting and Management of Ground Water (Case Study Weather Modification Project in Iran)

Authors: Samaneh Poormohammadi, Farid Golkar, Vahideh Khatibi Sarabi

Abstract:

Climate change and consecutive droughts have increased the importance of using rainwater harvesting methods. One of the methods of rainwater harvesting and, in other words, the management of atmospheric water resources is the use of weather modification technologies. Weather modification (also known as weather control) is the act of intentionally manipulating or altering the weather. The most common form of weather modification is cloud seeding, which increases rain or snow, usually for the purpose of increasing the local water supply. Cloud seeding operations in Iran have been married since 1999 in central Iran with the aim of harvesting rainwater and reducing the effects of drought. In this research, we analyze the results of cloud seeding operations in the Simindashtplain in northern Iran. Rainwater harvesting with the help of cloud seeding technology has been evaluated through its effects on surface water and underground water. For this purpose, two different methods have been used to estimate runoff. The first method is the US Soil Conservation Service (SCS) curve number method. Another method, known as the reasoning method, has also been used. In order to determine the infiltration rate of underground water, the balance reports of the comprehensive water plan of the country have been used. In this regard, the study areas located in the target area of each province have been extracted by drawing maps of the influence coefficients of each area in the GIS software. It should be mentioned that the infiltration coefficients were taken from the balance sheet reports of the country's comprehensive water plan. Then, based on the area of each study area, the weighted average of the infiltration coefficient of the study areas located in the target area of each province is considered as the infiltration coefficient of that province. Results show that the amount of water extracted from the rain with the help of cloud seeding projects in Simindasht is as follows: an increase in runoff 63.9 million cubic meters (with SCS equation) or 51.2 million cubic meters (with logical equation) and an increase in ground water resources: 40.5 million cubic meters.

Keywords: rainwater harvesting, ground water, atmospheric water resources, weather modification, cloud seeding

Procedia PDF Downloads 91
1376 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism

Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü

Abstract:

Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.

Keywords: fermentation, ion exchange, lactic acid, purification, whey

Procedia PDF Downloads 487
1375 Advancing Healthcare Excellence in China: Crafting a Strategic Operational Evaluation Index System for Chinese Hospital Departments amid Payment Reform Initiatives

Authors: Jing Jiang, Yuguang Gao, Yang Yu

Abstract:

Facing increasingly challenging insurance payment pressures, the Chinese healthcare system is undergoing significant transformations, akin to the implementation of DRG payment models by the United States' Medicare. Consequently, there is a pressing need for Chinese hospitals to establish optimizations in departmental operations tailored to the ongoing healthcare payment reforms. This abstract delineates the meticulous construction of a scientifically rigorous and comprehensive index system at the departmental level in China strategically aligned with the evolving landscape of healthcare payment reforms. Methodologically, it integrates key process areas and maturity assessment theories, synthesizing relevant literature and industry standards to construct a robust framework and indicator pool. Employing the Delphi method, consultations with 21 experts were conducted, revealing a collective demonstration of high enthusiasm, authority, and coordination in designing the index system. The resulting model comprises four primary indicators -technical capabilities, cost-effectiveness, operational efficiency, and disciplinary potential- supported by 14 secondary indicators and 23 tertiary indicators with varied coefficient adjustment for department types (platform or surgical). The application of this evaluation system in a Chinese hospital within the northeastern region yielded results aligning seamlessly with the actual operational scenario. In conclusion, the index system comprehensively considers the integrity and effectiveness of structural, process, and outcome indicators and stands as a comprehensive reflection of the collective expertise of the engaged experts, manifesting in a model designed to elevate the operational management of hospital departments. Its strategic alignment with healthcare payment reforms holds practical significance in guiding departmental development positioning, brand cultivation, and talent development.

