Search results for: farm buildings and equipment
3479 Scheduling of Repetitive Activities for Height-Rise Buildings: Optimisation by Genetic Algorithms
Authors: Mohammed Aljoma
Abstract:
In this paper, a developed prototype for the scheduling of repetitive activities in height-rise buildings was presented. The activities that describe the behavior of the most of activities in multi-storey buildings are scheduled using the developed approach. The prototype combines three methods to attain the optimized planning. The methods include Critical Path Method (CPM), Gantt and Line of Balance (LOB). The developed prototype; POTER is used to schedule repetitive and non-repetitive activities with respect to all constraints that can be automatically generated using a generic database. The prototype uses the method of genetic algorithms for optimizing the planning process. As a result, this approach enables contracting organizations to evaluate various planning solutions that are calculated, tested and classified by POTER to attain an optimal time-cost equilibrium according to their own criteria of time or coast.Keywords: planning scheduling, genetic algorithms, repetitive activity, construction management, planning, scheduling, risk management, project duration
Procedia PDF Downloads 3083478 Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions
Authors: Peyman Amini Motlagh, Ali Pak
Abstract:
Seismic retrofitting of important structures is essential in seismological active zones. The importance is doubled when it comes to some buildings like schools, hospitals, bridges etc. because they are required to continue their serviceability even after a major earthquake. Generally, seismic retrofitting codes have paid little attention to retrofitting of foundations due to its construction complexity. In this paper different methods for seismic retrofitting of tall buildings’ foundations will be discussed and evaluated. Foundations are considered in three different categories. First, foundations those are in danger of liquefaction of their underlying soil. Second, foundations located on slopes in seismological active regions. Third, foundations designed according to former design codes and may show structural defects under earthquake loads. After describing different methods used in different countries for retrofitting of the existing foundations in seismological active regions, comprehensive comparison between these methods with regard to the above mentioned categories is carried out. This paper gives some guidelines to choose the best method for seismic retrofitting of tall buildings’ foundations in retrofitting projects.Keywords: existing foundation, landslide, liquefaction, seismic retrofitting
Procedia PDF Downloads 3913477 Enhanced Iceberg Information Dissemination for Public and Autonomous Maritime Use
Authors: Ronald Mraz, Gary C. Kessler, Ethan Gold, John G. Cline
Abstract:
The International Ice Patrol (IIP) continually monitors iceberg activity in the North Atlantic by direct observation using ships, aircraft, and satellite imagery. Daily reports detailing navigational boundaries of icebergs have significantly reduced the risk of iceberg contact. What is currently lacking is formatting this data for automatic transmission and display of iceberg navigational boundaries in commercial navigation equipment. This paper describes the methodology and implementation of a system to format iceberg limit information for dissemination through existing radio network communications. This information will then automatically display on commercial navigation equipment. Additionally, this information is reformatted for Google Earth rendering of iceberg track line limits. Having iceberg limit information automatically available in standard navigation equipment will help support full autonomous operation of sailing vessels.Keywords: iceberg, iceberg risk, iceberg track lines, AIS messaging, international ice patrol, North American ice service, google earth, autonomous surface vessels
Procedia PDF Downloads 1363476 Developing an Integrated Seismic Risk Model for Existing Buildings in Northern Algeria
Authors: R. Monteiro, A. Abarca
Abstract:
Large scale seismic risk assessment has become increasingly popular to evaluate the physical vulnerability of a given region to seismic events, by putting together hazard, exposure and vulnerability components. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), explains the steps and expected results for the development of an integrated seismic risk model for assessment of the vulnerability of residential buildings in Northern Algeria. For this purpose, the model foresees the consideration of an updated seismic hazard model, as well as ad-hoc exposure and physical vulnerability models for local residential buildings. The first results of this endeavor, such as the hazard model and a specific taxonomy to be used for the exposure and fragility components of the model are presented, using as starting point the province of Blida, in Algeria. Specific remarks and conclusions regarding the characteristics of the Northern Algerian in-built are then made based on these results.Keywords: Northern Algeria, risk, seismic hazard, vulnerability
Procedia PDF Downloads 2013475 Revitalization of the Chinese Residential at Lasem, Indonesia
Authors: Nurtati Soewarno, Dian Duhita
Abstract:
The existence of civilization from the past is recognized by the left objects such as monuments, buildings or even a town. The relics were designed and made well, using the good quality material so it could persist a long period of time. At this moment, those relics are cultural heritage that must be preserved and the authenticity maintained. Indonesia, a country consist of various tribes with many cultural heritages, one of them is the city of Lasem. Lasem city lies in the northern part of Central Java since the Majapahit kingdom era (13th century) poses as a busy harbor city and a trading center. Lasem is one of the residences of Chinese immigrants in Java, seen by the domination of Chinese architectural building styles. The residential was built since the 15th century and the building has the courtyard which is different from other China’s building in another part of Java. This city loses ground since the trade activity experience difficulties during the Japanese colonial era and continues after the Indonesian independence time. Many Chinese people left Lasem city and let the buildings empty not maintained. This paper will present the result of observation to Chinese architectural style buildings in Lasem city which still hold out until this moment. Using typo morphology method, the case study is chosen based on the transformation type. The occurring transformation is parallel with adaptive reuse concept as an effort to revitalize the existence of the buildings. With this concept, it is expected that the buildings could be re functioned and the glory of the foretime Lasem city could be experienced again. Intervention from the local government is expected, issuing regulations, hoping the new building functions won’t ruin the cultural heritage but instead beautifies it.Keywords: adaptive re-use, brown field area, building transformation, Lasem city
Procedia PDF Downloads 3643474 Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields
Authors: Okoro Ikechukwu Ralph, Fuat Kara
Abstract:
The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed.Keywords: offshore reliability, production performance, subsea control module, well integrity
Procedia PDF Downloads 5123473 Lighting Consumption Analysis in Retail Industry: Comparative Study
Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera
Abstract:
This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.Keywords: commercial buildings, energy performances, lightning consumption, maintenance
Procedia PDF Downloads 2613472 Effect of White Roofing on Refrigerated Buildings
Authors: Samuel Matylewicz, K. W. Goossen
Abstract:
The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes
Procedia PDF Downloads 1293471 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone
Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.Keywords: energy simulation, office building, tropical climate, zero energy buildings
Procedia PDF Downloads 1843470 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)
Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo
Abstract:
Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop
Procedia PDF Downloads 4033469 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: building stock energy modelling, energy-savings, archetype
Procedia PDF Downloads 1543468 Investigation of Thermal Comfort Conditions of Vernacular Buildings Taking into Consideration Various Use Patterns: A Case Study
Authors: Christina Kalogirou
Abstract:
The main goal of this paper is to explore the thermal comfort conditions in traditional buildings during all seasons of the year taking into consideration various use patterns. For this purpose a dwelling of vernacular architecture is selected and data regarding the indoor and outdoor air and surface temperature as well as the relative humidity are collected. These measurements are conducted in situ during the period of a year. Also, this building is occupied periodically and a calendar of occupancy was kept (duration of residence, hours of heating system operation, hours of natural ventilation, etc.) in order to correlate the indoor conditions recorded with the use patterns via statistical analysis. Furthermore, the effect of the high thermal inertia of the stone masonry walls and the different orientation of the rooms is addressed. Thus, this paper concludes in some interesting results on the effect of the users in the indoor climate conditions in the case of buildings with high thermal inertia envelops.Keywords: thermal comfort, in situ measurements, occupant behaviour, vernacular architecture
Procedia PDF Downloads 4433467 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF
Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos
Abstract:
An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.Keywords: airborne noise, performance standard, soundproofing, vertical seal
Procedia PDF Downloads 2973466 Application of Electrochromic Glazing for Reducing Peak Cooling Loads
Authors: Ranojoy Dutta
Abstract:
HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load
Procedia PDF Downloads 1303465 Analysis of Building Response from Vertical Ground Motions
Authors: George C. Yao, Chao-Yu Tu, Wei-Chung Chen, Fung-Wen Kuo, Yu-Shan Chang
Abstract:
Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be.Keywords: vertical ground motion, vertical amplification factor, natural frequency, component
Procedia PDF Downloads 3143464 Refurbishment Methods to Enhance Energy Efficiency of Brick Veneer Residential Buildings in Victoria
Authors: Hamid Reza Tabatabaiefar, Bita Mansoury, Mohammad Javad Khadivi Zand
Abstract:
The current energy and climate change impacts of the residential building sector in Australia are significant. Thus, the Australian Government has introduced more stringent regulations to improve building energy efficiency. In 2006, the Australian residential building sector consumed about 11% (around 440 Petajoule) of the total primary energy, resulting in total greenhouse gas emissions of 9.65 million tonnes CO2-eq. The gas and electricity consumption of residential dwellings contributed to 30% and 52% respectively, of the total primary energy utilised by this sector. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Employing sustainable design principles and effective use of construction materials can play a crucial role in improving thermal performance of new and existing buildings. Even though awareness has been raised, the design phase of refurbishment projects is often problematic. One of the issues concerning the refurbishment of residential buildings is mostly the consumer market, where most work consists of moderate refurbishment jobs, often without assistance of an architect and partly without a building permit. There is an individual and often fragmental approach that results in lack of efficiency. Most importantly, the decisions taken in the early stages of the design determine the final result; however, the assessment of the environmental performance only happens at the end of the design process, as a reflection of the design outcome. Finally, studies have identified the lack of knowledge, experience and best-practice examples as barriers in refurbishment projects. In the context of sustainable development and the need to reduce energy demand, refurbishing the ageing residential building constitutes a necessary action. Not only it does provide huge potential for energy savings, but it is also economically and socially relevant. Although the advantages have been identified, the guidelines come in the form of general suggestions that fail to address the diversity of each project. As a result, it has been recognised that there is a strong need to develop guidelines for optimised retrofitting of existing residential buildings in order to improve their energy performance. The current study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of residential brick veneer buildings in Victoria (Australia). Proposing different remedial solutions for improving the energy performance of residential brick veneer buildings, in the simulation stage, annual energy usage analyses have been carried out to determine heating and cooling energy consumptions of the buildings for different proposed retrofitting techniques. Then, the results of employing different retrofitting methods have been examined and compared in order to identify the most efficient and cost-effective remedial solution for improving the energy performance of those buildings with respect to the climate condition in Victoria and construction materials of the studied benchmark building.Keywords: brick veneer residential buildings, building energy efficiency, climate change impacts, cost effective remedial solution, energy performance, sustainable design principles
Procedia PDF Downloads 2913463 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 753462 Comparing Energy Labelling of Buildings in Spain
Authors: Carolina Aparicio-Fernández, Alejandro Vilar Abad, Mar Cañada Soriano, Jose-Luis Vivancos
Abstract:
The building sector is responsible for 40% of the total energy consumption in the European Union (EU). Thus, implementation of strategies for quantifying and reducing buildings energy consumption is indispensable for reaching the EU’s carbon neutrality and energy efficiency goals. Each Member State has transposed the European Directives according to its own peculiarities: existing technical legislation, constructive solutions, climatic zones, etc. Therefore, in accordance with the Energy Performance of Buildings Directive, Member States have developed different Energy Performance Certificate schemes, using proposed energy simulation software-tool for each national or regional area. Energy Performance Certificates provide a powerful and comprehensive information to predict, analyze and improve the energy demand of new and existing buildings. Energy simulation software and databases allow a better understanding of the current constructive reality of the European building stock. However, Energy Performance Certificates still have to face several issues to consider them as a reliable and global source of information since different calculation tools are used that do not allow the connection between them. In this document, TRNSYS (TRaNsient System Simulation program) software is used to calculate the energy demand of a building, and it is compared with the energy labeling obtained with Spanish Official software-tools. We demonstrate the possibility of using not official software-tools to calculate the Energy Performance Certificate. Thus, this approach could be used throughout the EU and compare the results in all possible cases proposed by the EU Member States. To implement the simulations, an isolated single-family house with different construction solutions is considered. The results are obtained for every climatic zone of the Spanish Technical Building Code.Keywords: energy demand, energy performance certificate EPBD, trnsys, buildings
Procedia PDF Downloads 1263461 Interior Noise Reduction of Construction Equipment Vehicle
Authors: Pradeep Jawale, Sharad Supare, Sachin Kumar Jain, Nagesh Walke
Abstract:
One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market.Keywords: interior noise, noise reduction, CEV, noise source identification
Procedia PDF Downloads 463460 The Role of Heat Pumps in the Decarbonization of European Regions
Authors: Domenico M. Mongelli, Michele De Carli, Laura Carnieletto, Filippo Busato
Abstract:
Europe's dependence on imported fossil fuels has been particularly highlighted by the Russian invasion of Ukraine. Limiting this dependency with a massive replacement of fossil fuel boilers with heat pumps for building heating is the goal of this work. Therefore, with the aim of diversifying energy sources and evaluating the potential use of heat pump technologies for residential buildings with a view to decarbonization, the quantitative reduction in the consumption of fossil fuels was investigated in all regions of Europe through the use of heat pumps. First, a general overview of energy consumption in buildings in Europe has been assessed. The consumption of buildings has been addressed to the different uses (heating, cooling, DHW, etc.) as well as the different sources (natural gas, oil, biomass, etc.). The analysis has been done in order to provide a baseline at the European level on the current consumptions and future consumptions, with a particular interest in the future increase of cooling. A database was therefore created on the distribution of residential energy consumption linked to air conditioning among the various energy carriers (electricity, waste heat, gas, solid fossil fuels, liquid fossil fuels, and renewable sources) for each region in Europe. Subsequently, the energy profiles of various European cities representative of the different climates are analyzed in order to evaluate, in each European climatic region, which energy coverage can be provided by heat pumps in replacement of natural gas and solid and liquid fossil fuels for air conditioning of the buildings, also carrying out the environmental and economic assessments for this energy transition operation. This work aims to make an innovative contribution to the evaluation of the potential for introducing heat pump technology for decarbonization in the air conditioning of buildings in all climates of the different European regions.Keywords: heat pumps, heating, decarbonization, energy policies
Procedia PDF Downloads 1293459 Sustainable Building Design for Energy Efficiency and Healthier Electromagnetic Environment
Authors: Riadh Habash, Kristina Djukic, Gandhi Habash
Abstract:
Sustainable design is one of the emerging milestones in building construction. This concept is defined as buildings that on a yearly average consume as much energy as they generate using renewable energy sources. Realization of sustainable buildings requires a wide range of technologies, systems and solutions with varying degrees of complexity and sophistication, depending upon the location and surrounding environmental conditions. This paper will address not only the role of the above technologies and solutions but will provide solutions to reduce the electromagnetic fields (EMFs) in the building as much as possible so that the occupiers can recover from electro-hyper-sensitivity, if any. The objective is to maximize energy efficiency, optimize occupant comfort, reduce dependency on the grid and provide safer and healthier EMF environment especially for hypersensitive people. Creative architectural and engineering solutions that capitalize on the design of energy efficient technologies; combined cooling, heating and power (CCHP) microgrid (MG); and EMF mitigation will be presented.Keywords: sustainable buildings, energy efficiency, thermal simulation, electromagnetic environment
Procedia PDF Downloads 3023458 Computer-Based Model for Design Selection of Lightning Arrester for 132/33kV Substation
Authors: Uma U. Uma, Uzoechi Laz
Abstract:
Protection of equipment insulation against lightning over voltages and selection of lightning arrester that will discharge at lower voltage level than the voltage required to breakdown the electrical equipment insulation is examined. The objectives of this paper are to design a computer based model using standard equations for the selection of appropriate lightning arrester with the lowest rated surge arrester that will provide adequate protection of equipment insulation and equally have a satisfactory service life when connected to a specified line voltage in power system network. The effectiveness and non-effectiveness of the earthing system of substation determine arrester properties. MATLAB program with GUI (graphic user interphase) its subprogram is used in the development of the model for the determination of required parameters like voltage rating, impulse spark over voltage, power frequency spark over voltage, discharge current, current rating and protection level of lightning arrester of a specified voltage level of a particular line.Keywords: lightning arrester, GUIs, MatLab program, computer based model
Procedia PDF Downloads 4173457 Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach
Authors: Zwalnan Selfa Johnson, Caleb Nanchen Nimyel, Gideon Duvuna Ayuba
Abstract:
Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.Keywords: solar heat gain, building zone, cooling energy, air conditioning, zone temperature
Procedia PDF Downloads 933456 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas
Authors: J. Szolomicki, H. Golasz-Szolomicka
Abstract:
The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.Keywords: core structures, damping system, high-rise building, seismic zone
Procedia PDF Downloads 1753455 Effective Teaching of Thermofluid Pratical Courses during COVID-19
Authors: Opeyemi Fadipe, Masud Salimian
Abstract:
The COVID-19 pandemic has introduced a new normal into the world; online teaching is now the most used method of teaching over the face to face meeting. With the emergency of these teaching, online-teaching has been improved over time and with more technological advancement tools introduced. Practical courses are more demanding to teach because it requires the physical presence of the student as well as a demonstration of the equipment. In this study, a case of Lagos State University thermofluid practical was the understudy. A survey was done and give to a sample of students to fill. The result showed that the blend-approach is better for practical course teaching. Software simulation of the equipment used to conduct practical should be encouraged in the future.Keywords: COVID-19, online teaching, t-distribution, thermofluid
Procedia PDF Downloads 1763454 Spread Spectrum with Notch Frequency Using Pulse Coding Method for Switching Converter of Communication Equipment
Authors: Yasunori Kobori, Futoshi Fukaya, Takuya Arafune, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi
Abstract:
This paper proposes an EMI spread spectrum technique to enable to set notch frequencies using pulse coding method for DC-DC switching converters of communication equipment. The notches in the spectrum of the switching pulses appear at the frequencies obtained from empirically derived equations with the proposed spread spectrum technique using the pulse coding methods, the PWM (Pulse Width Modulation) coding or the PCM (Pulse Cycle Modulation) coding. This technique would be useful for the switching converters in the communication equipment which receives standard radio waves, without being affected by noise from the switching converters. In our proposed technique, the notch frequencies in the spectrum depend on the pulse coding method. We have investigated this technique to apply to the switching converters and found that there is good relationship agreement between the notch frequencies and the empirical equations. The notch frequencies with the PWM coding is equal to the equation F=k/(WL-WS). With the PCM coding, that is equal to the equation F=k/(TL-TS).Keywords: notch frequency, pulse coding, spread spectrum, switching converter
Procedia PDF Downloads 3743453 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones
Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu
Abstract:
In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV
Procedia PDF Downloads 1743452 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines
Authors: Nicolae Constantin, Ştefan Sorohan
Abstract:
The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities
Procedia PDF Downloads 3393451 Post Mutiny Institutional Buildings of India: A Visual Language of Reconciliation
Authors: Aruna Ramani Grover
Abstract:
In 1857 the British army in Bengal rose in mutiny. The outcome of a yearlong stifle was the abolition of the East India Company and establishment of Crown rule in 1958. Despite being a political democracy back home, with the declaration of Queen Victoria as Empress of India, the British established themselves as imperialistic successors to the Mughals in India. With the institution of the Crown role in the sub-continent, there was a serious endeavour for systematic governance. This led to infrastructure development and creation of institutions as well. The outcome was many public buildings like courts, railway- stations and headquarters, senates, post offices, banks, libraries, memorial halls, museums, memorials, theatres, government colleges, residential-schools and clock towers. These were built in the old and emerging urban settlements of the sub-continents. In the realm of architecture, like all political masters of the past, the British architects too encountered the living tradition of the sub-continent. A bewildering plethora of buildings in various climatic zones, using local materials and crafted with tools and techniques of the region by local craftsmen had to be understood and assimilated. The19th century British architects who built in India, designed institutional buildings which were functional and responded to the need of the user. In visual terms however, it was a completely different story. Using the manifest elements of the complex and layered indigenous tradition, they fashioned buildings to create an architecture of reconciliation. Treating the traditional architecture as a pattern book, finished buildings was served up to the local population coloured by their understanding of tradition. This paper will discuss a series of building some of which are the Senate House and Law courts at Madras, the Municipal Building and Gateway of India in Bombay, the Muir college in Allahabad, Mayo college Ajmer, the Mubarak Mahal in Jaipur to demonstrate how a visual language of reconciliation was created.Keywords: infrastructure, British architects, tradition, pattern book, reconciliation
Procedia PDF Downloads 323450 The Effects of Production, Transportation and Storage Conditions on Mold Growth in Compound Feeds
Authors: N. Cetinkaya
Abstract:
The objective of the present study is to determine the critical control points during the production, transportation and storage conditions of compound feeds to be used in the Hazard Analysis Critical Control Point (HACCP) feed safety management system. A total of 40 feed samples were taken after 20 and 40 days of storage periods from the 10 dairy and 10 beef cattle farms following the transportation of the compound feeds from the factory. In addition, before transporting the feeds from factory immediately after production of dairy and beef cattle compound feeds, 10 from each total 20 samples were taken as 0 day. In all feed samples, chemical composition and total aflatoxin levels were determined. The aflatoxin levels in all feed samples with the exception of 2 dairy cattle feeds were below the maximum acceptable level. With the increase in storage period in dairy feeds, the aflatoxin levels were increased to 4.96 ppb only in a BS8 dairy farm. This value is below the maximum permissible level (10 ppb) in beef cattle feed. The aflatoxin levels of dairy feed samples taken after production varied between 0.44 and 2.01 ppb. Aflatoxin levels were found to be between 0.89 and 3.01 ppb in dairy cattle feeds taken on the 20th day of storage at 10 dairy cattle farm. On the 40th day, feed aflatoxin levels in the same dairy cattle farm were found between 1.12 and 7.83 ppb. The aflatoxin levels were increased to 7.83 and 6.31 ppb in 2 dairy farms, after a storage period of 40 days. These obtained aflatoxin values are above the maximum permissible level in dairy cattle feeds. The 40 days storage in pellet form in the HACCP feed safety management system can be considered as a critical control point.Keywords: aflatoxin, beef cattle feed, compound feed, dairy cattle feed, HACCP
Procedia PDF Downloads 398