Search results for: graph attention network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9038

Search results for: graph attention network

8558 Multi-Level Clustering Based Congestion Control Protocol for Cyber Physical Systems

Authors: Manpreet Kaur, Amita Rani, Sanjay Kumar

Abstract:

The Internet of Things (IoT), a cyber-physical paradigm, allows a large number of devices to connect and send the sensory data in the network simultaneously. This tremendous amount of data generated leads to very high network load consequently resulting in network congestion. It further amounts to frequent loss of useful information and depletion of significant amount of nodes’ energy. Therefore, there is a need to control congestion in IoT so as to prolong network lifetime and improve the quality of service (QoS). Hence, we propose a two-level clustering based routing algorithm considering congestion score and packet priority metrics that focus on minimizing the network congestion. In the proposed Priority based Congestion Control (PBCC) protocol the sensor nodes in IoT network form clusters that reduces the amount of traffic and the nodes are prioritized to emphasize important data. Simultaneously, a congestion score determines the occurrence of congestion at a particular node. The proposed protocol outperforms the existing Packet Discard Network Clustering (PDNC) protocol in terms of buffer size, packet transmission range, network region and number of nodes, under various simulation scenarios.

Keywords: internet of things, cyber-physical systems, congestion control, priority, transmission rate

Procedia PDF Downloads 308
8557 The Dangers of Attentional Inertia in the Driving Task

Authors: Catherine Thompson, Maryam Jalali, Peter Hills

Abstract:

The allocation of visual attention is critical when driving and anything that limits attention will have a detrimental impact on safety. Engaging in a secondary task reduces the amount of attention directed to the road because drivers allocate resources towards this task, leaving fewer resources to process driving-relevant information. Yet the dangers associated with a secondary task do not end when the driver returns their attention to the road. Instead, the attentional settings adopted to complete a secondary task may persist to the road, affecting attention, and therefore affecting driver performance. This 'attentional inertia' effect was investigated in the current work. Forty drivers searched for hazards in driving video clips while their eye-movements were recorded. At varying intervals they were instructed to attend to a secondary task displayed on a tablet situated to their left-hand side. The secondary task consisted of three separate computer games that induced horizontal, vertical, and random eye movements. Visual search and hazard detection in the driving clips were compared across the three conditions of the secondary task. Results showed that the layout of information in the secondary task, and therefore the allocation of attention in this task, had an impact on subsequent search in the driving clips. Vertically presented information reduced the wide horizontal spread of search usually associated with accurate driving and had a negative influence on the detection of hazards. The findings show the additional dangers of engaging in a secondary task while driving. The attentional inertia effect has significant implications for semi-autonomous and autonomous vehicles in which drivers have greater opportunity to direct their attention away from the driving task.

Keywords: attention, eye-movements, hazard perception, visual search

Procedia PDF Downloads 165
8556 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: mesh network, RFID, wireless sensor network, zigbee

Procedia PDF Downloads 462
8555 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 375
8554 Modelling a Distribution Network with a Hybrid Solar-Hydro Power Plant in Rural Cameroon

Authors: Contimi Kenfack Mouafo, Sebastian Klick

Abstract:

In the rural and remote areas of Cameroon, access to electricity is very limited since most of the population is not connected to the main utility grid. Throughout the country, efforts are underway to not only expand the utility grid to these regions but also to provide reliable off-grid access to electricity. The Cameroonian company Solahydrowatt is currently working on the design and planning of one of the first hybrid solar-hydropower plants of Cameroon in Fotetsa, in the western region of the country, to provide the population with reliable access to electricity. This paper models and proposes a design for the low-voltage network with a hybrid solar-hydropower plant in Fotetsa. The modelling takes into consideration the voltage compliance of the distribution network, the maximum load of operating equipment, and most importantly, the ability for the network to operate as an off-grid system. The resulting modelled distribution network does not only comply with the Cameroonian voltage deviation standard, but it is also capable of being operated as a stand-alone network independent of the main utility grid.

Keywords: Cameroon, rural electrification, hybrid solar-hydro, off-grid electricity supply, network simulation

Procedia PDF Downloads 124
8553 Performance Analysis of Routing Protocols for WLAN Based Wireless Sensor Networks (WSNs)

Authors: Noman Shabbir, Roheel Nawaz, Muhammad N. Iqbal, Junaid Zafar

Abstract:

This paper focuses on the performance evaluation of routing protocols in WLAN based Wireless Sensor Networks (WSNs). A comparative analysis of routing protocols such as Ad-hoc On-demand Distance Vector Routing System (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) is been made against different network parameters like network load, end to end delay and throughput in small, medium and large-scale sensor network scenarios to identify the best performing protocol. Simulation results indicate that OLSR gives minimum network load in all three scenarios while AODV gives the best throughput in small scale network but in medium and large scale networks, DSR is better. In terms of delay, OLSR is more efficient in small and medium scale network while AODV is slightly better in large networks.