Keywords: Chinese healthcare system, Delphi method, departmental management, evaluation indicators, hospital operations, weight coefficients

Procedia PDF Downloads 43
1374 A Survey on Types of Noises and De-Noising Techniques

Authors: Amandeep Kaur

Abstract:

Digital Image processing is a fundamental tool to perform various operations on the digital images for pattern recognition, noise removal and feature extraction. In this paper noise removal technique has been described for various types of noises. This paper comprises discussion about various noises available in the image due to different environmental, accidental factors. In this paper, various de-noising approaches have been discussed that utilize different wavelets and filters for de-noising. By analyzing various papers on image de-noising we extract that wavelet based de-noise approaches are much effective as compared to others.

Keywords: de-noising techniques, edges, image, image processing

Procedia PDF Downloads 316
1373 Design and Implementation of a Hardened Cryptographic Coprocessor with 128-bit RISC-V Core

Authors: Yashas Bedre Raghavendra, Pim Vullers

Abstract:

This study presents the design and implementation of an abstract cryptographic coprocessor, leveraging AMBA(Advanced Microcontroller Bus Architecture) protocols - APB (Advanced Peripheral Bus) and AHB (Advanced High-performance Bus), to enable seamless integration with the main CPU(Central processing unit) and enhance the coprocessor’s algorithm flexibility. The primary objective is to create a versatile coprocessor that can execute various cryptographic algorithms, including ECC(Elliptic-curve cryptography), RSA(Rivest–Shamir–Adleman), and AES (Advanced Encryption Standard) while providing a robust and secure solution for modern secure embedded systems. To achieve this goal, the coprocessor is equipped with a tightly coupled memory (TCM) for rapid data access during cryptographic operations. The TCM is placed within the coprocessor, ensuring quick retrieval of critical data and optimizing overall performance. Additionally, the program memory is positioned outside the coprocessor, allowing for easy updates and reconfiguration, which enhances adaptability to future algorithm implementations. Direct links are employed instead of DMA(Direct memory access) for data transfer, ensuring faster communication and reducing complexity. The AMBA-based communication architecture facilitates seamless interaction between the coprocessor and the main CPU, streamlining data flow and ensuring efficient utilization of system resources. The abstract nature of the coprocessor allows for easy integration of new cryptographic algorithms in the future. As the security landscape continues to evolve, the coprocessor can adapt and incorporate emerging algorithms, making it a future-proof solution for cryptographic processing. Furthermore, this study explores the addition of custom instructions into RISC-V ISE (Instruction Set Extension) to enhance cryptographic operations. By incorporating custom instructions specifically tailored for cryptographic algorithms, the coprocessor achieves higher efficiency and reduced cycles per instruction (CPI) compared to traditional instruction sets. The adoption of RISC-V 128-bit architecture significantly reduces the total number of instructions required for complex cryptographic tasks, leading to faster execution times and improved overall performance. Comparisons are made with 32-bit and 64-bit architectures, highlighting the advantages of the 128-bit architecture in terms of reduced instruction count and CPI. In conclusion, the abstract cryptographic coprocessor presented in this study offers significant advantages in terms of algorithm flexibility, security, and integration with the main CPU. By leveraging AMBA protocols and employing direct links for data transfer, the coprocessor achieves high-performance cryptographic operations without compromising system efficiency. With its TCM and external program memory, the coprocessor is capable of securely executing a wide range of cryptographic algorithms. This versatility and adaptability, coupled with the benefits of custom instructions and the 128-bit architecture, make it an invaluable asset for secure embedded systems, meeting the demands of modern cryptographic applications.

Keywords: abstract cryptographic coprocessor, AMBA protocols, ECC, RSA, AES, tightly coupled memory, secure embedded systems, RISC-V ISE, custom instructions, instruction count, cycles per instruction

Procedia PDF Downloads 55
1372 Response Surface Methodology Approach to Defining Ultrafiltration of Steepwater from Corn Starch Industry

Authors: Zita I. Šereš, Ljubica P. Dokić, Dragana M. Šoronja Simović, Cecilia Hodur, Zsuzsanna Laszlo, Ivana Nikolić, Nikola Maravić

Abstract:

In this work the concentration of steep-water from corn starch industry is monitored using ultrafiltration membrane. The aim was to examine the conditions of ultrafiltration of steep-water by applying the membrane of 2.5nm. The parameters that vary during the course of ultrafiltration, were the transmembrane pressure, flow rate, while the permeate flux and the dry matter content of permeate and retentive were the dependent parameter constantly monitored during the process. Experiments of ultrafiltration are conducted on the samples of steep-water, which were obtained from the starch wet milling plant Jabuka, Pancevo. The procedure of ultrafiltration on a single-channel 250mm length, with inner diameter of 6.8mm and outer diameter of 10mm membrane were carried on. The membrane is made of a-Al2O3 with TiO2 layer obtained from GEA (Germany). The experiments are carried out at a flow rate ranging from 100 to 200lh-1 and transmembrane pressure of 1-3 bars. During the experiments of steep-water ultrafiltration, the change of permeate flux, dry matter content of permeate and retentive, as well as the absorbance changes of the permeate and retentive were monitored. The experimental results showed that the maximum flux reaches about 40lm-2h-1. For responses obtained after experiments, a polynomial model of the second degree is established to evaluate and quantify the influence of the variables. The quadratic equitation fits with the experimental values, where the coefficient of determination for flux is 0.96. The dry matter content of the retentive is increased for about 6%, while the dry matter content of permeate was reduced for about 35-40%, respectively. During steep-water ultrafiltration in permeate stays 40% less dry matter compared to the feed.

Keywords: ultrafiltration, steep-water, starch industry, ceramic membrane

Procedia PDF Downloads 268
1371 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 342
1370 A Chemical-Free Colouration Technique for Regenerated Fibres Using Waste Alpaca Fibres

Authors: M. Abdullah Al Faruque, Rechana Remadevi, Abu Naser M. Ahsanul Haque, Joselito Razal, Xungai Wang, Maryam Naebe

Abstract:

Generally, the colouration of textile fibres is performed by using synthetic colourants in dope dyeing or conventional dyeing methods. However, the toxic effect of some synthetic colorants due to long-term exposure can cause several health threats including cancer, asthma and skin diseases. Moreover, in colouration process, these colourants not only consume a massive amount of water but also generates huge proportion of wastewater to the environment. Despite having the environmentally friendly characteristics, current natural colourants have downsides in their yield and need chemical extraction processes which are water consuming as well. In view of this, the present work focuses to develop a chemical-free biocompatible and natural pigment based colouration technique to colour regenerated fibres. Waste alpaca fibre was used as a colourant and the colour properties, as well as the mechanical properties, of the regenerated fibres were investigated. The colourant from waste alpaca was fabricated through mechanical milling process and it was directly applied to the polyacrylonitrile (PAN) dope solution in different ratios of alpaca: PAN (10:90, 20:80, 30:70). The results obtained from the chemical structure characterization suggested that all the coloured regenerated fibres exhibited chemical functional groups of both PAN and alpaca. Furthermore, the color strength was increased gradually with the increment of alpaca content and showed excellent washing fastness properties. These results reveal a potential new pathway for chemical-free dyeing technique for fibres with improved properties.

Keywords: alpaca, chemical-free coloration, natural colorant, polyacrylonitrile, water consumption, wet spinning

Procedia PDF Downloads 160
1369 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 347
1368 Investigation into the Effectiveness of Bacillus Mucilaginosus in Liberation of Platinum Group Metals Locked in Silicates

Authors: Nokubonga G. Zulu, Bongephiwe M. Thethwayo, Mapilane S. Madiba, Peter A. Olubambi

Abstract:

In South Africa, PGMs’ metallurgy industry is now leaned on the Upper Group 2 (UG2) reef for the beneficiation of 4PGEs (Platinum, Palladium, Rhodium, and Ruthenium). The current effective beneficiation method is direct froth flotation which uses the hydrophobicity of liberated valuables minerals to carefully float them while hydrophilic gangue minerals report to the residue. PGMs are known to be associated with base metal sulphides which are hydrophobic; however, approximately 25% of PGMs from UG2 are associated with hydrophilic silicates, which results in high PGMs grade in the flotation residue. Further, the smallest size in which UG2 PGMs occur is approximately 9 microns which demands high grinding for liberation, imposing energy and cost implications. The use of Bacillus mucilaginosus to liberate PGMs using Bio-leaching of PGMs bearing Silicates is a promising cost-effective, energy-saving, and green solution to liberate PGMs locked in silicates. This is due to the ability of Bacillus mucilaginosus to generate extracellular polysaccharides (EPS) that are responsible for the leaching of silicate minerals. The bioleaching is done at a laboratory beaker using a cultivated Bacillus mucilaginosus as a lixiviant. The bioleaching residue is expected to have a reduced particle size due to silicate consumption, which reduces the need and cost associated with a secondary milling circuit. Moreover, the grade of the bioleaching product is increased since the silicates (gangue minerals) are consumed by Bacillus mucilaginosus; this serves as a pre-concentration step. This paper discusses an alternative liberation and pre-concentrating technique of PGMs that are associated with silicates using Bacillus mucilaginosus leaching to dissolve silicates.

Keywords: Bacillus mucilaginosus, bio-leaching of PGMs bearing silicates, liberation of PGMs, pre-concentration of PGMs

Procedia PDF Downloads 104
1367 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming

Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale

Abstract:

This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.

Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling

Procedia PDF Downloads 474
1366 Gas Flotation Unit in Kuwait Oil Company Operations

Authors: Homoud Bourisli, Haitham Safar

Abstract:

Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.

Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation

Procedia PDF Downloads 557
1365 The Routine Use of a Negative Pressure Incision Management System in Vascular Surgery: A Case Series

Authors: Hansraj Bookun, Angela Tan, Rachel Xuan, Linheng Zhao, Kejia Wang, Animesh Singla, David Kim, Christopher Loupos

Abstract:

Introduction: Incisional wound complications in vascular surgery patients represent a significant clinical and econometric burden of morbidity and mortality. The objective of this study was to trial the feasibility of applying the Prevena negative pressure incision management system as a routine dressing in patients who had undergone arterial surgery. Conventionally, Prevena has been applied to groin incisions, but this study features applications on multiple wound sites such as the thigh or major amputation stumps. Method: This was a cross-sectional observational, single-centre case series of 12 patients who had undergone major vascular surgery. Their wounds were managed with the Prevena system being applied either intra-operatively or on the first post-operative day. Demographic and operative details were collated as well as the length of stay and complication rates. Results: There were 9 males (75%) with mean age of 66 years and the comorbid burden was as follows: ischaemic heart disease (92%), diabetes (42%), hypertension (100%), stage 4 or greater kidney impairment (17%) and current or ex-smoking (83%). The main indications were acute ischaemia (33%), claudication (25%), and gangrene (17%). There were single instances of an occluded popliteal artery aneurysm, diabetic foot infection, and rest pain. The majority of patients (50%) had hybrid operations with iliofemoral endarterectomies, patch arterioplasties, and further peripheral endovascular treatment. There were 4 complex arterial bypass operations and 2 major amputations. The mean length of stay was 17 ± 10 days, with a range of 4 to 35 days. A single complication, in the form of a lymphocoele, was encountered in the context of an iliofemoral endarterectomy and patch arterioplasty. This was managed conservatively. There were no deaths. Discussion: The Prevena wound management system shows that in conjunction with safe vascular surgery, absolute wound complication rates remain low and that it remains a valuable adjunct in the treatment of vasculopaths.

Keywords: wound care, negative pressure, vascular surgery, closed incision

Procedia PDF Downloads 113
1364 On the Construction of Lightweight Circulant Maximum Distance Separable Matrices

Authors: Qinyi Mei, Li-Ping Wang

Abstract:

MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.

Keywords: linear diffusion layer, circulant matrix, lightweight, maximum distance separable (MDS) matrix

Procedia PDF Downloads 394
1363 A Multi Cordic Architecture on FPGA Platform

Authors: Ahmed Madian, Muaz Aljarhi

Abstract:

Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents a multi-CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his/her needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.

