Search results for: generalized autoregressive score model
18516 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 12018515 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 16218514 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection
Procedia PDF Downloads 39518513 The Neutrophil-to-Lymphocyte Ratio after Surgery for Hip Fracture in a New, Simple, and Objective Score to Predict Postoperative Mortality
Authors: Philippe Dillien, Patrice Forget, Harald Engel, Olivier Cornu, Marc De Kock, Jean Cyr Yombi
Abstract:
Introduction: Hip fracture precedes commonly death in elderly people. Identification of high-risk patients may contribute to target patients in whom optimal management, resource allocation and trials efficiency is needed. The aim of this study is to construct a predictive score of mortality after hip fracture on the basis of the objective prognostic factors available: Neutrophil-to-lymphocyte ratio (NLR), age, and sex. C-Reactive Protein (CRP), is also considered as an alternative to the NLR. Patients and methods: After the IRB approval, we analyzed our prospective database including 286 consecutive patients with hip fracture. A score was constructed combining age (1 point per decade above 74 years), sex (1 point for males), and NLR at postoperative day+5 (1 point if >5). A receiver-operating curve (ROC) curve analysis was performed. Results: From the 286 patients included, 235 were analyzed (72 males and 163 females, 30.6%/69.4%), with a median age of 84 (range: 65 to 102) years, mean NLR values of 6.47+/-6.07. At one year, 82/280 patients died (29.3%). Graphical analysis and log-rank test confirm a highly statistically significant difference (P<0.001). Performance analysis shows an AUC of 0.72 [95%CI 0.65-0.79]. CRP shows no advantage on NLR. Conclusion: We have developed a score based on age, sex and the NLR to predict the risk of mortality at one year in elderly patients after surgery for a hip fracture. After external validation, it may be included in clinical practice as in clinical research to stratify the risk of postoperative mortality.Keywords: neutrophil-to-lymphocyte ratio, hip fracture, postoperative mortality, medical and health sciences
Procedia PDF Downloads 41618512 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin
Abstract:
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.Keywords: biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory
Procedia PDF Downloads 28018511 A Generalized Family of Estimators for Estimation of Unknown Population Variance in Simple Random Sampling
Authors: Saba Riaz, Syed A. Hussain
Abstract:
This paper is addressing the estimation method of the unknown population variance of the variable of interest. A new generalized class of estimators of the finite population variance has been suggested using the auxiliary information. To improve the precision of the proposed class, known population variance of the auxiliary variable has been used. Mathematical expressions for the biases and the asymptotic variances of the suggested class are derived under large sample approximation. Theoretical and numerical comparisons are made to investigate the performances of the proposed class of estimators. The empirical study reveals that the suggested class of estimators performs better than the usual estimator, classical ratio estimator, classical product estimator and classical linear regression estimator. It has also been found that the suggested class of estimators is also more efficient than some recently published estimators.Keywords: study variable, auxiliary variable, finite population variance, bias, asymptotic variance, percent relative efficiency
Procedia PDF Downloads 22918510 Generalized Synchronization in Systems with a Complex Topology of Attractor
Authors: Olga I. Moskalenko, Vladislav A. Khanadeev, Anastasya D. Koloskova, Alexey A. Koronovskii, Anatoly A. Pivovarov
Abstract:
Generalized synchronization is one of the most intricate phenomena in nonlinear science. It can be observed both in systems with a unidirectional and mutual type of coupling including the complex networks. Such a phenomenon has a number of practical applications, for example, for the secure information transmission through the communication channel with a high level of noise. Known methods for the secure information transmission needs in the increase of the privacy of data transmission that arises a question about the observation of such phenomenon in systems with a complex topology of chaotic attractor possessing two or more positive Lyapunov exponents. The present report is devoted to the study of such phenomenon in two unidirectionally and mutually coupled dynamical systems being in chaotic (with one positive Lyapunov exponent) and hyperchaotic (with two or more positive Lyapunov exponents) regimes, respectively. As the systems under study, we have used two mutually coupled modified Lorenz oscillators