Keywords: WLAN, WSN, AODV, DSR, OLSR

Procedia PDF Downloads 451
8552 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: neural networks, pattern learning, security, wireless sensor networks

Procedia PDF Downloads 405
8551 A Network of Nouns and Their Features :A Neurocomputational Study

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies indicate that a large fronto-parieto-temporal network support nouns and their features, with some areas store semantic knowledge (visual, auditory, olfactory, gustatory,…), other areas store lexical representation and other areas are implicated in general semantic processing. However, it is not well understood how this fronto-parieto-temporal network can be modulated by different semantic tasks and different semantic relations between nouns. In this study, we combine a behavioral semantic network, functional MRI studies involving object’s related nouns and brain network studies to explain how different semantic tasks and different semantic relations between nouns can modulate the activity within the brain network of nouns and their features. We first describe how nouns and their features form a large scale brain network. For this end, we examine the connectivities between areas recruited during the processing of nouns to know which configurations of interaction areas are possible. We can thus identify if, for example, brain areas that store semantic knowledge communicate via functional/structural links with areas that store lexical representations. Second, we examine how this network is modulated by different semantic tasks involving nouns and finally, we examine how category specific activation may result from the semantic relations among nouns. The results indicate that brain network of nouns and their features is highly modulated and flexible by different semantic tasks and semantic relations. At the end, this study can be used as a guide to help neurosientifics to interpret the pattern of fMRI activations detected in the semantic processing of nouns. Specifically; this study can help to interpret the category specific activations observed extensively in a large number of neuroimaging studies and clinical studies.

Keywords: nouns, features, network, category specificity

Procedia PDF Downloads 521
8550 Measuring How Brightness Mediates Auditory Salience

Authors: Baptiste Bouvier

Abstract:

While we are constantly flooded with stimuli in daily life, attention allows us to select the ones we specifically process and ignore the others. Some salient stimuli may sometimes pass this filter independently of our will, in a "bottom-up" way. The role of the acoustic properties of the timbre of a sound on its salience, i.e., its ability to capture the attention of a listener, is still not well understood. We implemented a paradigm called the "additional singleton paradigm", in which participants have to discriminate targets according to their duration. This task is perturbed (higher error rates and longer response times) by the presence of an irrelevant additional sound, of which we can manipulate a feature of our choice at equal loudness. This allows us to highlight the influence of the timbre features of a sound stimulus on its salience at equal loudness. We have shown that a stimulus that is brighter than the others but not louder leads to an attentional capture phenomenon in this framework. This work opens the door to the study of the influence of any timbre feature on salience.

Keywords: attention, audition, bottom-up attention, psychoacoustics, salience, timbre

Procedia PDF Downloads 171
8549 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City

Procedia PDF Downloads 353
8548 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: neural network, self-organizing map, rule extraction, rule insertion

Procedia PDF Downloads 173
8547 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk

Procedia PDF Downloads 346
8546 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom

Abstract:

Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.

Keywords: Dijkstra algorithm, graph theory, public transport, Bangkok metropolitan area

Procedia PDF Downloads 248
8545 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 139
8544 Wired Network Services in Mobile Phones

Authors: Subhash Reddy

Abstract:

Mobile communication in today’s world means a lot to the human kind, through this many deals are made and others are broken, within seconds. That is because of our sophisticated methods of transporting the data at very high speeds and to very long distances, within no time. That is also because we kept on changing the method of serving the connections as the no of connections kept on increasing, that has led to many methods like TDMA, CDMA, and FDMA, etc. in wireless communications. And also the areas, where the connections are provided are also divided into CELLS, which are the basic blocks for cellular communications. Along with the wireless network, providing a wired network in mobile phones would serve as a very good alternative and would divert the extra traffic of a cell, so that a CELL which is providing wireless network can operate more efficiently.

Keywords: CDMA, FDMA, TDMA, CELL

Procedia PDF Downloads 487
8543 The Comparative Study of Attitudes toward Entrepreneurial Intention between ASEAN and Europe: An Analysis Using GEM Data

Authors: Suchart Tripopsakul

Abstract:

This paper uses data from the Global Entrepreneurship Monitor (GEM) to investigate the difference of attitudes towards entrepreneurial intention (EI). EI is generally assumed to be the single most relevant predictor of entrepreneurial behavior. The aim of this paper is to examine a range of attitudes effect on individual’s intent to start a new venture. A cross-cultural comparison between Asia and Europe is used to further investigate the possible differences between potential entrepreneurs from these distinct national contexts. The empirical analysis includes a GEM data set of 10 countries (n = 10,306) which was collected in 2013. Logistic regression is used to investigate the effect of individual’s attitudes on EI. Independent variables include individual’s perceived capabilities, the ability to recognize business opportunities, entrepreneurial network, risk perceptions as well as a range of socio-cultural attitudes. Moreover, a cross-cultural comparison of the model is conducted including six ASEAN (Malaysia, Indonesia, Philippines, Singapore, Vietnam and Thailand) and four European nations (Spain, Sweden, Germany, and the United Kingdom). The findings support the relationship between individual’s attitudes and their entrepreneurial intention. Individual’s capability, opportunity recognition, networks and a range of socio-cultural perceptions all influence EI significantly. The impact of media attention on entrepreneurship and was found to influence EI in ASEAN, but not in Europe. On the one hand, Fear of failure was found to influence EI in Europe, but not in ASEAN. The paper develops and empirically tests attitudes toward Entrepreneurial Intention between ASEAN and Europe. Interestingly, fear of failure was found to have no significant effect in ASEAN, and the impact of media attention on entrepreneurship and was found to influence EI in ASEAN. Moreover, the resistance of ASEAN entrepreneurs to the otherwise high rates of fear of failure and high impact of media attention are proposed as independent variables to explain the relatively high rates of entrepreneurial activity in ASEAN as reported by GEM. The paper utilizes a representative sample of 10,306 individuals in 10 countries. A range of attitudes was found to significantly influence entrepreneurial intention. Many of these perceptions, such as the impact of media attention on entrepreneurship can be manipulated by government policy. The paper also suggests strategies by which Asian economy in particular can benefit from their apparent high impact of media attention on entrepreneurship.

Keywords: an entrepreneurial intention, attitude, GEM, ASEAN and Europe

Procedia PDF Downloads 314
8542 Measurement and Analysis of Building Penetration Loss for Mobile Networks in Tripoli Area

Authors: Tammam A. Benmusa, Mohamed A. Shlibek, Rawad M. Swesi

Abstract:

The investigation of Buildings Penetration Loss (BPL) of radio signal is getting more and more important. It plays an important role in calculating the indoor coverage for wireless communication networks. In this paper, the theory behind BPL and its mechanisms have been reviewed. The operating frequency, coverage area type, climate condition, time of measurement, and other factors affecting the values of BPL have been discussed. The practical part of this work was conducting 4000 measurements of BPL in different areas in the Libyan capital, Tripoli, to get empirical model for this loss. The measurements were taken for 2 different types of wireless communication networks; mobile telephone network (for Almadar company), which operates at 900 MHz and WiMAX network (LTT company) which operates at 2500 MHz. The results for each network were summarized and presented in several graphs. The graphs are showing how the BPL affected by: time of measurement, morphology (type of area), and climatic environment.

Keywords: building penetration loss, wireless network, mobile network, link budget, indoor network performance

Procedia PDF Downloads 386
8541 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 135
8540 Structural Balance and Creative Tensions in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development involves team members coming together and working in teams to come up with innovative solutions to problems, resulting in new products. Thus, a core attribute of a successful NPD team is their creativity and innovation. They need to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas, resulting in a POC (proof-of-concept) implementation or a prototype of the product. There are two distinctive traits that the teams need to have, one is ideational creativity, and the other is effective and efficient teamworking. There are multiple types of tensions that each of these traits cause in the teams, and these tensions reflect in the team dynamics. Ideational conflicts arising out of debates and deliberations increase the collective knowledge and affect the team creativity positively. However, the same trait of challenging each other’s viewpoints might lead the team members to be disruptive, resulting in interpersonal tensions, which in turn lead to less than efficient teamwork. Teams that foster and effectively manage these creative tensions are successful, and teams that are not able to manage these tensions show poor team performance. In this paper, it explore these tensions as they result in the team communication social network and propose a Creative Tension Balance index along the lines of Degree of Balance in social networks that has the potential to highlight the successful (and unsuccessful) NPD teams. Team communication reflects the team dynamics among team members and is the data set for analysis. The emails between the members of the NPD teams are processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. This social network is subjected to traditional social network analysis methods to arrive at some established metrics and structural balance analysis metrics. Traditional structural balance is extended to include team interaction pattern metrics to arrive at a creative tension balance metric that effectively captures the creative tensions and tension balance in teams. This CTB (Creative Tension Balance) metric truly captures the signatures of successful and unsuccessful (dissonant) NPD teams. The dataset for this research study includes 23 NPD teams spread out over multiple semesters and computes this CTB metric and uses it to identify the most successful and unsuccessful teams by classifying these teams into low, high and medium performing teams. The results are correlated to the team reflections (for team dynamics and interaction patterns), the team self-evaluation feedback surveys (for teamwork metrics) and team performance through a comprehensive team grade (for high and low performing team signatures).