Keywords: multi, CORDIC, FPGA, processor

Procedia PDF Downloads 453
1362 Passive Attenuation of Nitrogen Species at Northern Mine Sites

Authors: Patrick Mueller, Alan Martin, Justin Stockwell, Robert Goldblatt

Abstract:

Elevated concentrations of inorganic nitrogen (N) compounds (nitrate, nitrite, and ammonia) are a ubiquitous feature to mine-influenced drainages due to the leaching of blasting residues and use of cyanide in the milling of gold ores. For many mines, the management of N is a focus for environmental protection, therefore understanding the factors controlling the speciation and behavior of N is central to effective decision making. In this paper, the passive attenuation of ammonia and nitrite is described for three northern water bodies (two lakes and a tailings pond) influenced by mining activities. In two of the water bodies, inorganic N compounds originate from explosives residues in mine water and waste rock. The third water body is a decommissioned tailings impoundment, with N compounds largely originating from the breakdown of cyanide compounds used in the processing of gold ores. Empirical observations from water quality monitoring indicate nitrification (the oxidation of ammonia to nitrate) occurs in all three waterbodies, where enrichment of nitrate occurs commensurately with ammonia depletion. The N species conversions in these systems occurred more rapidly than chemical oxidation kinetics permit, indicating that microbial mediated conversion was occurring, despite the cool water temperatures. While nitrification of ammonia and nitrite to nitrate was the primary process, in all three waterbodies nitrite was consistently present at approximately 0.5 to 2.0 % of total N, even following ammonia depletion. The persistence of trace amounts of nitrite under these conditions suggests the co-occurrence denitrification processes in the water column and/or underlying substrates. The implications for N management in mine waters are discussed.

Keywords: explosives, mining, nitrification, water

Procedia PDF Downloads 297
1361 Users’ Preferences for Map Navigation Gestures

Authors: Y. Y. Pang, N. A. Ismail

Abstract:

The map is a powerful and convenient tool in helping us to navigate to different places, but the use of indirect devices often makes its usage cumbersome. This study intends to propose a new map navigation dialogue that uses hand gesture. A set of dialogue was developed from users’ perspective to provide users complete freedom for panning, zooming, rotate, and find direction operations. A participatory design experiment was involved here where one hand gesture and two hand gesture dialogues had been analysed in the forms of hand gestures to develop a set of usable dialogues. The major finding was that users prefer one-hand gesture compared to two-hand gesture in map navigation.

Keywords: hand gesture, map navigation, participatory design, intuitive interaction

Procedia PDF Downloads 262
1360 Solution of Logistics Center Selection Problem Using the Axiomatic Design Method

Authors: Fulya Zaralı, Harun Resit Yazgan

Abstract:

Logistics centers represent areas that all national and international logistics and activities related to logistics can be implemented by the various businesses. Logistics centers have a key importance in joining the transport stream and the transport system operations. Therefore, it is important where these centers are positioned to be effective and efficient and to show the expected performance of the centers. In this study, the location selection problem to position the logistics center is discussed. Alternative centers are evaluated according certain criteria. The most appropriate center is identified using the axiomatic design method.

Keywords: axiomatic design, logistic center, facility location, information systems

Procedia PDF Downloads 334
1359 Method to Calculate the Added Value in Supply Chains of Electric Power Meters

Authors: Andrey Vinajera-Zamora, Norge Coello-Machado, Elke Glistau

Abstract:

The objective of this research is calculate the added value in operations of electric power meters (EPM) supply chains, specifically the EPM of 220v. The tool used is composed by six steps allowing at same time the identification of calibration of EPM as the bottleneck operation according the net added value being at same time the process of higher added value. On the other hand, this methodology allows calculate the amount of money to buy the raw material. The main conclusions are related to the analyze ‘s way and calculating of added value in supply chain integrated by the echelons procurement, production and distribution or any of these.

Keywords: economic value added, supply chain management, value chain, bottleneck detection

Procedia PDF Downloads 283