and two unidirectionally coupled time-delayed generators. We have shown that in both cases the generalized synchronization regime can be detected by means of the calculation of Lyapunov exponents and phase tube approach whereas due to the complex topology of attractor the nearest neighbor method is misleading. Moreover, the auxiliary system approaches being the standard method for the synchronous regime observation, for the mutual type of coupling results in incorrect results. To calculate the Lyapunov exponents in time-delayed systems we have proposed an approach based on the modification of Gram-Schmidt orthogonalization procedure in the context of the time-delayed system. We have studied in detail the mechanisms resulting in the generalized synchronization regime onset paying a great attention to the field where one positive Lyapunov exponent has already been become negative whereas the second one is a positive yet. We have found the intermittency here and studied its characteristics. To detect the laminar phase lengths the method based on a calculation of local Lyapunov exponents has been proposed. The efficiency of the method has been verified using the example of two unidirectionally coupled Rössler systems being in the band chaos regime. We have revealed the main characteristics of intermittency, i.e. the distribution of the laminar phase lengths and dependence of the mean length of the laminar phases on the criticality parameter, for all systems studied in the report. This work has been supported by the Russian President's Council grant for the state support of young Russian scientists (project MK-531.2018.2).Keywords: complex topology of attractor, generalized synchronization, hyperchaos, Lyapunov exponents
Procedia PDF Downloads 27818509 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems
Procedia PDF Downloads 24718508 Development of a Performance Measurement Model for Hospitals Using Multi-Criteria Decision Making (MCDM) Techniques: A Case Study of Three South Australian Major Public Hospitals
Authors: Mohammad Safaeipour, Yousef Amer
Abstract:
This study directs its focus on developing a conceptual model to offer a systematic and integrated method to weigh the related measures and evaluate a competence of hospitals and rank of the selected hospitals that involve and consider the stakeholders’ key performance indicators (KPI’s). The Analytical Hierarchy Process (AHP) approach will use to weigh the dimensions and related sub- components. The weights and performance scores will combine by using the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) and rank the selected hospitals. The results of this study provide interesting insight into the necessity of process improvement implementation in which hospital that received the lowest ranking score.Keywords: performance measurement system, PMS, hospitals, AHP, TOPSIS
Procedia PDF Downloads 38118507 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 48818506 Comparative Evaluation of Pentazocine and Tramadol as Pre-Emptive Analgesics for Ovariohysterectomy in Female Dogs
Authors: Venkatgiri, Ranganath, L. Nagaraja, B. N. Sagar Pandav, S. M. Usturge, D. Dilipkumar, B. V. Shivprakash, B. Bhagwanthappa, D. Jahangir
Abstract:
A comparative evaluation of Tramadol and Pentazocine as a pre-emptive analgesic in clinical cases of female dogs undergoing ovariohysterectomy was undertaken during this study. During the study, the following parameters were assessed viz., Rectal temperature (ᵒF), Respiratory rate (breaths/min) and Heart rate (beats/min). Hematological and biochemical parameters viz., total erythrocyte count (TEC) (millions/cmm), hemoglobin (g %), otal leucocytes count (TLC) (thousands/cmm), differential leucocytes count (DLC) (%), serum creatinine (mg/dl), plasma protein (mg/dl), blood glucose (mg/dl) was estimated before the surgery and after administration of general anaesthesia and immediate postoperative periods of 0, 12 and 24 hr respectively. Mean Total Pain Score (MTPS) includes measurement of parameters like posture, vocalization, activity level, response to palpation and agitation at different intervals was calculated before surgery and after administration of general anesthesia and post-operative periods of 1, 2, 4, 6, 12hrs and 24 hrs respectively. Mean Total Pain Score (MTPS) was given for each parameter (Posture, Vocalization, Activity Level, Response to Palpation and Agitation) like 0,1,2,3. (maximum score will be given was 4.). Results were revealed in all three groups including control group. There were significant minor alterations in physiological, hematological and biochemical parameters. MTPS (mean total pain score) were revealed and found a significant alteration when compared with control group. In conclusion, Tramadol found to be a better analgesic and had up to 8hrs of analgesic effect and Pentazocine is superior in post-operative pain management when compared to Tramadol because this group of dogs experienced less surgical stress, consumed less anesthetic dose, they recovered early, and they had less MTPS score.Keywords: dog, pentazocine, tramadol, ovariohysterectomy