Keywords: team dynamics, social network analysis, new product development teamwork, structural balance, NPD teams

Procedia PDF Downloads 80
8539 Increase in the Persistence of Various Invaded Multiplex Metacommunities Induced by Heterogeneity of Motifs

Authors: Dweepabiswa Bagchi, D. V. Senthilkumar

Abstract:

Numerous studies have typically demonstrated the devastation of invasions on an isolated ecosystem or, at most, a network of dispersively coupled similar ecosystem patches. Using such a simplistic 2-D network model, one can only consider dispersal coupling and inter-species trophic interactions. However, in a realistic ecosystem, numerous species co-exist and interact trophically and non-trophically in groups of 2 or more. Even different types of dispersal can introduce complexity in an ecological network. Therefore, a more accurate representation of actual ecosystems (or ecological networks) is a complex network consisting of motifs formed by two or more interacting species. Here, the apropos structure of the network should be multiplex or multi-layered. Motifs between different patches or species should be identical within the same layer and vary from one layer to another. This study investigates three distinct ecological multiplex networks facing invasion from one or more external species. This work determines and quantifies the criteria for the increased extinction risk of these networks. The dynamical states of the network with high extinction risk, i.e., the danger states, and those with low extinction risk, i.e., the resistive network states, are both subsequently identified. The analysis done in this study further quantifies the persistence of the entire network corresponding to simultaneous changes in the strength of invasive dispersal and higher-order trophic and non-trophic interactions. This study also demonstrates that the ecosystems enjoy an inherent advantage against invasions due to their multiplex network structure.

Keywords: increased ecosystem persistence, invasion on ecosystems, multiplex networks, non-trophic interactions

Procedia PDF Downloads 69
8538 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: clinoptilolite, loading, modeling, neural network

Procedia PDF Downloads 416
8537 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 105
8536 Application of Wireless Sensor Networks: A Survey in Thailand

Authors: Sathapath Kilaso

Abstract:

Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.

Keywords: wireless sensor network, smart city, survey, Adhoc Network

Procedia PDF Downloads 209
8535 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network

Authors: Yinggang Guo, Zongchun Li

Abstract:

In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.

Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum

Procedia PDF Downloads 192
8534 Analyzing Strategic Alliances of Museums: The Case of Girona (Spain)

Authors: Raquel Camprubí

Abstract:

Cultural tourism has been postulated as relevant motivation for tourist over the world during the last decades. In this context, museums are the main attraction for cultural tourists who are seeking to connect with the history and culture of the visited place. From the point of view of an urban destination, museums and other cultural resources are essential to have a strong tourist supply at the destination, in order to be capable of catching attention and interest of cultural tourists. In particular, museums’ challenge is to be prepared to offer the best experience to their visitors without to forget their mission-based mainly on protection of its collection and other social goals. Thus, museums individually want to be competitive and have good positioning to achieve their strategic goals. The life cycle of the destination and the level of maturity of its tourism product influence the need of tourism agents to cooperate and collaborate among them, in order to rejuvenate their product and become more competitive as a destination. Additionally, prior studies have considered an approach of different models of a public and private partnership, and collaborative and cooperative relations developed among the agents of a tourism destination. However, there are no studies that pay special attention to museums and the strategic alliances developed to obtain mutual benefits. Considering this background, the purpose of this study is to analyze in what extent museums of a given urban destination have established strategic links and relations among them, in order to improve their competitive position at both individual and destination level. In order to achieve the aim of this study, the city of Girona (Spain) and the museums located in this city are taken as a case study. Data collection was conducted using in-depth interviews, in order to collect all the qualitative data related to nature, strengthen and purpose of the relational ties established among the museums of the city or other relevant tourism agents of the city. To conduct data analysis, a Social Network Analysis (SNA) approach was taken using UCINET software. Position of the agents in the network and structure of the network was analyzed, and qualitative data from interviews were used to interpret SNA results. Finding reveals the existence of strong ties among some of the museums of the city, particularly to create and promote joint products. Nevertheless, there were detected outsiders who have an individual strategy, without collaboration and cooperation with other museums or agents of the city. Results also show that some relational ties have an institutional origin, while others are the result of a long process of cooperation with common projects. Conclusions put in evidence that collaboration and cooperation of museums had been positive to increase the attractiveness of the museum and the city as a cultural destination. Future research and managerial implications are also mentioned.

Keywords: cultural tourism, competitiveness, museums, Social Network analysis

Procedia PDF Downloads 118
8533 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 153
8532 Secure Network Coding against Content Pollution Attacks in Named Data Network

Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang

Abstract:

Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.

Keywords: named data networking, content polloution attack, network coding signature, internet architecture

Procedia PDF Downloads 338
8531 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 437
8530 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 294
8529 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 358