Procedia PDF Downloads 16918505 Parameter Estimation via Metamodeling
Authors: Sergio Haram Sarmiento, Arcady Ponosov
Abstract:
Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels
Procedia PDF Downloads 51918504 Fear of Covid-19 a Major Contributing Factor to Insomnia in General Iranian Population
Authors: Amin Nakhostin-Ansari, Samaneh Akbarour, Khosro Sadeghniiat Haghighi, Zahra Banafsheh Alemohammad, Farnaz Etesam, Arezu Najafi, Mahnaz Khalafehnilsaz
Abstract:
Introduction: The outbreak of coronavirus disease has considerably burdened the healthcare system in Iran. This study aimed to evaluate the characteristics of insomnia experienced by the general Iranian population during the COVID-19 pandemic. Method: A scale(FCV-19) was used for Fear of COVID-19, Insomnia Severity Index (ISI), Patient Health Questionnaire-2 (PHQ-2), and Generalized Anxiety Disorder Scale-2 (GAD-2) for detailed characterization of insomnia and its patterns Results: In total, 675 people with insomnia with the mean age of 40.28 years (SD=11.15) participated in this study. Prevalence of difficulty initiating sleep (DIS), difficulty maintaining sleep (DMS), and early morning awakening (EMA) were 91.4%, 86.7%, and 77%, respectively. DIS, DMS, and EMA were more common in people with depression and anxiety. FCV-19 score was higher in those with more severe types of DIS, DMS, and EMA (P<0.001). FCV-19 was a risk factor for all patterns of insomnia (OR=1.19, 1.12, 1.02 for DIS, DMS, and EMA, respectively). Conclusion: fear of COVID-19 is a major factor to insomnia patterns. Investigation of COVID-19 fear in people with insomnia and the addition of attributed relieving or management strategies to conventional management of insomnia are reasonable approaches to improve the sleep condition of people in the pandemic.Keywords: insomnia, difficulty maintaining sleep, COVID-19, Coronavirus
Procedia PDF Downloads 18418503 Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato
Authors: Nurulhikma Md Isa, Intan Elya Suka, Nur Farhana Roslan, Chew Bee Lynn
Abstract:
The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes.Keywords: ERFs, PRT6, tomato, ubiquitin
Procedia PDF Downloads 24418502 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study
Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen
Abstract:
Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.Keywords: anesthesia nurses, burnout, job, turnover intention
Procedia PDF Downloads 30018501 National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria
Authors: Festus M. Epetimehin
Abstract:
This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs.Keywords: PSM, binary logit model, Agri-SME
Procedia PDF Downloads 10218500 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods
Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan
Abstract:
Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.Keywords: forensic odontology, age estimation, North India, teeth
Procedia PDF Downloads 24318499 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 8118498 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image
Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa
Abstract:
A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever
Procedia PDF Downloads 12518497 A Nonlinear Feature Selection Method for Hyperspectral Image Classification
Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo
Abstract:
For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine
Procedia PDF Downloads 26518496 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study
Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura
Abstract:
Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia
Procedia PDF Downloads 13218495 Compare the Effectiveness of Web Based and Blended Learning on Paediatric Basic Life Support
Authors: Maria Janet, Anita David, P. Vijayasamundeeswarimaria
Abstract:
Introduction: The main purpose of this study is to compare the effectiveness of web-based and blended learning on Paediatric Basic Life Support on competency among undergraduate nursing students in selected nursing colleges in Chennai. Materials and methods: A descriptive pre-test and post-test study design were used for this study. Samples of 100 Fourth year B.Sc., nursing students at Sri Ramachandra Faculty of Nursing SRIHER, Chennai, 100 Fourth year B.Sc., nursing students at Apollo College of Nursing, Chennai, were selected by purposive sampling technique. The instrument used for data collection was Knowledge Questionnaire on Paediatric Basic Life Support (PBLS). It consists of 29 questions on the general expansion of Basic Life Support and Cardiopulmonary Resuscitation, Prerequisites of Basic Life Support, and Knowledge on Paediatric Basic Life Support in which each question has four multiple choices answers, each right answer carrying one mark and no negative scoring. This questionnaire was formed with reference to AHA 2020 (American Heart Association) revised guidelines. Results: After the post-test, in the web-based learning group, 58.8% of the students had an inadequate level of objective performance score, while 41.1% of them had an adequate level of objective performance score. In the blended learning group, 26.5% of the students had an inadequate level of an objective performance score, and 73.4% of the students had an adequate level of an objective performance score. There was an association between the post-test level of knowledge and the demographic variables of undergraduate nursing students undergoing blended learning. The age was significant at a p-value of 0.01, and the performance of BLS before was significant at a p-value of 0.05. The results show that there was a significant positive correlation between knowledge and objective performance score of undergraduate nursing students undergoing web-based learning on paediatric basic life support.Keywords: basic life support, paediatric basic life support, web-based learning, blended learning
Procedia PDF Downloads 7218494 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit
Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang
Abstract:
This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation
Procedia PDF Downloads 36018493 A Study of Student Satisfaction of the University TV Station
Authors: Prapoj Na Bangchang
Abstract:
This research aimed to study the satisfaction of university students on the Suan Sunandha Rajabhat University television station. The sample were 250 undergraduate students from Year 1 to Year 4. The tool used to collect data was a questionnaire. Statistics used in data analysis were percentage, mean and standard deviation. The results showed that student satisfaction on the University's television station location received high score, followed by the number of devices, and the content presented received the lowest score. Most students want the content of the programs to be improved especially entertainment content, followed by sports content.Keywords: student satisfaction, university TV channel, media, broadcasting
Procedia PDF Downloads 38918492 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 42718491 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand
Authors: Phawichsak Prapassornpitaya, Wanida Jinsart
Abstract:
Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.Keywords: fine particulate matter, ARIMA, RMSE, Bangkok
Procedia PDF Downloads 28118490 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis
Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic
Abstract:
Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.Keywords: disability, functionality, multiple sclerosis, rehabilitation
Procedia PDF Downloads 12418489 Lamb Fleece Quality as an Indicator of Endoparasitism
Authors: Maria Christine Rizzon Cintra, Tâmara Duarte Borges, Cristina Santos Sotomaior
Abstract:
Lamb’s fleece quality can be influenced by many factors, including welfare, stress, nutritional imbalance and presence of ectoparasites. The association of fleece quality and endoparasitism, until now, was not well solved. The present study was undertaken to evaluate if a fleece visual score could predict lamb parasitosis with the focus on gastrointestinal parasites. Fleece quality was scored based on a combination of cleanliness and wool cover, using a three-point scale (1-3). Score 1: fleece shows no sign of dirt or contamination, and had sufficient fleece for the breed and time of year with whole body coverage; Score 2: fleece was little damp or wet, with coat contaminated by small patches of mud or dung and some areas of fleece loose, but no shed or bald patches of no more than 10cm in diameter; Score 3: fleece filthy, very wet with coated in mud or dug, and loose fleece with shed areas of pulls with bald patches greater than 10cm, some areas may be trailing. All fleece quality scores (FQS) were assessed with lamb restrained to ensure close inspection and were done along lamb back and considered just one side of the body. To confirm the gastrointestinal parasites and animal’s anemia, faecal egg counts (FEC) and hematocrit were done for each animal. Lambs were also weighed. All these measurements were done every 15-days, beginning at 60-days until 150-days of life, using 48 animals crossed Texel x Ile de France. For statistics analysis, it was used Stratigraphic Program (4.1. version), and all significant differences between FQS, weight gain, age, hematocrit, and FEC were assessed using analysis of variance following by Duncan test, and the correlation was done by Pearson test at P<0.05. Results showed that animals scored as ‘3’ in FQS had a lower hematocrit and a higher FEC (p<0.05) than animals scored as ‘1’ (hematocrit: 26, 24, 23 and FEC 2107, 2962, 4626 respectively for 1, 2 and 3 FQS). There were correlations between FQS and FEC (r = 0.16), FQS and hematocrit (r = -0.33) an FQS and weight gain (r = -0.20) indicating that worst FQS animals (score 3) had greater gastrointestinal parasites’ infection, were more anemic and had lower weight gain than animals scored as ‘1’ or ‘2’ for FQS. Concerning the lamb´s age, animals that received score ‘3’ in FQS, maintained gastrointestinal parasites’ infection over the time (P<0.05). It was concluded that FQS could be an important indicator to be included in the selective treatment for control verminosis in lambs.Keywords: fleece, gastrointestinal parasites, sheep, welfare
Procedia PDF Downloads 24718488 Discriminant Shooting-Related Statistics between Winners and Losers 2023 FIBA U19 Basketball World Cup
Authors: Navid Ebrahmi Madiseh, Sina Esfandiarpour-Broujeni, Rahil Razeghi
Abstract:
Introduction: Quantitative analysis of game-related statistical parameters is widely used to evaluate basketball performance at both individual and team levels. Non-free throw shooting plays a crucial role as the primary scoring method, holding significant importance in the game's technical aspect. It has been explored the predictive value of game-related statistics in relation to various contextual and situational variables. Many similarities and differences also have been found between different age groups and levels of competition. For instance, in the World Basketball Championships after the 2010 rule change, 2-point field goals distinguished winners from losers in women's games but not in men's games, and the impact of successful 3-point field goals on women's games was minimal. The study aimed to identify and compare discriminant shooting-related statistics between winning and losing teams in men’s and women’s FIBA-U19-Basketball-World-Cup-2023 tournaments. Method: Data from 112 observations (2 per game) of 16 teams (for each gender) in the FIBA-U19-Basketball-World-Cup-2023 were selected as samples. The data were obtained from the official FIBA website using Python. Specific information was extracted, organized into a DataFrame, and consisted of twelve variables, including shooting percentages, attempts, and scoring ratio for 3-pointers, mid-range shots, paint shots, and free throws. Made% = scoring type successful attempts/scoring type total attempts¬ (1)Free-throw-pts% (free throw score ratio) = (free throw score/total score) ×100 (2)Mid-pts% (mid-range score ratio) = (mid-range score/total score) ×100 (3) Paint-pts% (paint score ratio) = (Paint score/total score) ×100 (4) 3p_pts% (three-point score ratio) = (three-point score/total score) ×100 (5) Independent t-tests were used to examine significant differences in shooting-related statistical parameters between winning and losing teams for both genders. Statistical significance was p < 0.05. All statistical analyses were completed with SPSS, Version 18. Results: The results showed that 3p-made%, mid-pts%, paint-made%, paint-pts%, mid-attempts, and paint-attempts were significantly different between winners and losers in men (t=-3.465, P<0.05; t=3.681, P<0.05; t=-5.884, P<0.05; t=-3.007, P<0.05; t=2.549, p<0.05; t=-3.921, P<0.05). For women, significant differences between winners and losers were found for 3p-made%, 3p-pts%, paint-made%, and paint-attempt (t=-6.429, P<0.05; t=-1.993, P<0.05; t=-1.993, P<0.05; t=-4.115, P<0.05; t=02.451, P<0.05). Discussion: The research aimed to compare shooting-related statistics between winners and losers in men's and women's teams at the FIBA-U19-Basketball-World-Cup-2023. Results indicated that men's winners excelled in 3p-made%, paint-made%, paint-pts%, paint-attempts, and mid-attempt, consistent with previous studies. This study found that losers in men’s teams had higher mid-pts% than winners, which was inconsistent with previous findings. It has been indicated that winners tend to prioritize statistically efficient shots while forcing the opponent to take mid-range shots. In women's games, significant differences in 3p-made%, 3p-pts%, paint-made%, and paint-attempts were observed, indicating that winners relied on riskier outside scoring strategies. Overall, winners exhibited higher accuracy in paint and 3P shooting than losers, but they also relied more on outside offensive strategies. Additionally, winners acquired a higher ratio of their points from 3P shots, which demonstrates their confidence in their skills and willingness to take risks at this competitive level.Keywords: gender, losers, shoot-statistic, U19, winners
Procedia PDF Downloads 10218487 Data Model to Predict Customize Skin Care Product Using Biosensor
Authors: Ashi Gautam, Isha Shukla, Akhil Seghal
Abstract:
Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.Keywords: biosensors, data model, machine learning, skin care
Procedia PDF Downloads 101